Effect of dust and methods of cleaning on the performance of solar PV module for different climate regions: Comprehensive review
Publication Type
Subject review
Authors

Recent achievement and progress in solar PV play a significant role in controlling climate change. This study reviewed comprehensively electrical characteristics, life cycle of dust, optical characteristics, and different cleaning techniques related to the effect of dust on the performance of PV modules throughout different climate regions of the world. The power maximumpower point (MPP) and curve of PV module under the effect of irradiance and temperature were presented. The effect of dust (shading) on the electrical efficiency of PV module was discussed based on soft, partial, and
complete (soiling) shading. The physical properties of dust around the globe such as PM10 concentration, dust loading (mgm−2), and fine dust particles concentration were covered and discussed. Reasons behind the accumulation of dust based on, location and installation factors, dust type, and environmental factors. Environmental reasons causing dust and dust removal in accordance with the life cycle of dust was covered in detail. All the reasons that cause the generation, accumulation and removal of dust during its life cycle were explained. All forces responsible for the adhesion phase of the dust life cycle were presented. The effect of dust on PV module transmittance and electrical parameters module were discussed in detail based on physical properties of the dust at its location and installation conditions. Self-cleaning super hydrophobic surfaces based on methods such as solvents, vapor-assisted coating, powder coating, and polymerization were discussed. All cleaning technologies, including self-cleaning technologies, based on the material coating used, and the manufacturing of PV cells was compared. The future prospective for PV technologies and cleaning methods were also covered.

Journal
Title
Science of the Total Environment
Publisher
Elsevier
Publisher Country
United Kingdom
Indexing
Thomson Reuters
Impact Factor
10.147
Publication Type
Both (Printed and Online)
Volume
827
Year
2022
Pages
154050