
Using Ontologies for Users-Groups Matching in

An Annotation System

Danilo Avola, Paolo Bottoni, Amjad Hawash
Department of Computer Science, Sapienza University of Rome

Via Salaria 113, 00198, Rome, Italy
(avola, bottoni, hawash)@di.uniroma1.it

March 6, 2014

Abstract

Representing a domain knowledge through an ontology allows people
and systems to share a common corpus of knowledge for reasoning and
communicating. We have recently introduced groups to the MADCOW
annotation system, and in this paper we describe how the integration of
ontologies allows more refined annotations to be posted on groups focused
on some domain. In particular, concepts of the domain ontology can be
used as tags, which are integral components of annotations, thus allowing
more semantically significant queries for retrieving annotations on specific
topics. Services for promoting participation to groups of potentially in-
terested users can also be fostered by the adoption of domain ontologies.
For example, authors of annotations systematically using tags referrable
to some existing ontology can be invited to join groups based on that
ontology. Conversely, the analysis of texts of annotations, or of annotated
texts, associated with some ontology, can represent a useful addition to
construct associations between the ontology concepts and the set of lexical
terms associated with them.

Keywords:Web annotation,Ontologies, Matching.

1 Introduction

Digital annotation is the process of adding information to contents of a multime-
dia document as a method of enriching that document with additional valuable
information, without altering the original content. The MADCOW (Multime-
dia Annotation of Digital Content Over the Web) system is a tool that enables
its users to annotate contents of Web pages. MADCOW supports the anno-
tation of (portions of) texts, images and videos with textual content, links to
other resources, and user-defined tags [2]. Annotations can be published in
MADCOW in one of three ways: (1) public: viewable by any user, (2) pri-
vate: viewable by their submitters only, or (3) group-related : viewable by any

1

member of the group to which they are posted, and nobody else. Groups were
introduced to MADCOW in [1] to compound the conflict between the use of
public annotations, enhancing collaboration among users at the expenses of pri-
vacy, and private ones with the opposite characteristics. The introduction of
groups solved this conflict by allowing sets of users to join a group focused on
some common interest, and restricting publication of relevant annotations to
this group. This allows a safer and more focused information exchange through
annotations, fostering collaborative discussion threads on the group topics.

The creator of a new group can select one of three different policies to allow
users to join this group: (1) Public: any user can join the group; (2) Invite:
users can join a group only if invited by some group member with authoriser1

privileges; (3) Apply: users apply for joining the group, and admission is subject
to approval by one of the authorisers.

Authorisers deciding to invite users to their group and users looking for
relevant groups share similar, if symmetrical, problems: “how do I know
who could be interested in joining my group?” or “what groups exist
which might interest me?”. Authorisers want to attract users interested in
the group topic, in order to promote collaboration, while users want to share
their thoughts with people who can provide interesting feedback. In both cases,
they do not want to lose time with users and annotations not relevant to their
interests.

In the current implementation of groups in the MADCOW system, authoris-
ers and users do not have automated support to identify potentially interesting
matches for their interests and have to manually search for them. Authorisers
can list all MADCOW users (possibly looking at the annotations they submit-
ted publicly) and select some of them as receivers of invitations. This process
becomes rapidly unwieldy as the number of users and annotation increases. In
a similar way, users can refer only to scant information about the subject of the
group, namely the title and a textual description of the group topic, as they
cannot access the content of the annotations posted to the group.

In an experimental test, 152 students from eight different undergraduate
courses with their tutors were asked to use the system in order to check its
feasibility and to measure a set of Human Computer Interaction metrics. The
tutors of courses created different groups, all groups related services were tested
and results were gathered. Table 1 presents information about the number of
times the different operations on groups were used and the average time needed
to complete the operation. It is clear that manual invitation takes the maximum
time.

Table 1: Number and average duration (seconds) for executed operations.
Create Update Invite Join

of times 72 51 719 125
Average 37.3 15.9 99.25 5.6

1These are given to the group owner and to group moderators.

2

We argue that associating groups with publicly available representations of
knowledge relevant to the group objectives, besides being a way to overcome
these problems, provides additional advantages to the whole annotation activ-
ity. Indeed, we rely on the selection of well defined terms in which to express
domain knowledge [4], which can both be recognised as significant by users, and
automatically searched and manipulated by automated services [6, 8, 17, 18].
In particular, the endeavor of the Semantic Web has provided the community
of programmers with ways to represent domain knowledge in the form of on-
tologies, typically represented using XML-based languages, such as RDF [13] or
OWL [9].

In this sense, creators of groups will be able to associate them with existing
ontologies, by browsing among the available ones. The process can be assisted
by letting creators provide sets of terms which reflect the intent of the group.
The MADCOW Ontology Browser will match these terms with the collections of
terms associated with existing ontologies to propose those possibly appropriate
for the new group.

On the annotator side, users can complement their annotations with tags.
If they are members of some group, they can select the terms from the group
ontology to better reflect the content of the annotation, facilitating subsequent
retrieval. If users search for groups, they can equally submit terms who reflect
their interests, and the MADCOW Ontology Browser will propose groups linked
with ontologies including those terms. Analogously, users with authoriser priv-
ilege in some group can look for users whose public annotations contain terms
in the group ontology.

This paper illustrates these concepts and describes the implementation of
MADCOW Ontology Browser and its relation with the group-support mecha-
nisms. The rest of the paper develops as follows: after considering related work
in Section 2, we present the integration of ontologies in the MADCOW group
annotation system in Section 3 and discuss some implementation issues in Sec-
tion 4. Section 5 presents an applicative scenario and Section 6 concludes the
paper.

2 Related work

There is a vast literature on ontologies and their applications in fields as diverse
as education, medicine, software engineering, information retrieval, in order to
increase interoperability between systems, classifications, matching domains or
ensuring their consistency [16, 14].

Ontologies were proposed as representational schemes for domain knowledge
to enhance the retrieval process by Paralic and Kostjal [10], who compared
the efficiency of retrieval in an ontology-based approach (implemented in the
Webocrat system) with the vector and the latent semantic indexing models,
obtaining promising results. In [3] a retrieval agent is described that provides
access to information from multiple domains based on domain ontologies and
users’ interests.

3

Patel et al. explored the use of ontologies in order to automate common
clinical tasks, e.g. selection of a patient cohort for clinical trials, by considering
the matching of patient records to clinical trials as a problem of semantic re-
trieval [12]. In their approach, clinical trial criteria are formulated as queries to
be matched against a knowledge base (represented as an ontology) to retrieve
eligible patients.

The work in [11] aimed at designing an ontology mapping algorithm for
effective product matching between heterogeneous classifications of products.
In electronic commerce, each shopping mall has its own vocabulary and product
hierarchy, increasing the semantic interoperability problem. Their primary work
is to minimize the number of retrieved products and to increase their relevance
for customer searches.

Tangmunarunkit et al. matched resources to application demands [15], com-
paring attributes advertised by resources with those required by jobs. An
ontology-based matchmaker was developed to perform resource selection by cre-
ating ontologies to declare resources and job requests, both expressed with RDF,
and performing a semantic match between terms defined in the two ontologies.
Similar to this, but in the area of human resource management, the work of [7]
proposed an ontology-based approach to effectively match job seekers and job
advertisements and applying a similarity-based approach to rank applicants.

Cantador et al. used representations of semantic user preferences for collab-
orative content retrieval, combining ontology-based user profiles to generate a
shared semantic profile for a group of users was the work of [5]. They studied the
feasibility of applying strategies for combining multiple individual preferences in
a personalisation framework from a knowledge-based multimedia retrieval sys-
tem. In their framework, user preferences are gathered in user profiles according
to ontology concepts and used to retrieve ranked lists of items to be shown to
users in graphical interface.

3 Relating ontologies and groups

We introduce some definitions preliminary to the description of the role of on-
tologies with respect to MADCOW groups.

1. Domain: a unique name designating the area of knowledge to which an
ontology refers.

2. Concept: the name associated with a node in some ontology.

3. Terms: lexicalisations of the concepts in some ontology.

4. Tags: words (possibly terms in some ontology) provided by a user to
characterise the annotation content.

The main idea for using ontologies in the process of matching groups with
users is to find a collection of lexemes equivalent to the tags freely introduced
by users as well as to the terms associated with some ontology. Based on the

4

correspondence ratio between words proposed by the user and the terms present
in an ontology, a degree of matching between ontologies and annotations may
be measured. Suitable thresholds can then be set on this degree of matching, to
trigger the suggestion of potentially interesting groups to a user, or of potentially
interested users to a group owner.

The following subsections describe how these matching processes are per-
formed.

3.1 Group Creation

If an owner decides to link the new groups, several scenarios could take place.
A group owner could provide the system with a possible name for a domain,
and the system would check whether an ontology associated with this name
exists. If such an ontology is found, an association is created. Otherwise, the
owner is asked to provide the system with a set of terms which characterise the
intent of the group and which might define its domain. If a significant number
of these terms appear in some existing ontologies, these are presented to the
user. Otherwise, the group creation process proceeds as normal.

The following pseudocode represents the previous steps:

group=askForGroupName () ;
i f (referToDomain (group)) {
domain=askForDomainName () ;
i f (existsDomainOntology (domain))
a s s o c i a t e (group , domain) ;

else {
terms=askForTerms () ;
on to l ogyL i s t=createEmptyList () ;
foreach onto logy in MADCOW. Onto log i e s {
i f (count (terms , onto logy . getTerms())>=re levanceThresho ld)

onto l ogyL i s t . add (onto logy) ;
}
s e l e c t edOnto l o g i e s=askForSe l e c t i on (onto l ogyL i s t) ;
foreach onto logy in s e l e c t edOnto l o g i e s {
a s s o c i a t e (group , onto logy . getDomain ()) ;

}
}

}

3.2 Annotation Submission

As we mentioned, users could submit their annotations as public, private or
group-related. In the latter case, their tags can be construed as terms associated
with the groups they are submitted to, and if the group is associated with an
ontology, the tags have to be selected from the terms present in the ontology.
For annotations submitted as public or private, submitters are free to use any
set of tags as metadata associated with the annotation.

In general, tags attached to public or private annotations will be used in the
matching process to propose groups to users, and users to group authorisers (in
this case considering only public annotations).

The following pseudocode represents the annotation submission:

5

i f (submitToGroup (annotation , group))
ass ignTags (annotation , getGroupTerms (group)) ;

e l s e i f (attachTagsToAnnotation ())
ass ignTags (annotation , askForTags ()) ;

3.3 Matching Process

The main purpose for the matching feature implemented in the system, which
is used on demand in a focused way, is to study the matching degree between
annotations and domains. For groups’ owners, matching means searching for
candidate members while for users it means searching for candidate groups to
which to apply for membership.

Having groups refer to domains reduces the time needed to execute the
matching process because instead of executing the match between groups and
annotations, the match is done between domains and annotations taking into
account that each domain represents a set of groups which share the same terms
used in the matching process. Involving only public (and possibly private)
annotations for a user is another factor that minimizes the time consumed by
the matching process.

In addition to results generated from the matching process, more results
could be presented, based on the group owner’s or user’s needs:

1. For a group owner, check the presence of annotators who consistently
annotate pages which are also annotated by writers of the group, and
suggest those users to group owner.

2. For a user, check which groups have annotations on the same pages the
user annotated, and suggest these groups to the user.

In case a group owner asks for potential members, the matching process
executes a matching between the terms of the referring domain with the tags for
all public annotations of users (not already members in the group) and proposes
the most appropriate users. In case a user asks for potentially interesting groups,
the matching process considers all of the user’s annotations (public or private)
with all domains existing in the system, and presents the groups related to the
most significant domains. Fig. 1 depicts the matching process.

6

Fig. 1: Simple sketch illustrates the matching idea.

Given a domain D and an annotation A, let LD = {r1, . . . , rn} be the set
of lexicalisations of domain terms and let T = {t1, t2, . . . , tm} be the set of
tags. The matching between D and A is the process of checking the existence
of a term from the set LD in the set A, considering only exact matches. A
significance threshold on the number of matches can then be used to filter out
spurious domains.

In case this matching is executed by a group owner, the result will be a set
of numbers representing the degrees of matching between the group and the
public annotations for each MADCOW user (excluding those who are already
writers in the group). When the matching is executed by a user, these numbers
will represent the degree of matches between his/her annotations and all the
domains existing in the system. A ranking feature could be introduced so that
a group owner will get a descending sorted list of candidate writers according
to their relevance to the group. The same feature could be introduced for a
user asking for candidate groups, a descending order list of candidate groups
presented to him/her.

Despite the simplicity of the proposed matching process, it introduces a
seed for future works for using ontologies in such applications. More matching
accuracy could be gained by implementing more accurate similarity measures.

7

Fig. 2: A fragment of the MADCOW Entity-Relation diagram, considering
groups, annotations, and ontologies.

4 System architecture and behavior

The following subsections describe the system architecture and behavior.

4.1 System Architecture

Fig. 2 presents a fragment of the overall Entity-Relationship diagram defining
the logical scheme of the MADCOW database. We model here only the parts
relevant to the management of ontologies and their association with groups.

The entity groups is used to save related data to each group created in
the system with its properties. Each group created has a unique ID saved in
groupID. A group also has a unique name saved in title, while category and
description are used to save more details about the group. Typically, the first
property is used in textual group search while the other is used for thematic
search. When its property isolated is set to true, an annotation is readable
only by its author (as well as by the group’s authorisers), and is not visible
to other members. The way in which a group can be joined, i.e. whether
users can request admission or need to be invited, depends on the properties
groupJoinType and searchable. If a group is joined by invitation, then
users cannot join it until they receive an invitation from one of the authorisers
(even if they search for it), and if a group is joined upon request, then a
user has to search for the group, list it, then send a joining request that will
be handled by one of the group’s authorisers. When a group is deleted, its
members can migrate to some other group, if the property afterDeleteType is
set to “members in”, otherwise its members will return back as ordinary system
users, and their related group annotations will become private ones. Finally,

8

the creation date for the group is saved in the property creationDate.
The entity annotation is used to store all the data relative to an annotation.

A record is saved for each annotation submitted to the system by creating a
unique ID in the field annotationID. The annotation type could be one of
Announcement, Comment, Example, Explanation, Integration, Memorandum,
Question, Solution or Summary, and is saved in the field type. The attribute
visibility is used to state whether the annotation is private, public or
group. Private annotations are viewed only by their submitters, public by all
users, while group ones are just viewed by the members of the group where
annotation submitter is member in. If an annotation is related to a group, a
special record is saved in the proposed entity of the relation isContained that
relates annotation and groups entities.

The link between a group and a suggested or chosen ontology is modeled
as a relation refersTo that creates a relation between the entities groups and
ontology. The latter has a property domain defining the area for which it has
been defined. This value is referred to as a MADCOW domain. While the ER
diagram indicates that a group could be referred to more than one domain, the
current work is limited to considering the association only with a single domain,
while a domain can be referred to by any number of different groups.

The property title of the ontology entity maintains the name of the
ontology. The entity Term is related to the entity ontology by the relation
inOntology so that an ontology has one or more terms. The concrete represen-
tation of the term is saved in the property representation, while the entity
lexemes describes its possible lexicalisations. The same table is used to main-
tain tags used in annotations which do not have a direct reference to terms in
a group domain ontology.

4.2 System Behavior

We illustrate the process of relating a group to an existing domain, possibly
looking for an appropriate ontology. We also discuss the matching process be-
tween a group and candidate members, and between user’s public and private
annotations and ontologies. We present sequence diagrams describing the real-
isations of these use cases.

4.2.1 Group-Domain Relation

The process of relating a group to a domain is triggered when a group owner
executes the activity supplyDomainTitle(domain) (see Fig. 3). By this func-
tion, the user is asking the system whether an ontology for a domain with
this specific name is integrated in MADCOW. The system checks for the avail-
ability of the domain by executing the function checkDomain(domain), query-
ing the database with the name of the domain. If an ontology with that do-
main name is present, the system associates the group with that domain by
executing the function associate(group, domain) that saves this association
to the database. If there is no such a domain, the user is asked to provide

9

a set of terms to represent the aim for the group creation, via the function
provideTerms(terms[]). When the user inputs the terms, the system exe-
cutes the function checkTerms(terms[]) that accesses the existing Ontology

Repository to check whether there is some ontology containing the terms pro-
vided by the user. If some match is found, the retrieved ontologies are displayed
for the group owner to choose one of them. If the user selects one of these on-
tologies, an association is created between the selected ontology and the group
by executing the function createAssociation(domain, ontology).

Fig. 3: Group-Domain Association Sequence Diagram.

4.2.2 Suggestion of Members

A group owner could ask the system to suggest the most appropriate users to be
candidate members in his/her group. As shown in Fig. 4, the process starts when
the user executes the activity suggestMembers(group). The system executes
the function matchWithAnnotations(group) identified in the MADCOW Portal,
which loads all the public annotations in the system database by executing
the function loadPubAnn(). The MADCOW Matcher executes a matching process
between tags in annotations and terms related to the domain associated with
the selected group by executing the function executeMatch(group,pubAnn).
The output of this function is a ranked list of the most relevant users who
could be candidate members for the group. Full details about users are re-
trieved from the system database to MADCOW Matcher by executing the func-
tion loadMatchedUsers(). The MADCOW Matcher sends the list of users to the
MADCOW Portal via the function showUsers() and a list of users is presented to

10

the group owner for selection (selectUsers()). After the selection is completed,
the group owner asks the system to send invitations for them by the activity
inviteUsers(). Finally MADCOW Portal executes sendInvitations(users,group),
that saves user invitations to the database. Users will view these invitations
when they log in to their accounts and can reply to accept or refuse.

4.2.3 Suggestion of Groups

Users can ask the system to suggest the most relevant groups exist in the system
so that users could ask for memberships with these groups. The process (shown
in Fig. 5) starts by a user request suggestGroups(), which makes the MADCOW

Portal execute the function matchAnnotationsWithDomains() that makes the
MADCOW Matcher to execute the function loadDomains() returning the existing
domains. The MADCOW Matcher executes the function loadPubPriAnn() to load
all the user’s public and private annotations. The execution of executeMatch(userAnnotations,domains)
produces a ranked list of all relevant domains with their associated groups. The
activities selectGroups() and joinRequests() are performed by the user to
activate the function sendJoinRequests() in the MADCOW Portal. This saves
the user request to the database, to be viewed by group owners who can accept
or refuse them.

Fig. 4: Members Suggestion Sequence Diagram.

11

Fig. 5: Groups Suggestion Sequence Diagram.

5 Working Scenario

All the commands are executed from the MADCOW portal, reachable via the
“Home” button, appearing in the Firefox toolbar once a user has logged in (see
Fig. 6).

A university uses MADCOW annotation system as a coordination media
for its faculty members and students. Aldo is a teacher who is interested in
programming languages issues and he would like to create a group to gather
members with this common interest. He creates a group titled “Java” and wants
to profit from MADCOW ability to suggest members for his group. Hence, after
creating the group from his account, he asks the system to browse the existing

domains by clicking the icon in front of the title of his new group, but finds
out that no suitable domain exists. Fig. 7 shows a list of domains.

12

Fig. 6: MADCOW Toolbar.

Fig. 7: Aldo lists available domains.

He then feeds his group with a set of proper terms such as “Structured”,
“Object Oriented”, “Functional”, “High Level”, “JVM” to represent the intent
of the group, and asks the system to suggest related ontologies for his group by
clicking the button “Search”. The system uses the terms to search for the most
suitable ontologies available and lists them for Aldo. Aldo picks the ontology
with title “High Level Programming Languages” that has the following tags
“Structured”, “Object Oriented”, “Multi-threaded”, “Simplicity” that appear
when he selects the desired ontology. By clicking the button “Refer”, Aldo
accepts the proposed ontology and his group is referred to the domain and the
terms in the selected ontology become available for users to tag annotations
with them. These steps are illustrated in Fig. 8.

13

Fig. 8: Aldo supplies the system with set of terms and selects “High Level
Programming Languages” ontology.

Aldo asks the system to suggest members for his new group by clicking the
icon in front of the group title, and the system looks for matches between

the domain terms and all tags of public annotations. Aldo is then presented
with a ranked list of users. He selects them all to send invitations to the group.
Fig. 9 illustrates the invitation process.

Fig. 9: Aldo sends invitations to most relevant users.

6 Conclusions and future work

We discuss the use of ontologies in the MADCOW annotation system to com-
plement the notion of group, and present an approach to find matches between
groups and potentially interested users. Ontologies are used to represent do-
main knowledge relevant to the formation of MADCOW groups. Each domain
with its associated ontology can provide terms, used as tags, for annotations to
be published in groups related to that domain, facilitating a better structuring
of the knowledge shared within the group. Tools for facilitating the retrieval
of interested users (or of interesting groups) are provided based on matches be-

14

tween tags freely used by submitters of annotations and terms contained in the
different ontologies integrated in the MADCOW system.

References

[1] Danilo Avola, Paolo Bottoni, Marco Laureti, Stefano Levialdi, and
Emanuele Panizzi. Managing groups and group annotations in madcow.
In Proc. DNIS 2010, volume 5999 of LNCS, pages 194–209, 2010.

[2] Paolo Bottoni, Roberta Civica, Stefano Levialdi, Laura Orso, Emanuele
Panizzi, and Rosa Trinchese. Madcow: a multimedia digital annotation
system. In Proc. AVI’04, pages 55–62. ACM, 2004.

[3] R.M.M. Braga, C.M.L. Werner, and M. Mattoso. Using ontologies for
domain information retrieval. In Proc. DEXA 2000, pages 836–840, 2000.

[4] Christopher Brewster, Kieron O’Hara, Steve Fuller, Yorick Wilks, Enrico
Franconi, Mark A. Musen, Jeremy Ellman, and Simon Buckingham Shum.
Knowledge representation with ontologies: The present and future. IEEE
Intelligent Systems, pages 72–81, January 2004.

[5] Ivan Cantador, Pablo Castells, David Vallet, and Escuela Politcnica. En-
riching group profiles with ontologies for knowledge-driven collaborative
content retrieval. In Proc. STICA 2006 at WETICE 2006, pages 358–363,
2006.

[6] B. Chandrasekaran, John R. Josephson, and V. Richard Benjamins. What
are ontologies, and why do we need them? IEEE Intelligent Systems,
14(1):20–26, January 1999.

[7] Maryam Fazel-Zarandi and MarkS. Fox. Reasoning about skills and com-
petencies. In LuisM. Camarinha-Matos, Xavier Boucher, and Hamideh
Afsarmanesh, editors, Collaborative Networks for a Sustainable World, vol-
ume 336 of IFIP Advances in Information and Communication Technology,
pages 372–379. Springer Berlin Heidelberg, 2010.

[8] Richard Gil, Ana Maria Borges, and Leonardo Contreras. Shared ontologies
to increase systems interoperatibiliy in university institutions. In Proc.
IMCSIT 2007, pages 799–808, 2007.

[9] OWL Working Group. OWL Web Ontology Language. Technical report,
OMG, 2004.

[10] Jan Paralic and Ivan Kostial. Ontology-based information retrieval. IN-
FORMATION AND INTELLIGENT SYSTEMS, CROATIA, pages 23–28,
2003.

15

[11] Sangun Park, Wooju Kim, Sunghwan Lee, and Siri Bang. Product matching
through ontology mapping in comparison shopping. In Proc. iiWAS, volume
214 of books@ocg.at, pages 39–49. Austrian Computer Society, 2006.

[12] Chintan Patel, James Cimino, Julian Dolby, Achille Fokoue, Aditya
Kalyanpur, Aaron Kershenbaum, Li Ma, Edith Schonberg, and Kavitha
Srinivas. Matching patient records to clinical trials using ontologies.
In Proc. ISWC’07/ASWC’07, pages 816–829, Berlin, Heidelberg, 2007.
Springer-Verlag.

[13] RDF Working Group. RDF/XML Syntax Specification (Revised). Techni-
cal report, OMG, 2004.

[14] Stefan Seedorf, Fzi Forschungszentrum Informatik, and Universitt
Mannheim. Applications of ontologies in software engineering. In In 2nd
International Workshop on Semantic Web Enabled Software Engineering
(SWESE 2006), held at the 5th International Semantic Web Conference
(ISWC 2006, 2006.

[15] Hongsuda Tangmunarunkit, Stefan Decker, and Carl Kesselman. Ontology-
based resource matching in the grid - the grid meets the semantic web. In
Proc. ISWC 2003, volume 2870 of Lecture Notes in Computer Science,
pages 706–721, 2003.

[16] Mike Uschold, Michael Gruninger, Mike Uschold, and Michael Gruninger.
Ontologies: Principles, methods and applications. Knowledge Engineering
Review, 11:93–136, 1996.

[17] David Vallet, Miriam Fernndez, and Pablo Castells. An ontology-based
information retrieval model. In Proc. ESWC 2005, pages 455–470. Springer,
2005.

[18] Yi Zhang, Wamberto Vasconcelos, and Derek Sleeman. Ontosearch: An
ontology search engine. In Max Bramer, Frans Coenen, and Tony Allen,
editors, Research and Development in Intelligent Systems XXI, pages 58–
69. Springer London, 2005.

16

