Tree Search Fuzzy NARX Neural Network Fault Detection Technique for PV Systems with IoT Support
Publication Type
Original research
Authors
Fulltext
Download

The photovoltaic (PV) panel’s output energy depends on many factors. As they are becoming the leading alternative energy source, it is essential to get the best out of them. Although the main factor for maximizing energy production is proportional to the amount of solar radiation reaching the photovoltaic panel surface, other factors, such as temperature and shading, influence them negatively. Moreover, being installed in a dynamic and frequently harsh environment causes a set of reasons for faults, defects, and irregular operations. Any irregular operation should be recognized and classified into faults that need attention and, therefore, maintenance or as being a regular operation due to changes in some surrounding factors, such as temperature or solar radiation. Besides, in case of faults, it would be helpful to identify the source and the cause of the problem. Hence, this study presented a novel methodology that modeled a PV system in a tree-like hierarchy, which allowed the use of a fuzzy nonlinear autoregressive network with exogenous inputs (NARX) to detect and classify faults in a PV system with customizable granularity. Moreover, the used methodology enabled the identification of the exact source of fault(s) in a fully automated way. The study was done on a string of eight PV panels; however, the paper discussed using the algorithm on a more extensive PV system. The used fuzzy NARX algorithm in this study was able to classify the faults that appeared in up to five out of the eight PV panels and to identify the faulty PV panels with high accuracy. The used hardware could be controlled and monitored through a Wi-Fi connection, which added support for Internet of Things applications.

Journal
Title
Electronics
Publisher
MDPI
Publisher Country
Switzerland
Indexing
Thomson Reuters
Impact Factor
2.412
Publication Type
Online only
Volume
9
Year
2020
Pages
26