On Multipliers of Orlicz Spaces

حول مضاعفات فضاءات أورلكس

Mahmud Masri

Mathematics Department,. An-Najah National University, Nablus, Palestine Received: (9/10/2000), Accepted: (7/5/2001)

Abstract

Let (T,M,μ) be a finite positive measure space, X a Banach space, ϕ a modulus function and $f:T\to X$ a strongly measurable function. The Orlicz space is $L^\phi(\mu,X) = \left\{f: \int_T \phi(\|f(t)\|) d\mu(t) < \infty\right\}.$ The space of Bochner p-integrable functions,

$$1 \le p < \infty \quad \text{is } L^{p}(\mu, X) = \left\{ f : \int_{T} \|f(t)\|^{p} d\mu(t) < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess sup } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f : \text{ess } \|f(t)\| < \infty \right\} \cdot \text{Also, } L^{\infty}(\mu, X) = \left\{ f$$

When X is a Banach algebra we show that the multipliers $M(L^{\phi}(\mu, X))$ of $L^{\phi}(\mu, X)$ is $L^{\infty}(\mu, X)$ if $\phi(a)\phi(b) \leq \phi(ab)$ for all $a \geq 1$ and $b \geq 0$. Also, $M(L^{\phi}(\mu, X)) = L^{\phi}(\mu, X)$ if $\phi(ab) \leq \phi(a) + \phi(b)$ for all a,b in $[0,\infty)$ which generalizes the special case X being the complex numbers C. When (T, M, μ) is also non-atomic we show that $f^2 \in L^{\phi}(\mu, X)$ for all $f \in L^{\phi}(\mu, X)$ iff $\limsup_{x \to \infty} \frac{\phi(x^2)}{\phi(x)} < \infty$.

Moreover, $M(L^{\phi}(\mu, X)) = L^{\phi}(\mu, X)$ iff $\lim_{x \to \infty} \sup \frac{\phi(x^2)}{\phi(x)} < \infty$ when X is commutative. This generalizes the special case T= [0,1] and X=C.

لخص

$$f:T o X$$
 ليكن (T,M,μ) فضاءا قياسيا موجبا ومنتهيا و X فضاء بناخ و ϕ اقتران مطلق القيمة و $L^\phi(\mu,X)=\left\{f:\int\limits_T\phi(\|f(t)\|)d\mu(t)<\infty
ight\}$ اقتران قياسي بقوة فان فضاء أورلكس هو

 $=L^{\infty}(\mu X)$ المضاء بوخنر عندما $L^{p}(\mu,X)=\left\{f:\int_{T}\|f(t)\|^{p}d\mu(t)<\infty
ight\}$ هو $1\leq p<\infty$ المضاعفات $L^{p}(\mu,X)=\left\{f:\int_{T}\|f(t)\|^{p}d\mu(t)<\infty
ight\}$ هن $1\leq p<\infty$ المضاعفات $1\leq p\leq\infty$ المضاعفات $1\leq p<\infty$ المضعفات $1\leq p<\infty$ المضاعفات $1\leq p<\infty$ المضع

X=C اذا X=C عندما يكون X تبديليا وهذا يعتبر تعميما للحالة الخاصة X=C اذا X=C عندما يكون X تبديليا وهذا يعتبر تعميما للحالة الخاصة X=C

1. Introduction

If ϕ is a strictly increasing continuous subadditive function on $[0,\infty)$ and satisfies $\phi(x)=0$ if x=0, then we call ϕ a modulus function. Let (T,M,μ) be a finite positive measure space, i.e., T is a set, M is a σ -algebra and μ is a positive measure with $\mu(T)<\infty$. If X is a Banach space, then a function $s:T\to X$ is called a simple function if its range contains finitely many distinct points $x_1,x_2,...,x_n$ and $E_i=s^{-1}(\{x_i\})$, i=1,2,...,n are measurable sets. Such a function s can be written as $s=\sum_{i=1}^n x_i$ χ_{E_i} , where χ_{E_i} is the characteristic function of the set E_i and $E_i\cap E_j=\Phi$, for $i\neq j, i,j=1,2,...,n$.

A function $f: T \to X$ is said to be strongly measurable if there exists a sequence $\{s_n\}$ of simple functions such that $\lim_{n \to \infty} ||s_n(t) - f(t)|| = 0$ a.e.

Mahmud Masri — 3

The Orlicz space $L^{\phi}(\mu, X)$ is the set of all strongly measurable functions f with

$$||f||_{\phi} = \int_{T} \phi(||f(t)||) d\mu(t) < \infty.$$

If for all $f,g\in L^\phi(\mu,X)$ we define $d(f,g)=\|f-g\|_\phi$, then d is a metric on $L^\phi(\mu,X)$ under which it becomes a complete topological vector space [1,p.70]. For $1\leq p<\infty$, $L^p(\mu,X)$ will denote the Banach space of (equivalence classes of) strongly measurable functions f such that $\int_T \|f(t)\|^p d\mu(t) < \infty$. The norm in $L^p(\mu,X)$ is given by

$$\left\|f\right\|_{p} = \left(\int_{T} \left\|f(t)\right\|^{p} d\mu(t)\right)^{\frac{1}{p}}.$$

The essentially bounded strongly measurable functions f form the Banach space $L^{\infty}(\mu, X)$ with norm given by $\|f\|_{\infty} = ess \sup_{t \in T} \|f(t)\|$.

If ϕ is the modulus function $\phi(x) = x^p$, $0 , then <math>L^{\phi}(\mu, X)$ is the space $L^p(\mu, X)$. Since [2, p.159], for any modulus function ϕ , $\lim_{x \to \infty} \sup \frac{\phi(x)}{x} \le \phi(1)$,

it follows that $L^1(\mu, X) \subseteq L^{\phi}(\mu, X)$. When X is a Banach algebra (see [5]) a multiplier of $L^{\phi}(\mu, X)$ is a strongly measurable function g: $T \to X$ such that $gf \in L^{\phi}(\mu, X)$ for all $f \in L^{\phi}(\mu, X)$. We denote the set of all multipliers of $L^{\phi}(\mu, X)$ by $M(L^{\phi}(\mu, X))$. For $X = \mathbb{C}$, the complex numbers, $M(L^{\phi}(\mu, C) = M(L^{\phi})$ were studied in [2]. In this paper we show that some of the results in [2] still hold for $M(L^{\phi}(\mu, X))$. A measurable

set A is called an atom if each of its measurable subsets has measure either 0 or $\mu(A)$. The measure space (T,M,μ) is called non-atomic if it contains no atoms. In [4,p.122] it is shown that if (T,M,μ) is a finite non-atomic measure space and $0 < \theta < \mu(T)$, then there exists a measurable set E such that $\mu(E) = \theta$. Using this we show that

$$\lim_{x \to \infty} \sup \frac{\phi(x^2)}{\phi(x)} < \infty \text{ iff } f^2 \in L^{\phi}(\mu, X) \text{ for all } f \in L^{\phi}(\mu, X)$$

when (T, M, μ) is a finite positive non-atomic measure space. This generalizes the main result in [3] where T=[0,1] and $X=\mathbb{C}$.

2. Multipliers of $L^{\phi}(\mu, X)$

Lemma 2.1 Let X be Banach algebra .If $g \in M(L^1(\mu, X))$, then $g \in L^{\infty}(\mu, X)$.

Proof: Suppose that $g \in M(L^1(\mu, X))$. Let $f: T \to X$ be given by f(t) = e for all $t \in T$, where e is the unit element of X. Then $f \in L^1(\mu, X)$ and

$$\int_{T} ||g(t)|| d\mu(t) = \int_{T} ||g(t)f(t)|| d\mu(t) = ||gf||_{1} < \infty.$$

Hence, $g \in L^{\infty}(\mu, X)$.

The next results are generalizations of those in [2]. Without loss of generality we can assume that ϕ is an unbounded modulus function and ϕ (1)=1. For if ϕ is bounded, then $L^{\phi}(\mu, X)$ is the strongly measurable functions. Also, if $\phi(1) \neq 1$, then we can replace ϕ by $\frac{\phi}{\phi(1)}$.

Theorem 2.2 If $\phi(a)\phi(b) \le \phi(ab)$ for all $a \ge 1$ and $b \ge 0$, then

Mahmud Masri 5

 $M(L^{\phi}(\mu, X)) = L^{\infty}(\mu, X)$, where X is a Banach algebra.

Proof: Let $g \in L^{\infty}(\mu, X)$ and $f \in L^{\phi}(\mu, X)$. Choose a natural number n such that $\|g\|_{\infty} < n$. Then since X is a Banach algebra we have

$$\| gf \|_{\phi} = \int_{T} \phi(\| g(t)f(t)\|) d\mu(t) \le \int_{T} \phi(\| g(t)\| \| f(t)\|) d\mu(t)$$

$$\le \int_{T} \phi(n \| f(t)\|) d\mu(t)$$

$$\le n \| f \|_{\phi} < \infty$$

Thus $L^{\infty}(\mu,X) \subseteq M(L^{\phi}(\mu,X))$. We note that $M(L^{\phi}(\mu,X)) \subseteq L^{\phi}(\mu,X)$ since if e is the unit element of X and f(t) = e for all $t \in T$, then $f \in L^{\phi}(\mu,X)$ and $\mathrm{gf} = \mathrm{g} \in L^{\phi}(\mu,X)$ for all $\mathrm{g} \in M(L^{\phi}(\mu,X))$.

Next, for $g \in M(L^{\phi}(\mu, X))$ and $f \in L^{1}(\mu, X)$ let $\widetilde{g}(t) = \phi(\parallel g(t) \parallel)e$ and $h(t) = \phi^{-1}(\parallel f(t) \parallel)$ for all $t \in T$. Then

$$\|h\|_{\phi} = \int_{T} \|f(t)\| d\mu(t) = \|f\|_{1} < \infty$$
.

Thus, $h \in L^{\phi}(\mu, X)$ and hence $gh \in L^{\phi}(\mu, X)$. If $A = \{t: ||g(t)|| > 1\}$, then $\|\widetilde{g}f\|_1 = \int_T \|\phi(\|g(t)\|)f(t)\| d\mu(t)$

$$\int_{T}^{T} \phi(\|g(t)\|) \|f(t)\| d\mu(t) = \int_{T}^{T} \phi(\|g(t)\|) \phi(\|h(t)\|) d\mu(t)
\leq \int_{A}^{T} \phi(\|g(t)\|) \phi(\|h(t)\|) d\mu(t) + \int_{T \setminus A}^{T} \phi(\|g(t)\|) \phi(\|h(t)\|) d\mu(t)
\leq \int_{A}^{T} \phi(\|g(t)\|\|h(t)\|) d\mu(t) + \int_{T \setminus A}^{T} \phi(\|h(t)\|) d\mu(t)
\leq \|gh\|_{\phi}^{T} + \|h\|_{\phi}^{T} < \infty.$$

This shows that $\widetilde{g} = \phi(||g||)e$ is a multiplier of $L^1(\mu, X)$. Thus $\widetilde{g} \in L^{\infty}(\mu, X)$ by lemma 2.1. This implies that $g \in L^{\infty}(\mu, X)$ and $M(L^{\phi}(\mu, X)) \subseteq L^{\infty}(\mu, X)$. Therefore, $M(L^{\phi}(\mu, X)) = L^{\infty}(\mu, X)$.

Theorem 2.3 If $\phi(ab) \le \phi(a) + \phi(b)$ for all $a, b \in [0, \infty)$, then $M(L^{\phi}(\mu, X)) = L^{\phi}(\mu, X)$ where X is a Banach algebra.

Proof: As in theorem 2.1 we have $M(L^{\emptyset}(\mu, X)) \subseteq L^{\emptyset}(\mu, X)$. Let $g \in L^{\emptyset}(\mu, X)$. Then, for all $f \in L^{\emptyset}(\mu, X)$

$$\| gf \|_{\phi} = \int_{T} \phi(\| g(t)f(t)\|) d\mu(t) \le \int_{T} \phi(\| g(t)\| \| f(t)\|) d\mu(t)$$

$$\le \int_{T} (\phi(\| g(t)\|) + \phi(\| f(t)\|)) d\mu(t)$$

$$= \| g \|_{\phi} + \| f \|_{\phi} < \infty$$

Therefore, $g \in M(L^{\phi}(\mu, X))$. Thus $L^{\phi}(\mu, X) = M(L^{\phi}(\mu, X))$.

The following is a generalization of the main result in [3] from the Lebesgue measure on [0,1]=T and the complex numbers \mathbf{C} to a non-atomic, finite, and positive measure space.

Theorem 2.4 Let (T, M, μ) be a finite positive, non-atomic measure space, and ϕ be a modulus function. Then

$$\lim_{x \to \infty} \sup \frac{\phi(x^2)}{\phi(x)} < \infty \text{ iff } f^2 \in L^{\phi}(\mu, X) \text{ for all } f \in L^{\phi}(\mu, X)$$

where X is a Banach algebra.

Proof: Suppose $\lim_{x\to\infty} \sup \frac{\phi(x^2)}{\phi(x)} = \infty$. Then there exists an increasing

sequence $\{x_n\}$ such that $x_1 > 1$ and $\frac{\phi(x_n^2)}{\phi(x_n)} > n$ for all $n = 1,2,3,\ldots$ Since

An-Najah Univ. J. Res., Vol. 15, 2001

Mahmud Masri — 7

 (T,M,μ) is a finite non-atomic measure space by lemma 10.12 [4,p.122] there exists a sequence $\{E_n\}$ of pairwise disjoint measurable sets such that

$$T = \bigcup_{n=1}^{\infty} E_n \text{ and } \mu(E_n) = \frac{\mu(T)}{n^2 \phi(x_n)} \text{ for all } n=1,2,3,...$$

Define $f: T \to X$ by $f(t) = \sum_{i=1}^{\infty} x_i \chi_{E_i}(t) e$ for all $t \in T$ where e is the unit element of X . Then

$$||f||_{\phi} = \int_{T} \phi(||f(t)||) d\mu(t) = \sum_{n=1}^{\infty} \int_{E_{n}} \phi(||\sum_{i=1}^{\infty} x_{i} \chi_{E_{i}}(t) e||) d\mu(t)$$

$$= \sum_{n=1}^{\infty} \int_{E} \phi(x_{n}) d\mu(t) = \sum_{n=1}^{\infty} \phi(x_{n}) \mu(E_{n}) = \sum_{n=1}^{\infty} \frac{\mu(T)}{n^{2}} < \infty$$

Therefore, $f \in L^{\phi}(\mu, X)$. Moreover,

$$\|f^{2}\|_{\phi} = \int_{T} \phi(\|f^{2}(t)\|) d\mu(t) = \sum_{n=1}^{\infty} \int_{E_{n}} \phi(\|(\sum_{i=1}^{\infty} x_{i} \chi_{E_{i}}(t) e)^{2} \|) d\mu(t)$$

$$= \sum_{n=1}^{\infty} \int_{E_{n}} \phi(x_{n}^{2}) d\mu(t)$$

$$\sum_{n=1}^{\infty} \int_{E_{n}} \phi(x_{n}^{2}) d\mu(t) = \sum_{n=1}^{\infty} \int_{E_{n}} \phi(x_{n}^{2}) d\mu(t)$$

$$= \sum_{n=1}^{\infty} \phi(x_n^2) \mu(E_n) \ge \sum_{n=1}^{\infty} n \phi(x_n) \mu(E_n) = \sum_{n=1}^{\infty} \frac{\mu(T)}{n} = \infty.$$

Thus, $f^2 \not\in L^\phi(\mu, X)$. Therefore, if $f^2 \in L^\phi(\mu, X)$ for all $f \in L^\phi(\mu, X)$, then $\lim_{x \to \infty} \sup \frac{\phi(x^2)}{\phi(x)} < \infty \,.$

Conversely, suppose $\limsup_{x\to\infty} \frac{\phi(x^2)}{\phi(x)} < \infty$. Then there exist constants M and K such that

$$\frac{\phi(x^2)}{\phi(x)} < M \text{ for all } x \ge K.$$

Let $f \in L^{\phi}(\mu, X)$ and $A = \{t \in T: ||f(t)|| \le K\}$. Then since X is a Banach algebra

$$||f^{2}||_{\phi} = \int_{T} \phi(||f^{2}(t)||) d\mu(t) \leq \int_{T} \phi(||f(t)||^{2}) d\mu(t)$$

$$= \int_{A} \phi(||f(t)||^{2}) d\mu(t) + \int_{T-A} \phi(||f(t)||^{2}) d\mu(t)$$

$$\leq \phi(K^{2}) \mu(T) + \int_{T-A} M \phi(||f(t)||) d\mu(t)$$

$$\leq \phi(K^{2}) \mu(T) + M ||f||_{\phi} < \infty .$$

Therefore, $f^2 \in L^{\phi}(\mu, X)$ for all $f \in L^{\phi}(\mu, X)$.

Corollary 2.5 Let (T, M, μ) be a non-atomic, finite, positive measure space, X be a commutative Banach algebra, and ϕ be a modulus function. Then

$$M(L^{\phi}(\mu, X)) = L^{\phi}(\mu, X)$$
 iff $\limsup_{x \to \infty} \frac{\phi(x^2)}{\phi(x)} < \infty$

Proof: Note that $L^{\phi}(\mu, X)$ is an algebra iff $f^2 \in L^{\phi}(\mu, X)$ for all

 $f \in L^{\phi}(\mu, X)$ follows from $fg = \frac{1}{2}((f+g)^2 - f^2 - g^2)$ and the corollary follows from theorem 2.4.

Mahmud Masri 9

References

1] Deeb, W. and Khalil, R., "Best approximation in $L^p(\mu, X)$, 0 ",*J. Approx. Theory*,**58**, (1989), 68-77.

- 2] Deeb, W., "Multipliers and Isometries of Orlicz Spaces", *Proceedings of the conference on Mathematical Analysis and its Applications, Kuwait Univ.* Kuwait, Feb. 18-21," (1985).
- 3] A.Hakawati, "The Multiplier Algebra of Orlicz Spaces", *An-Najah Univ. J. Res.*, Vol. **12**, (1998), 1-6.
- 4] Light, W. and Cheney, W., "Approximation Theory in Tensor Product Spaces, Lecture Notes in Math. 1169", Springler-verlag, Berlin (1985).
- 5] W. Rudin, "Functional Analysis", McGraw-Hill, (1973).