Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data
Publication Type
Original research
Authors
Fulltext
Download

This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb −1−1  of LHC proton–proton collision data taken at centre-of-mass energies of  s√=7s=7  and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the  ZZ  resonance is used to set the absolute energy scale. For electrons from  ZZ decays, the achieved calibration is typically accurate to 0.05 % in most of the detector acceptance, rising to 0.2 % in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2–1 % for electrons with a transverse energy of 10 GeV, and is on average 0.3 % for photons. The detector resolution is determined with a relative inaccuracy of less than 10 % for electrons and photons up to 60 GeV transverse energy, rising to 40 % for transverse energies above 500 GeV.

Journal
Title
The European Physical Journal C
Publisher
Springer Berlin Heidelberg
Publisher Country
Germany
Indexing
Scopus
Impact Factor
None
Publication Type
Prtinted only
Volume
74
Year
2014
Pages
1-48