A Grey-Fuzzy Programming Approach towards Socio-Economic Optimization of Second-Generation Biodiesel Supply Chains
Publication Type
Original research
Authors

This study aims to develop a multi-objective second-generation-based socially responsible supply chain (SGB-SRSC) network design model that considers all dimensions of sustainability: economy, environment, and social. The dynamic nature of the biodiesel supply chain (SC) impairs the SGB-SRSC model decisions; thus, a grey-fuzzy solution approach is developed. Biodiesel is a promising renewable energy resource produced from a variety of easily accessible domestic wastes. For a swift transition towards commercially feasible biodiesel production, integrated optimization of the biodiesel SC system is critical. Using the latest social impact assessment tools, this study provides a decision-support system for developing a biodiesel SC network. A comprehensive computational analysis is performed on a case study to validate the proposed model. The results show that significant investment is required to achieve social well-being goals and secure decisions against uncertainty associated with SGB-SRSC model parameters. Further, it is observed that the expenses of biodiesel production and biodiesel plant installation accounted for a large portion of the overall SC cost. As a result, finding more cost-effective biodiesel production methods is critical to the industry’s economic viability. Regulators and policymakers involved in biodiesel production projects may find the framework useful in obtaining a compromise solution for socio-economic goals based on their preferences.

Journal
Title
Sustainability
Publisher
MDPI
Publisher Country
Switzerland
Indexing
Thomson Reuters
Impact Factor
3.88
Publication Type
Both (Printed and Online)
Volume
14
Year
2022
Pages
28