Enhanced Therapeutic Anti-Inflammatory Effect of Betamethasone on Topical Administration with Low-Frequency, Low-Intensity (20 kHz, 100 mW/cm2) Ultrasound Exposure on Carrageenan-Induced Arthritis in a Mouse Model
Publication Type
Original research
Authors

The purpose of this work was to investigate whether low-frequency, low-intensity (20 kHz, <100 mW/cm2, spatial-peak, temporal-peak intensity) ultrasound, delivered with a lightweight (<100 g), tether-free, fully wearable, battery-powered applicator, is capable of reducing inflammation in a mouse model of rheumatoid arthritis. The therapeutic, acute, anti-inflammatory effect was estimated from the relative swelling induced in mice hindlimb paws. In an independent, indirect approach, the inflammation was bio-imaged by measuring glycolytic activity with near-infrared labeled 2-deoxyglucose. The outcome of the experiments indicated that the combination of ultrasound exposure and topical application of 0.1% (w/w) betamethasone gel resulted in statistically significantly (p < 0.05) enhanced anti-inflammatory activity in comparison with drug or ultrasound treatment alone. The present study underscores the potential benefits of low-frequency, low-intensity ultrasound-assisted drug delivery. However, the proof of concept presented indicates the need for additional experiments to systematically evaluate and optimize the potential of, and the conditions for, tolerable low-frequency, low-intensity ultrasound-promoted non-invasive drug delivery.

Journal
Title
Ultrasound in Medicine & Biology
Publisher
Elsevier
Publisher Country
Netherlands
Indexing
Scopus
Impact Factor
2.9
Publication Type
Online only
Volume
41
Year
2015
Pages
--