Composition Operators on Orlicz and Bochner Spaces

المؤثرات المركبة على فضاءات أورلكس وبوخنر

Mahmud Masri

Mathematics Department, Faculty of Science, An-Najah National University, Nablus, Palestine.

Received: (16/9/2000), Accepted: (7/5/2001)

Abstract

Let (T,M,μ) be a finite positive measure space, X a Banach space, ϕ a modulus function and $f:T\to X$ a strongly measurable function. The Orlicz space is $L^{\phi}(\mu,X)=\left\{f:\int_{T}\phi(\|f(t)\|)d\mu(t)<\infty\right\}$. The space of Bochner p-integrable functions, $1\leq p<\infty$, is $L^{p}(\mu,X)=\left\{f:\int_{T}\|f(t)\|^{p}d\mu(t)<\infty\right\}$. Also $L^{p}(\mu,X)=\left\{f:ess\sup_{t\in T}\|f(t)\|<\infty\right\}$. When $\phi(x)=x^{p}$, $0< p\leq 1$, $L^{\phi}(\mu,X)=L^{p}(\mu,X)$. Let $\Psi:T\to T$ be a function with $\Psi^{-1}(A)\in M$ for all $A\in M$ and define $C_{\Psi}(f)=f\circ\Psi$. We prove that C_{Ψ} is a bounded linear operator on $L^{\phi}(\mu,X)$ and $L^{p}(\mu,X)$, $0< p\leq \infty$, when $\frac{d\mu_{\Psi}}{d\mu}\in L^{\infty}(\mu,C)$ where $\mu_{\Psi}(A)=\mu(\Psi^{-1}(A))$ for all $A\in M$ and C is the complex numbers. Also, we show that C_{Ψ} is an isometry of $L^{\phi}(\mu,X)$ and $L^{p}(\mu,X)$, $0< p<\infty$ iff $\frac{d\mu_{\Psi}}{d\mu}=1$ a.e. . Moreover, C_{Ψ} is an isometry of $L^{\phi}(\mu,X)$ and $L^{p}(\mu,X)$ iff $\mu<<\mu_{\Psi}$. This generalizes some previous results of the special case $L^{p}(\mu,C)$ and proves similar results for $L^{\phi}(\mu,X)$.

ملخص

$$f: T o X$$
 فضاء اقیاسیا موجبا و منتهیا و X هو فضاء بناخ و ϕ اقتران مطلق القیمة و (T,M,μ) فضاء بوخنر $\left\{f: \int_{T} \phi\left(\|f(t)\|\right) d\mu(t) < \infty\right\} = L^{\phi}(\mu X)$ وفضاء بوخنر

 $=L^{\infty}(\mu,X)$ ايضا $\int_{T}^{\infty} \|f(t)\|^{p} d\mu(t) < \infty$ $= L^{p}(\mu,X)$ هو $1 \leq p < \infty$ ايضا $\int_{T}^{\infty} \|f(t)\|^{p} d\mu(t) < \infty$ $= L^{p}(\mu,X)$ هو $\int_{t \in T}^{\infty} \|f(t)\| < \infty$ $= L^{p}(\mu,X)$ هو $\int_{t \in T}^{\infty} \|f(t)\| < \infty$ $= L^{p}(\mu,X)$ هو $\int_{t \in T}^{\infty} \|f(t)\| < \infty$ $= L^{p}(\mu,X)$ هو $\int_{t \in T}^{\infty} \|f(t)\| < \infty$ $= L^{p}(\mu,X)$ هو $\int_{t \in T}^{\infty} \|f(t)\| < \infty$ $= L^{p}(\mu,X)$ هو $\int_{t \in T}^{\infty} \|f(t)\| < \infty$ $= L^{p}(\mu,X)$ هو $\int_{t \in T}^{\infty} \|f(t)\| < \infty$ $= L^{p}(\mu,X)$ و $\int_{t \in T}^{\infty} \|f(t)\| < \infty$ $= L^{p}(\mu,X)$ و $\int_{t \in T}^{\infty} \|f(t)\| < \infty$ $= L^{p}(\mu,X)$ و $\int_{t \in T}^{\infty} \|f(t)\| < \infty$ $= L^{p}(\mu,X)$ و $\int_{t \in T}^{\infty} \|f(t)\| < \infty$ و $\int_{t \in T}^{\infty} \|f(t)\| < \infty$ الما بالنسبة ل $\int_{t \in T}^{\infty} \|f(t)\| < \infty$ و $\int_{t \in T}^{\infty} \|f(t)\| < \infty$ الما بالنسبة ل $\int_{t \in T}^{\infty} \|f(t)\| < \infty$ و $\int_{t \in T}^{\infty} \|f(t)\| < \infty$ الما بالنسبة ل $\int_{t \in T}^{\infty} \|f(t)\| < \infty$ و $\int_{t \in T}^{\infty} \|f(t)\| < \infty$ الما بالنسبة ل $\int_{t \in T}^{\infty} \|f(t)\| < \infty$ و هذا يعتبر تعميما لنتائج الحالة الخاصة $\int_{t \in T}^{\infty} \|f(t)\| < \infty$ و هذا يعتبر تعميما لنتائج الحالة الخاصة $\int_{t \in T}^{\infty} \|f(t)\| < \infty$

1. Introduction:

If ϕ is a strictly increasing continuous subadditive function on $[0,\infty)$ and satisfies $\phi(x)=0$ iff x=0, then we call ϕ a modulus function. Let (T,M,μ) be a finite positive measure space, i.e., T is a set, M is a σ -algebra and μ is a positive measure with $\mu(T)<\infty$. If X is a Banach space, then a function $s:T\to X$ is called a simple function if its range contains finitely many points $x_1,x_2,...,x_n$ and $E_i=s^{-1}(\{x_i\})$, i=1,2,...,n are measurable sets. Such a function s can be written as $s=\sum_{i=1}^n x_i \chi_{E_i}$, where χ_{E_i} is the characteristic function of the set E_i and $E_i\cap E_j=\Phi$, for $i\neq j,i,j=1$, 2,...,n. A function $f:T\to X$ is said to be strongly measurable if there exists a sequence $\{s_n\}$ of simple functions such that

$$\lim_{n \to \infty} ||s_n(t) - f(t)|| = 0 \text{ a.e.}$$

Mahmud Masri _______83

The Orlicz space $L^{\phi}(\mu, X)$ is the set of all (equivalence classes) of strongly measurable functions f with

$$||f||_{\phi} = \int_{T} \phi(||f(t)||) d\mu(t) < \infty.$$

If for all $f,g \in L^{\phi}(\mu,X)$ we define $d(f,g) = \|f-g\|_{\phi}$, then d is a metric on $L^{\phi}(\mu,X)$ under which it becomes a complete topological vector space [1,p.70]. For $1 \le p < \infty$, $L^p(\mu,X)$ denotes the Banach space of (equivalence classes of) strongly measurable functions f such that $\int_T \|f(t)\|^p d\mu(t) < \infty$. The norm in $L^p(\mu,X)$ is given by

$$||f||_p = \left(\int_T ||f(t)||^p d\mu(t)\right)^{\frac{1}{p}}$$

The essentially bounded strongly measurable functions f form Banach space $L^{\infty}(\mu, X)$ with norm given by $\|f\|_{\infty} = ess \sup_{t \in T} \|f(t)\|$.

If ϕ is the modulus function $\phi(x) = x^p$, $0 , then <math>L^{\phi}(\mu, X)$ is the space $L^p(\mu, X)$. Since [2, p. 159], for any modulus function ϕ , $\limsup_{x \to \infty} \frac{\phi(x)}{x} \le \phi(1)$, it follows that $L^1(\mu, X) \subseteq L^{\phi}(\mu, X)$.

For simplicity of notation we write $L^p(\mu, C) = L^p$, $0 , <math>L^{\phi}(\mu, C) = L^{\phi}$.

Also, $\| \|_p = | |_p$, $\| \|_{\infty} = | |_{\infty}$, $\| \|_{\phi} = | |_{\phi}$ when X is the complex numbers C.

______An-Najah Univ. J. Res. (N. Sc), Vol. 16(2), 2002

We mean by a measurable transformation on T a function $\Psi: T \to T$ such that $\Psi^{-1}(A) \in M$ for all $A \in M$. It is easy to see that Ψ induces a positive measure μ_{Ψ} on M where $\mu_{\Psi}(A) = \mu(\Psi^{-1}(A))$ for all $A \in M$. Also, Ψ induces a composition operator C_{Ψ} on strongly measurable functions given by $C_{\Psi}(f) = f \circ \Psi$ when μ is complete or $\mu_{\Psi} << \mu$, i.e., μ_{Ψ} is absolutely continuous with respect to μ . It is known that [3,p.122] $C_{\Psi}(L^{\infty}) \subseteq L^{\infty}$, $\|C_{\Psi}\| \le 1$, and C_{Ψ} is an L^{∞} – isometry iff $\mu << \mu_{\Psi}$ also. Moreover, $C_{\Psi}(L^{p}) \subseteq L^{p}$, $1 \le p < \infty$ iff $\left|\frac{d\mu_{\Psi}}{d\mu}\right|_{\infty} < \infty$. In this paper we prove similar results for C_{Ψ} on

 $L^p(\mu, X)$ and $L^{\phi}(\mu, X)$ for any Banach space X and give necessary and sufficient conditions for C_{Ψ} to be an isometry.

2. Composition Operators:

Let (T, M, μ) be a finite positive measure space, X a Banach space and $\Psi: T \to T$ a measurable transformation. The induced composition operator C_{Ψ} satisfies the following result.

Proposition 2.1

If $\mu_{\Psi} \ll \mu$, then $C_{\Psi}(f) = f \circ \Psi$ is strongly measurable for every strongly measurable function $f: T \to X$.

Proof

Obviously for $x \in X$ and $A \in M$ we have $C_{\Psi}(x\chi_A) = x\chi_{\Psi^1(A)}$. Thus if $\{s_n\}$ is a sequence of simple functions such that $\lim_{n \to \infty} \|s_n(t) - f(t)\| = 0$ a.e.,

Mahmud Masri _______85

then $\{C_{\Psi}(s_n)\}$ is a sequence of simple functions such that $\lim_{n\to\infty} \|(C_{\Psi}(s_n))(t) - (C_{\Psi}(f))(t)\| = 0$ a.e. since $\mu_{\Psi} << \mu$.

We note that Proposition 2.1 is true if the condition ($\mu_{\Psi} \ll \mu$) is replaced by " μ is complete" [4, p.114]. In this case any strongly measurable function is measurable in the classical sense, i.e., the inverse image of every open set is measurable.

We call C_{Ψ} an isometry of $L^p(\mu, X)$, $0 if <math>\|C_{\Psi}f\|_p = \|f\|_p$ for all $f \in L^p(\mu, X)$ and C_{Ψ} is an isometry of $L^{\phi}(\mu, X)$ if $\|C_{\Psi}f\|_{\phi} = \|f\|_{\phi}$ for all $f \in L^{\phi}(\mu, X)$. The following results are extensions of those in [3, p. 122] from C to any Banach space X.

Theorem 2.2

 $C_{\Psi}(L^{\infty}(\mu, X)) \subseteq L^{\infty}(\mu, X), \|C_{\Psi}\| \le 1 \text{ and } C_{\Psi} \text{ is an isometry of } L^{\infty}(\mu, X)$ iff $\mu << \mu_{\Psi}$.

Proof

Let $f \in L^{\infty}(\mu, X)$. Since $\mu_{\Psi} << \mu$ it is easily seen that $\|f(t)\| \le \|f\|_{\infty} < \infty$ a.e. implies that $\|C_{\Psi}f\|_{\infty} \le \|f\|_{\infty}$. Thus $C_{\Psi}(L^{\infty}(\mu, X)) \subseteq L^{\infty}(\mu, X)$, and $\|C_{\Psi}\| \le 1$. Suppose C_{Ψ} is an isometry of $L^{\infty}(\mu, X)$. For $x \in X$, $x \ne 0$ and $A \in M$, we certainly have $\mu(A) = 0$ iff $\|x \chi_A\|_{\infty} = 0$. Since

$$\left\|x.\chi_{\Psi^{-1}(A)}\right\|_{\infty} = \left\|C_{\Psi}(x.\chi_A)\right\|_{\infty} = \left\|x\chi_A\right\|_{\infty}$$

it follows that $\mu(A) = 0$ whenever $\mu_{\Psi}(A) = \mu((\Psi^{-1}(A))) = 0$. Thus $\mu << \mu_{\Psi}$.

______An-Najah Univ. J. Res. (N. Sc), Vol. 16(2), 2002

Conversely, suppose $\mu << \mu_{\Psi}$. From above, it suffices to show that $\|f\|_{\infty} \leq \|C_{\Psi}(f)\|_{\infty}$ for all $f \in L^{\infty}(\mu, X)$. Let $f \in L^{\infty}(\mu, X)$. Then

$$\|(C_{\Psi}(f))(t)\| \le \|C_{\Psi}(f)\|_{\infty} \le \|f\|_{\infty} < \infty$$

for all $t \notin A$ for some $A \in M$ with $\mu(A) = 0$. Hence, $\|f(s)\| \le \|C_{\Psi}(f)\|_{\infty}$ for all $s \in \Psi(A^c)$ where $A^c = T - A$. Since $\mu_{\Psi}(E) = 0$ iff $\mu(E) = 0$ for all $E \in M$ and $\Psi^{-1}((\Psi(A^c))^c) \subseteq A$ it follows that $0 = \mu(A) = \mu_{\Psi}((\Psi(A^c))^c)$ when μ is complete, i.e., any subset of a set of measure zero is measurable. If μ is not complete it can be replaced by its completion (see[5,p.29]). Therefore, $\|f(s)\| \le \|C_{\Psi}(f)\|_{\infty} < \infty$ a.e.. Thus $\|f\|_{\infty} \le \|C_{\Psi}(f)\|_{\infty}$ for all $f \in L^{\infty}(\mu, X)$ and C_{Ψ} is an isometry of $L^{\infty}(\mu, X)$.

Theorem 2.3

Let (T,M,μ) be a finite positive measure space, $\Psi:T\to T$ a measurable transformation, $1\leq p<\infty$, and $\mu_{\Psi}<<\mu$. Then

a.
$$C_{\Psi}(L^p(\mu, X)) \subseteq L^p(\mu, X)$$
 if $\frac{d\mu_{\Psi}}{d\mu} \in L^{\infty}$

b.
$$C_{\Psi}$$
 is an isometry of $L^{p}(\mu, X)$ iff $\frac{d\mu_{\Psi}}{d\mu} = 1$ a.e.

Proof

a. Let
$$\frac{d\mu_{\Psi}}{d\mu} \in L^{\infty}$$
. Then [6,p.164] for all $f \in L^{p}(\mu, X)$ we have

$$\|C_{\Psi}(f)\|_{p}^{p} = \int_{T} \|f(\Psi(t))\|^{p} d\mu(t) = \int_{T} \|f(t)\|^{p} \left(\frac{d\mu_{\Psi}}{d\mu}\right)(t) d\mu(t) \quad(1)$$

Mahmud Masri _______87

Thus (1) gives

$$\|C_{\Psi}(f)\|_{p} \leq \left|\frac{d\mu_{\Psi}}{d\mu}\right|_{p}^{\frac{1}{p}} \|f\|_{p}$$
 (2)

for all $f \in L^p(\mu, X)$. Therefore, C_{Ψ} is a bounded linear operator on $L^p(\mu, X)$ and $\|C_{\Psi}\| \leq \left|\frac{d\mu_{\Psi}}{d\mu}\right|^{\frac{1}{p}}$.

b. Suppose C_{Ψ} is an isometry of $L^{p}(\mu, X)$, $1 \le p < \infty$. For each $f \in L^{p}$ define $\widetilde{f}(t) = f(t) \frac{x}{\|x\|}$ for all $t \in T$, where $x \in X$ and $x \ne 0$. Then $\widetilde{f} \in L^{p}(\mu, X)$ and $|C_{\Psi}(f)|_{p} = ||C_{\Psi}(\widetilde{f})||_{p} = ||\widetilde{f}||_{p} = |f|_{p}$. Thus C_{Ψ} is an isometry of L^{p} and hence [3] implies that $\frac{d\mu_{\Psi}}{d\mu} \in L^{\infty}$. Next, let $f(t) = \frac{x}{\|x\|}$ for all $t \in T$, where $x \in X$ and $x \ne 0$. Then $f \in L^{p}(\mu, X)$ and (2) implies that $\left|\frac{d\mu_{\Psi}}{d\mu}\right|_{\infty} \ge 1$. Also, for this f by [6,p.164] we get $\int_{T} d\mu(t) = ||f||_{p}^{p} = ||C_{\Psi}(f)||_{p}^{p} = \int_{T} ||f(\Psi(t))||^{p} d\mu(t) = \int_{T} \left(\frac{d\mu_{\Psi}}{d\mu}\right)(t) d\mu(t)$ Therefore, $\int_{T} \left(\left(\frac{d\mu_{\Psi}}{d\mu}\right)(t) - 1\right) d\mu(t) = 0$ implies that $\frac{d\mu_{\Psi}}{d\mu} = 1$ a.e

The converse is clear from (1).

The next results deal with C_{Ψ} on $L^{\phi}(\mu, X)$.

_______An-Najah Univ. J. Res. (N. Sc), Vol. 16(2), 2002

Theorem 2.4

Let ϕ be a modulus function. Then

- a. C_{Ψ} is a bounded linear operator on $L^{\phi}(\mu, X)$ if $\frac{d\mu_{\Psi}}{d\mu} \in L^{\infty}$.
- b. C_{Ψ} is an isometry of $L^{\phi}(\mu, X)$ iff $\frac{d\mu_{\Psi}}{d\mu} = 1$ a.e.

Proof

a. For $f \in L^{\phi}(\mu, X)$ by [6,p.164] we have

Thus (3) gives

$$\left\|C_{\Psi}(f)\right\|_{\phi} \le \left|\frac{d\mu_{\Psi}}{d\mu}\right|_{\mathcal{A}} \left\|f\right\|_{\phi} \qquad \dots (4)$$

for all $f \in L^{\phi}(\mu, X)$. Therefore, C_{Ψ} is a bounded linear operator on $L^{\phi}(\mu, X)$ and $\|C_{\Psi}\| \leq \left|\frac{d\mu_{\Psi}}{d\mu}\right|_{\mathcal{C}}$.

b. Suppose C_{Ψ} is an isometry of $L^{\emptyset}(\mu X)$. For $f \in L^{1}$ let $\widetilde{f}(t) = \phi^{-1}(|f(t)|)\frac{x}{||x||}$ for all $t \in T$, where $x \in X$ and $x \neq 0$. Then $|C_{\Psi}(f)|_{1} = ||C_{\Psi}(\widetilde{f})||_{\phi} = ||\widetilde{f}||_{\phi} = |f|_{1}$. Therefore, C_{Ψ} is an isometry of L^{1} and hence by [3] $\frac{d\mu_{\Psi}}{d\mu} \in L^{\infty}$.

Mahmud Masri ________89

Moreover, for a nonzero $x \in X$ and $f(t) = \frac{x}{\|x\|}$ for all $t \in T$, by (4)

one has $\left| \frac{d\mu_{\Psi}}{d\mu} \right|_{\infty} \ge 1$. Also, for such f by [6] we have

$$\int_{T} \phi(1) d\mu(t) = \|f\|_{\phi} = \|C_{\Psi} f\|_{\phi} = \int_{T} \phi(1) \left(\frac{d\mu_{\Psi}}{d\mu}\right) (t) d\mu(t)$$

This implies that $\frac{d\mu_{\Psi}}{d\mu}$ = 1 a.e. Finally, the converse follows from (3).

Corollary 2.5

 C_{Ψ} is an isometry of $L^{p}(\mu, X)$, $1 \le p < \infty$, iff C_{Ψ} is an isometry of $L^{\phi}(\mu, X)$.

Proof

Clear from theorem 2.4 and theorem 2.5.

Finally, we note that if $\mu_{\Psi} << \mu$ then C_{Ψ} is 1-1 on $L^p(\mu,X)$, $0 , and <math>L^{\phi}(\mu,X)$ for any modulus function ϕ . Moreover, if Ψ is invertible with inverse Ψ^{-1} , then so is C_{Ψ} with inverse $C_{\Psi^{-1}}$.

An-Najah Univ. J. Res. (N. Sc), Vol. 16(2), 2002

References

- 1] Deeb, W. and Khalil, R., "Best approximation in $L^p(\mu, X)$, 0 ", J. Approx. Theory,**58**, (1989), 68-77.
- 2] Deeb, W., "Multipliers and Isometries of Orlicz Spaces", *Proceedings of the conference on Mathematical Analysis and its Applications, Kuwait Univ.* Kuwait, Feb., (1985), 18-21
- 3] William C. Ridge, "Spectrum of a Composition Operator", *Proceedings of the A.M.S.*, **37(1)**, (1973), 121-127.
- 4] Light, W. and Cheney, W., "Approximation Theory in Tensor Product Spaces", Lecture Notes in Math. 1169, springler-verlag, Berlin, (1985).
- 5] Rudin, W., "Real and Complex Analysis", 2nd ed., McGraw-Hill, New York, (1974).
- 6] Halmos, P. R., "Measure Theory", Van Nostrand, Princeton, N.J., (1950).