Mechanical Properties of Nano/Micro Multilayered Thermoplastic Composites Based on PP Matrix
Publication Type
Original research
Authors
Fulltext
Download

We have shown in an earlier work that the addition of both organomodified layered silicates and micrometric calcium carbonate (CaCO3) into a polypropylene (PP) matrix resulted in improved mechanical properties due to synergistic effect of the fillers. In this study, we analyzed the feasibility of producing continuous glass fibers composites with micro/nanoreinforced matrix. In particular, either highly filled matrices with micrometric CaCO3 (22, 40, and 50 wt %) or micro/nanoreinforced matrix were used to prepare composites in order to investigate the effect of fillers on both mechanical and thermomechanical properties. The best mechanical performances were obtained when nano- and microsized particles were combined to reinforce the thermoplastic matrices employed in the film stacking manufacturing method. In such systems, the micro/nanocomposites have improved the flexural properties of the continuous fiber laminate, producing an increase of both flexural modulus (60%) and flexural strength (130%). Moreover, storage modulus of glass fibers composite prepared with micro/nanoreinforced matrix was higher than modulus of the composites manufactured with either neat PP matrix or microreinforced matrix in −40/150°C temperature range.

Journal
Title
Journal of Thermoplastic Composite Materials
Publisher
SAGE
Publisher Country
United Kingdom
Publication Type
Both (Printed and Online)
Volume
25
Year
2012
Pages
835-849