We study the effects of the perpendicular magnetic and Aharonov-Bohm (AB) flux fields on the energy levels of a two-dimensional (2D) Klein-Gordon (KG) particle subjected to equal scalar and vector pseudo-harmonic oscillator (PHO). We calculate the exact energy eigenvalues and normalized wave functions in terms of chemical potential parameter, magnetic field strength, AB flux field, and magnetic quantum number by means of the Nikiforov-Uvarov (NU) method. The non-relativistic limit, PHO, and harmonic oscillator solutions in the existence and absence of external fields are also obtained.