Hemolysis of Human Red Blood Cells by Riboflavin-Cu(II) System
Publication Type
Original research
Authors
Fulltext
Download

The photodynamic action of riboflavin is generally considered to involve the generation of reactive oxygen species, whose production is enhanced when Cu(II) is present in the reaction. In the present study we report that photoactivated riboflavin causes K+ loss from fresh human red blood cells (RBC) in a time dependent manner. Addition of Cu(II) further enhances the K+ loss and also leads to significant hemolysis. Riboflavin in a 2:1 stoichiometry with Cu(II) leads to maximum K+ loss and up to 45% hemolysis. Bathocuproine, a specific Cu(I)-sequestering agent, when present in the reaction, inhibits the hemolysis completely. Free radical scavengers like superoxide dismutase, potassium iodide and mannitol inhibited the hemolysis up to 55% or more. However, thiourea was the most effective scavenger showing 90% inhibition. These results suggest that K+ leakage and hemolysis of human RBC are basically free radical mediated reactions.

Journal
Title
Biochim Biophys Acta
Publisher
Elsevier
Publisher Country
United States of America
Indexing
Thomson Reuters
Impact Factor
3.6
Publication Type
Both (Printed and Online)
Volume
1523
Year
2000
Pages
225-229