Ecballium elaterium improved stimulatory effects of tissue-resident NK cells and ameliorated liver fibrosis in a thioacetamide mice model
Publication Type
Original research
Authors

Ecballium elaterium (EE), widely used plant in Mediterranean medicine, showed anticancer activity. This study aimed to investigate EE effects on liver fibrosis in an animal model of thioacetamide (TAA). Intraperitoneal administration of TAA was performed twice weekly for four weeks in C57BL6J mice. Livers were extracted and serum were evaluated for inflammatory markers (H&E staining, ALT, AST, ALP), pro-inflammatory cytokines, fibrosis (Sirius red staining, Masson's trichrome, α-smooth muscle actin and collagen III), and metabolic (cholesterol, triglyceride, C-peptide, and fasting-blood-sugar) profiles. Glutathione, glutathione peroxidase, and catalase liver antioxidant markers were assessed. Tissue-resident NK cells from mice livers were functionally assessed for activating receptors and cytotoxicity. Compared to vehicle-treated mice, the TAA-induced liver injury showed attenuation in the histopathology outcome following EE treatment. In addition, EE-treated mice resulted in decreased serum levels of ALT, AST, and ALP, associated with a decrease in IL-20, TGF-β, IL-17, IL-22 and MCP-1 concentrations. Moreover, EE-treated mice exhibited improved lipid profile of cholesterol, triglycerides, C-peptide, and FBS. EE treatment maintained GSH, GPX, and CAT liver antioxidant activity and led to elevated counts of tissue-resident NK (trNK) cells in the TAA-mice. Consequently, trNK demonstrated an increase in CD107a and IFN-γ with improved potentials to kill activated hepatic-stellate cells in an in vitro assay. EE exhibited antifibrotic and antioxidative effects, increased the number of trNK cells, and improved metabolic outcomes. This plant extract could be a targeted therapy for patients with advanced liver injury.

Journal
Title
Biomedicine & Pharmacotherapy
Publisher
Elsevier
Publisher Country
Netherlands
Indexing
Thomson Reuters
Impact Factor
6.5
Publication Type
Both (Printed and Online)
Volume
150
Year
2022
Pages
112942