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Abstract

Let ) be an open connected subset of the complex plane C, H (£2) the space of all
analytic functions in{) , and ¢ is a modulus function such that@(| f |) is subharmonic in

Qfor all fH () €. In this paper we define H ;(€2) to be the space of all f H(Q)
such that#(| f |) has a harmonic majorant and H ; (€2) is the space of all f H ,(Q) €

such that #(| T |) has a quasi-bounded harmonic majorant.

This extends the special cases HP(Q) when 0<p<1 ¢(X)=Xx", and
N(Q)and N (Q)when @(x)=1log(l+X) . It also extends N ” from p>1 to p > 0
where #(X) = (log (1+X))” and Q is the open unit disc D and includes N, where

$(x) =log(1+x"), 0 < p <1. We show that H,(€) is a complete metric space and
H, (€2 is an F-space which generalizes the special case = D.Also we show that many
results for=H ; H,(D) and H; (D) = H carry over to H,(€)and H;(€)) . Different
characterizations of H and H; are given and it is shown that H,(¢) and H;(Q) can be
identified with closed subspaces of H 4 When @ is a strictly increasing unbounded
modulus function. This result is used to give an other proof of the completeness of H,(€2)

and H;(Q . When Q2 is finitely connected a factorization theorem for functions in H,(¢))
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and H ; (Q)) is given. Also, a necessary and sufficient integrability condition for functions

fH;(Q) € as well as a formula for the least harmonic majorant of (| f [) are given.
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1. Introduction and Preliminaries

If ¢ is a real-valued function on [0, oo ) such that ¢ is increasing,
subadditive , ¢ (x)= 0 iff x = 0,and continuous at zero from the right (hence
uniformly continuous on [0, o ) ),then ¢ is called a modulus function.

Examples of modulus functions are x",0 < p <1 ,andlog(l +X) . We note

An-Najah Univ. J. Res. (N. Sc), Vol. 16(1), 2002



Mahmud Masri 3

that if ¢ is a modulus function, then so is ¢ ¢ where c> 0.Also, the
composition of two modulus functions is a modulus function.

Let T = 0D be the boundary of the open unit disc D in the complex plane C
and H(D) the space of analytic functions in D .Let H " (D) be the set of all
functions f € H(D) such that

lim f(re')=f"(e") existsa.e.c

where o is the normalized Lebesgue measure on T. f "is called the radial

limit of f .When there is no ambiguity we denote the function f and its radial
limit by f .Throughout this paper we assume that ¢ is a modulus function

such that ¢(| f |)is subharmonic in D for all f € H(D) .We define the
Hardy-Orlicz spaces H,(D)=H  and H;(D)=H by

H,={ feH(D):supj¢(| f Ddo < oo}

0<r<l1

and

Hy = feH (D):sup [4(| .(2) do(@)= [¢(| F(2)do(2) < o0 }

<r<

where f.(2)=f(rz),zeT.

For each f € H (D) ,define the quasi-norm of f by
I 1l,= sup [¢(| . Ddo=lim [4(| f, Ddo
osr<1§ =T

where the last equality follows from the subharmonicity of ¢(| f |).The
quasi-norm || ||, induces a translation invariant metric d on H,given by
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d(f,e)=|l f —g]|, for all f,geH,. We note that H,= H(D) when ¢ is
bounded. Also if ¢ is unbounded and strictly increasing ,then (H, , d ) is

an F-space ,i .e .,a topological vector space with complete translation
invariant metric (see [1] and [4]).Moreover,if ¢(x) = x",0< p <1,then H =

HPand if ¢(x) =log(1+x") ,then for p =1,H,= N, H;/=N"and for 0 <p
<1, H¢+ =N, (see [2] ,[3] and [4] ). In [6], N P spaces are defined for

p>1.If we let ¢(x)=(log(1+x))",0< p<1 ,then we get an extension of
these spaces for p>0.

In this paper we give different characterizations of the quasi-
norm|| ||, similar to those in N and N"and a different characterization of

H,(see [6]). Furthermore, we generalize these spaces to H,(Q2) and
H, (Q) where Qis a domain ,i.e., an arbitrary open connected subset of C

.For that purpose we use harmonic functions as in H?(Q) ,p > 0 ,

N(Q)and N " (Q) (see [2],[3],and [7] ).Also, we consider the special case Q
being finitely connected and give a factorization theorem for functions in
H,(Q) and H;(Q) .If H(Q) is the space of analytic functions in Q, then

we define the Hardy-Orlicz space H,(€2) to be the space of f € H(Q) such

that ¢(| f |) has a harmonic majorant in Q ,i.e., there is a function u
harmonic in Qand@(| f(z)]) <u(z) forall ze Q.

As in H’(Qor N (Q ) for each f eH () there is a least harmonic
majorant U, of ¢ (| f |),ie, (] f(z)])<u,(z) for all ze Q

and U, (z)<v(z)forallze Q for any harmonic majorant o of

(| T 1) (see [8.,p.52]).
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A non-negative harmonic function on Q is called quasi-bounded if it is
the pointwise increasing limit of non-negative bounded harmonic functions

on Q. We define the Hardy-Orlicz space H;(Q) to be the space of
all f € H,(Q) such that ¢(| f |) has a quasi-bounded harmonic majorant on
QIfgp(x)=x", 0<p<lyhen H,(Q)=H °(Q) and if
$(x) =log(1+x) ,then H,(Q)= N(Q)and H;(Q)= N"(Q) (see [2] and
[8]).The special case H ; = H;(D) is considered in [1] and [4].We note that
H*(Q) ,the space of bounded analytic functions in Q, is contained in

H P (Q) for p > 0.

If z,1s a fixed point of 0, which we call the point of reference ,then we

define the quasi-norm || ||, on H,(€2)by

[ f ”¢=uf (Zo)

for all f € H,(Q).The minimum principle for harmonic functions , the
subadditivity of¢, and the sum of two harmonic functions is harmonic imply
that the quasi-norm || ||, has properties similar to those for the case Q=D
and @#(x) =log(1+Xx) (see [6]).Hence,if d(f , g)= || f—-g], for all
f,g9 e H,(Q), then d is a translation invariant metric on H () .By an easy
exploitation of the analogy with HP"(Q) and N(Q) one can give an
integrability condition on H ,(Q)which is equivalent to the least harmonic
majorant condition and prove that (H,(Q2),d) is a complete metric space
(see [8,pp.53,54]).
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When ¢ is a strictly increasing unbounded modulus function we show
that (H;(€).d) is an F-space. This generalizes the corresponding result in
[I] where Q =D and in [2]where ¢@(X)=Ilog(l+X) .Also, as
in H?(©Q), N(©), and N"(Q) we show that H,(Q)and H;(Q) can be
identified with closed subspaces of H ;(see [2],[7],and [8] ).For that purpose

we need to mention the uniformization theorem for planar domains in
[7,p.180].1t says that if Q2 has at least three boundary points ,then there exists
a function @ analytic and locally 1-1 in D whose range is exactly Q and

which is invariant under a group G of linear fractional transformations of D
onto itself ,i.e.,p o g = ¢ for all ge G .Furthermore ,if z,is an arbitrary point

in Q,p may be chosen so that ¢ (0)= z, and ¢ (0) > 0 .These conditions
determine ¢ uniquely .In other words the pair (D, ¢ ) is the universal
covering surface of (2,and G is the automorphic group of Q.

2. H¢ and H;

In order to give different formulations of || ||, on H, and give other

characterizations of H and H; we make some definitions and quote some
results in [9] .Let u be a positive measure on a measure space X.A set

A < L'(u)is said to be uniformly integrable if I | f|du <K <oofor some
X

constant K and V& >0 36 >0 such that J-| fldu<e when feA and
E

H(E)< o6 .A function y is called strongly convex if y is convex on

(—o0,00), y 20,y isnon-decreasing, and@ —>oast - .
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Theorem 2.1 ([9,p. 37])

A bounded set A — L' (u), uis a positive measure on a measure space X,
is uniformly integrable iff 3 a strongly convex y and a constant M such that

[ 70 Ddu <M <co forall fe A
X

Theorem 2.2 ([9, p. 41])

Suppose that y is a subharmonic function in D,y is not identically
—o0,and C<oo is such that

[yido<C (0<r<1)
J

where for z in T, w,(z) = 0 if y,(z2) < 0 and y, (2) = v, (2) if
v, (2) 2 0 .Define

h(2) = [P(r'2, )p(r{)do($), zerD.

Then
a. h” >y inrD

b. h® <h®inrD and jl//r SI(//S ifr<s

c. lim h'” (z) =h(z) exists for all ze D, and h is the least harmonic
majorant y .

d. hexists a.e.o,h” e L'(T) and3 a singular real measure von T such
thath=P[h"+dv]

e. If y existsae.o,theny =hae.o.

f. If{y },re[0,1),is unifomly integrable ,then v < 0,hence h < P[h"]

An-Najah Univ. J. Res. (N. Sc), Vol. 16(1), 2002



8 “H,(Q) and H;(€) Spaces"

Theorem 2.3 ([10,p.85])
Letge L'(T), g> 0.ThenVe >0 36 > Osuch that

o(E) <o ,EcT implies Ig(x)dx <e.
E

i.e.,{g} is uniformly integrable.

Now we give other characterizations of H; and different ways of
representing the quasi-norm on H, which motivated the definition of

H, (©) because [3, p.391] the quasi-bounded harmonic functions in D are

exactly the Poisson integral of non-negative integrable functions on T.
Theorem 2.4
Let f e H"(D) m H,.Then fe Hiff {#(| f, |)},re[0,1),is uniformly

integrable.

Proof :Suppose that f e H"(D) n H,.Then

I £1l,= sup [¢(] T, Ddo=lim [ (| f, )dor< o @1
<r<1y - T

Applying theorem 2.2 with y =¢(| f |)we get h = P[h"+dv, ] where h

is the least harmonic majorant of y ,i.e., h = u, .Also,
h(0) = u,(0) =limh (0) =lim[ (] f, Ndo=|[|,= [¢(| f do+v,(T)  (2.2)
T T
If fe H,, then (2.1) and (2.2) imply that v, (T) = 0, hence h = P[y ]

and

(1 T < Plo(| F(2)D],2eD
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Therefore, for Ec T we have

i9 <L T . it
J#1 1) a0 < 2] [P.0-0g(1 (") hdtdo
=§I JR.(6-0Dg( 1 (") Daod

9
=L [P o) ¢0 f )y dods
27[ 0-21 E
where s = @ —t.Since for each fixed s , 0< ¢(| f(€'?)|) e L'(T)theorem
2.3 and translation invariance of o imply that V& >0 36 > Osuch that

o(E) <o ,EcT implies J.¢(| f, Ddo < ¢g,re[0,1) (2.3)
E

Thus,{#(] f, |) },re[0,1), is unifomly integrable .

Conversely, suppose that f e H"(D) N H, and, {¢(| f |)}, re[0,1) , is

unifomly integrable .Then (2.3) holds .By Egoroff 's theorem (see [10] )
there exists a set EcT such that

o(| f. 1) > (| f|)as r > 1 uniformly on E,
and o(T —E) < 0 .Hence,(2.3) gives

J#t. Ddo< [4(1t, Ddo +&

Now uniform convergence on E implies

1ri311j¢(y f, Ddo < [¢(| f o+ < [¢(| f do+e.
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Since ¢ > 0 is arbitrary we have

lim [ (| f, Ndo < [4(| f do (24)

Also, Fatou's lemma gives

[#( T Ddo < lim[4( f, do (2.5)

Thus (2.4) and (2.5) give fe H .
Now we give the following corollaries.
Corollary 2.5
Let feH™(D) n H, .Then ¢(| f|) € L'(T) and there exists a real
singular measure v such that
h=P[g(] f [)+dv,]

where h is the least harmonic majorant of ¢(| f |).Moreover, the following
are equivilant

1. fe H;
2. h=P[4( f].ie, v,=0.

3. I y(¢4(| f, |))do ,re[0,1) is bounded for some strongly convex y .
T

Proof: We show that (2) implies (3) and the rest is an easy cosequence of
theorems 2.1 and 2.4.So assume that (2) holds .Since ¢(| f |) e L'(T)
theorems 2.1 and 2.3 imply that there exists a strongly convex y such that

7(#(| f])) € L'(T).Hence, using Jensen's inequality it follows that
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7@ T D)< 7Pl DD < Ply(a( £ )]

Therefore,using the properties of the Poisson kernel we have

[7(@( £, D)do < [PLy(g(| £, Ido < [7(4(| f ))do <00

Which establishes (3).
Corollary 2.6

Let f eH"(D) m H,.Then fe H iff there exists a strongly convex
y and a harmonic function h, both non-negative such thaty(¢(| f |)) <h in D.

Proof: If fe H ,then corollary 2.5 implies that
[7@@ £, do
.

is bounded for some strongly convex y .Since y(4(| f|) = w is

subharmonic theorem 2.2 gives the required h. The converse follows from
the harmonicity of h and corollary 2.5 since

I7(¢(| f, ))do < h(0)<0.

Finally, from above we obtain the following representations of || f ||, for

feH (D)NH,

1. sup [¢(| f, )do

0<r<1 T

2. 1irr11I¢(] f Ndo
T
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3. u, (0),where y is the least harmonic majorant of ¢(| f |).
4. n,(T)where u, =P[d7n, ]and
dn =¢(| f Ddo+do,

where v is singular with respect to o .
5. [#(1f pdo + v, (T).
1

Moreover, fe Hjiff v, = 0 iff u = P[4(| f |)] which is a quasi-bounded

harmonic majorant .This motivated the definition of H;(Q).

3. Thespaces H,(Q) and H; ()
We start by a generalization of some results in [1] from D to Q.
Lemma 3.1
pL>Jl HP(Q) c H'(Q) c H,(Q) (3.1

Proof: The first inclusion in (3.1) follows fromH (Q) < H %(Q)whenever

p>q>0(see [8, p.75]) .For the second inclusion in (3.1) if [x] is the greatest
integer in X it is easy to show that

$(x) < (1) (I+x),x 2 0 (3.2)
using the properties of ¢ and x < 1+ [x] forx > 0.

Thus (3.2) implies that if u is a harmonic majorant of [f], then ¢ (1) (1+ u) is
a harmonic majorant of ¢(| f |).Hence, H'(Q) < H,(€Q).
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Theorem 3.2 If liminfM =a>0 ,then H'(Q)= H,(€Q).

X—>0 X

Proof: Suppose that liminf @ = > 0 .Then there exists X,> 0 such that

X—00 X
2
x< Z4(x), X2 X, (3.3)
a
If feH,(Q),thenby (33)
@) < %+ 20 F@D)]) < %+ 2 u(2)
a o

for all ze Q where u is a harmonic majorant of ¢(| f |) on Q.Thus

H,(Q)cH '(Q) and the proof is complete by lemma 3.1.

Theorem 3.3 If lirxrligf%:a>0, then H,(Q) < N(Q)and H;(Q)
c N (Q).

Proof : Let g(x)= inf{% :t> X} .Then 11_1)1; g(X) = o implies that there
exists X, = 1such that

log x < 2gzﬁ(x), X2 X, 34
a
Since log (1+x) < 1+ logx for all x> X, using (3.4) we get

log (1+x) <K'+ 2 4(x), x>0 (3.5)
(04
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where K'=1+ log (1+ Xx,).Hence ,for f € H,(€Q) by (3.5) we have for all
ze Q

log(1+| £(2)]) <K+ 24(] F(2)]) < K+ Zu(2)
(04 (04

where u is the least harmonic majorant of ¢(] f |)onQ .Thus f € N(Q2)and
hence H,(Q2) < N(€2).The other inclusion follows from above by replacing

harmonic majorant by quasi-bounded harmonic majorant.

Next we state the following result in [2,p.261] which is found to be
useful for establishing certain properties of H ().

Proposition 3.4 Let Q be a domain in C,K a compact subset of Q and
z, € Q.Then there exist positive numbers and £ (depending on z,,, K ,and

Q) such that
au(z,)<u(z)< fu(z,)
for all ze K and for all u>0 with u harmonic in Q.

Clearly proposition 3.4 implies that different points of reference induce
equivalent metrics on H ,(Q).Moreover, letting u = U, in proposition 3.4

gives the following corollary as a generalization of lemma 3 in [1].

Corollary 3.5 Let K be a compact subset of {2and z,, € Q2. Then there exists a
positive constant S = f(z,,K,€) such that

p(1 F (@)D BT, forall feH, (Q)andforallzeK.
Moreover, if ¢ is strictly increasing and unbounded, then

| f(2)| <o (B f I4), forall f e H;(€2)and for all zeK (3.6)
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where ¢'is the inverse of ¢.

Let {f } be a sequence in H,(Q)and f € H,(Q).We say that f — f
in H,(Q) as n—>oo if d(f,,f)=|f —f|,>0asn—ow .Also, we say
that f,—>f as n—oo if f, — f uniformly on compact subsets of Q as
n— oo,

Corollary 3.6 Let ¢be a strictly increasing unbounded modulus function. If

f,—>f in H,(Qasn—ow,then f, >f as n—>o0.

Proof: Use continuity of ¢ and (3.6).

In analogy with HP(Q)and N(Q)we state an integrability condition
onH () which is equivalent to the least harmonic majorant condition.We

omit the proof of this result as well as the proof of completeness of
H, () and a corollary of it because easy modification of the H P(Q) or

N (Q) cases gives the required results. We refer the reader to [8,pp.53,54] for
definitions and proofs.

Theorem 3.7 Let¢ be a strictly increasing unbounded modulus function
and f e H(Q). Then f e H,(Q)iff for all regular exhaustions {Q} of Q

there exists a constant C such that

[#(fDdo,, <C<w,n=123..,
oQ

wherew, , is the harmonic measure on 0Q ,the boundary ofQ, ,and for

some pointz € Q, .
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Theorem 3.8 Let ¢be a strictly increasing unbounded modulus function.
Then( H,(Q),d) is a complete metric space.Moreover,the topology

inH;(Q)is stronger than that of uniform convergence on compact subsets
of Q.

Corollary 3.9 Let¢ be a strictly increasing unbounded modulus function
and {f } is a sequence in H,(€Q).If{|| f, ||,} is bounded ,then there exists a
subsequence { f, } of {f } suchthat f, — fas k >oowhere f e H,(QQ) .

As in HP(Q)and N(Q) the uniformization theorem can be used to
identify H ,(€2) and H ; (Q2) with closed subspaces of H, .Let ¢: D— Qand

G be as in the uniformization theorem.Define the following subspaces
of H, by

H,/G={feH,:fog="f forallg eG}
and

H,/G={feH :fog=" forallgeG}
Also, define A:—> H,/G H,(Q) by Af = fo pfor all f € H,(Q) .Then as
in H?(Q) and N(Q2) we have the following results.

Theorem 3.10 Let ¢ be a strictly increasing unbounded modulus function.
ThenH, /G andH; /G are closed and hence complete subspaces of H,.

Proof: Since by theorem 3.8, or from the definition, H,is complete it
suffices to show thatH /G andH; /G are closed subspaces ofH, .So let
{f.}be a sequence in H,/Gsuch that f — finH, as n—cand
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f e H,.We prove that f eH, /G For each g € G Harnack’s inequality

gives
Hfyeg=foglly=l(f,=ogll, = Uy ne© < Us 290 = Uy (90
1+19(0)| 1+]9(0)|
< —2 Ty, (0) = —12 -
o] O T g Tl

Thus f, = f og—> fog in H,as n— oo .Corollary 3.6 implies that

fnu—>fogas n — ooand fnu—>f as N—oo Thus fog="f for all
g € Gwhich provesthat feH, /G .

The completeness of H; and the above argument imply thatH; /G is a

closed subspace of H ; .

The proof of the next result is similar to that in case of H ? (Q) and N(Q) and
we omit it (see [8,p.63]).

Theorem 3.11 Let ¢be a strictly increasing unbounded modulus function.
Then A: H,(Q) — H,/Gwhere Af = f¢ ofor all f € H,(Q) is an onto
isometric isomorphism.

The isometry A can be used to prove the following results.

Corollary 3.12 Let ¢ be a strictly increasing unbounded modulus function.
Then

1. H,(€)is a complete metric space and H ; (Q2) is an F-space.

2. UHMQc H (@ H@c (37)
p=1
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Proof: The general form of Lebesgue dominated convergence theorem (see
[10,p.89])and (3.2) imply thatH' < H . Therefore,

UHPcH'cH; cH,

p=1
and

UHp/Gng/GgH;/Gqu,/G (3.8)

p>1
where H? /G ={f eH?:fog=f forallgeG} ,p> 0.Since [3,p.392] a
non-negative harmonic function u onQ is quasi-bounded iff u=u o 1s
quasi-bounded on D, it follows that A: H;(Q) — H;/Gis an onto
isometric isomorphism.Therefore, A~ (H ;/G)= H,(Q)is complete
and A’I(H; /G) =H,(Q) is an F- space .Moreover,since [8] A restricted
to H P (Q)is an isometric isomorphism ontoH " /G , p> 0,(3.8) implies (3.7).

We note that corollary 3.12 is an improvement of lemma 3.1.

4. Qis amultiply connected domain
We start by noting that in analogy with H"(Q)and N(Q), H,(Q) is

conformally invariant , i.e., ifg is a 1-1 holomorphic mapping of a domain
Q" onto a domain Q ,the point of reference in Qis z, , and the point of
reference in  Q'is W, =¢ '(z,).then fope H¢(Q*) for each
feH,(Qand | f|, =|lfoel,. This is a consequence of the fact that
@ carries the least harmonic majorant of ¢(| f |) to the least harmonic
majorant of ¢(| f o |),i .e , Uy, = U; o@. Thus ifQ is simply connected,
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then H,(Q2) and H, are isometrically isomorphic. Also, when T ,the
boundary ofQ is a rectifiable Jordan curve each f € H;(Q2) has boundary

values f “see ([8,p.88]).Moreover, the following decomposition theorem for
functions in H ,(Q) is a generalization of those for H"(Q)and N(Q) (see
[2.p.236],[3,p.86],and [5,p.512]).

Theorem 4.1 Let QO be a finitely connected domain whose boundary
I" consists of disjoint analytic simple closed curves I,T;, ,...,T, .LetU, be

the domain with boundary I', which contains €2 ,1< k < n .Then for all
f e H,(Q)there exists f, € H,(U,)such that

f=>" f onQ

k=1 K
Moreover, if f e H;(Q) , then f, e H;(U,) , 1<k < n.

Let the pair (D, ) be the universal covering surface ofQ with (0) =
Z,inQ) andw is the harmonic measure onI" forz, . We point out that, as in

HP(Q) [8,p.88], theorem 4.1 implies that each f € H;(Q2) has boundary
values f and ¢(|f"|) € L'(T, o).

Ifa=re' € Dand z=¢(a) ,then [8,p.50]
2r
juda)z = ij (Uop )eMP.(O-t)dt , ue (T, ) 4.1)
r 27[ 0

where P is the Poisson kernel, ¢ is the boundary values ofp ,andw, is the
harmonic measure onI" for z .In particular ,if a = 0, then
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judw = juoq)*da ,ue l'(T, o) (4.2)
r T

Now we are ready to give an integrability condition for functions in
H, () which is a generalization of the special caseQ2 = D. Moreover, we

give a formula for u; when f € H/(Q) .

Theorem 4.2 Let Qbe a finitely connected domain whose boundary
I consists of disjoint analytic simple closed curves .Then f e H(Q)iff

1 l,= [4( " Dde (4.3)
r
Moreover, if f € H; (), then
Ui @)= [¢( t" hdo,,2Q e (4.4)
r
Proof: Suppose that f € H;(€2) .Then by (4.2) we have
1= IAFI =1 ogll,= [#1(F o) Ddo= [4( o9 Ddo =[4(]  dw.
T T r

Thus (4.3) holds.
Conversely, suppose that (4.3) holds .Then

Ifopl,=11fl,= [¢( f Ddo= [¢( f op" Ndo = [#((f ) Ddo

Thus fop e H; /G and f € H /(Q) by the isometry A.
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Nextif f e H;(Q), then f o e H; /G and by corollary 2.5 we have

Ur.y =PIo((fop) Ddo].

Hence, if{ = ¢~'(z) ,then (4.1) andu; = u,, o™ imply that
U (@) =(Uryop (@) = U, () = [AI(Fog) @) DRO-tdo = [¢( T Ddo,
where £ = re'’ .
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