Charge transfer catalysts embedded inside dielectric polymer matrix-modified metal chalcogenide film electrodes in photoelectrochemical processes; ISYDMA5 2020, Marrakesh, (Ref: 226)
Publication Type
Conference Paper

Metal chalcogenide nanofilm electrodes MX (M=Cd, Cu or others; X=S, Se or Te) are investigated in photoelectrochemical (PEC) as replacement for the more costly p-n photovoltaic junctions. However, such electrodes are unstable and yield low conversion efficiency [1]. We developed simple strategies to enhance both stability and conversion efficiency for such electrodes. Attachment of electro-active species, embedded inside polymeric matrices, to the surface of the electrode permanently affects its photo-electrochemical (PEC) properties.  The electro-active species behaves as charge transfer catalyst across the solid/liquid junction. This increases the charge (holes or electrons depending on the type of the SC) transfer rate between the electrode and the redox couple. The SC electrode can thus be stabilized to photo-degradation.  The strategy has been effective for various nano-film electrodes (CuS, CuSe, CdSe, CdTe and others). Conversion efficiency is enhanced from ~1.0% to above 10%.  Careful pre-annealing the electrodes, before coating, and controlled cooling rate, give extra enhancement in PEC characteristics [2]. Pre-annealed electrodes, coated with electroactive metalloporphyrina materials inside polymer matrices, yield >18.0% conversion efficiency [3-4]. The values are higher than US DOE expectation for 2020, and have not been reported earlier for metal chalcogenide film electrodes. This presentation will show a critical survey of our results observed throughout the last 20 years, as compared to literature. Our new model proposed for the efficiency and stability enhancement will also be rigorously presented.  Future prospects of this work will also be discussed.



Keywords: Semiconductors, Thin Film Electrodes, Conversion Efficiency, Stability, Charge Transfer Catalysis.


  1. H. S. Hilal, A. Zyoud, M. H. S. Helal, H. Bsharat, H. H. Hilal and A. Cheknane, Solar Energy, 183, 704 (2019).
  2. A. Zyoud, S. Abu-Alrob, T. W. Kim, H-J. Choi, M. H. S. Hilal, H. Bsharat, H. S. Hilal, Materials Science in Semiconductor Processing, 107, 104852 (2020).
  3. A. Zyoud, R. S. AlKerm, R. S. Alkerm, D. H. Abdelhadi, D-H. Park, M. H. S. Helal, G. Campet, R. W. Muthaffar, H. Kwon and H. S. Hilal, Solar Energy Materials and Solar Cells, 144, 429 (2016).

A. Zyoud, R. S. Al-Kerm, R. Al-Kerm, W. Mansur, M. H. S. Helal, D-H. Park, N. Sabli and H. S. Hilal, Electrochimica Acta, 174, 472 (2015).

Conference Title
Fifth International Symposium on Dielectric Materials and Applications, ISyDMA’5
Conference Country
Conference Date
April 15, 2020 - April 18, 2020
Conference Sponsor
Moroccan Association for Advanced Materials, Cadi Ayyad University Marrakesh, & Moroccan Society of Advanced Physics
Additional Info
Conference Website