TRACE METAL POLLUTION LEVELS IN SOME SPRINGS IN NABLUS

BY

R. Salim, Z. Qattawi, H. Hilal and I. A’mer *

Abstract

Trace metal concentrations in spring—water of a number of springs around Nablus have been determined. Samples of these waters were taken during November and December of 1985, acidified with HNO₃ to pH 1.5 and then analysed for their content of lead, copper, zinc, nickel, iron, manganese, magnesium, calcium and hydrogen ions. The method of analysis used was flame atomic absorption spectroscopy with an acetylene—air flame. Hydrogen ion concentration was measured using pH—meter.

The results showed very low concentrations (well below the safe limits) of lead, copper, zinc, nickel, iron and manganese. The pH of the samples studied was within the allowed range. High concentrations of magnesium were found in many samples but not high enough to cause a risk. The concentration of calcium in almost all the samples studied was very high and higher than the allowed limit. The use of these waters is harmful to industry and household equipment and probably has an influence in developing kidney stones in persons having the potential for developing kidney stones.
The only effect of chlorination of water on trace metal concentrations was an increase in zinc and in magnesium concentrations.

Storage of samples (without acidification) in glass containers resulted in the adsorption of appreciable amounts of both calcium and magnesium. The other elements were not studied because of their very low concentrations (below the detection limit of the AAS method). The percentage of calcium lost on glass was higher than the percentage of magnesium lost on the same container.

Introduction:

After the rise in the heavy metals in the environment due to pollution, there has been a concern about the quality of water. Chlorination of water is known to affect trace metal concentrations and can increase zinc and magnesium. Storage of samples without acidification in glass containers results in the adsorption of appreciable amounts of calcium and magnesium. Other elements were not studied due to their low concentrations.

Background:

The rise in pollution has led to a concern about the quality of water. Chlorination of water affects trace metal concentrations and can increase zinc and magnesium. Storage of samples without acidification in glass containers results in the adsorption of appreciable amounts of calcium and magnesium. Other elements were not studied due to their low concentrations.

Methodology:

Chlorination of water is known to affect trace metal concentrations and can increase zinc and magnesium. Storage of samples without acidification in glass containers results in the adsorption of appreciable amounts of calcium and magnesium. Other elements were not studied due to their low concentrations.

Results:

Chlorination of water is known to affect trace metal concentrations and can increase zinc and magnesium. Storage of samples without acidification in glass containers results in the adsorption of appreciable amounts of calcium and magnesium. Other elements were not studied due to their low concentrations.

Discussion:

Chlorination of water is known to affect trace metal concentrations and can increase zinc and magnesium. Storage of samples without acidification in glass containers results in the adsorption of appreciable amounts of calcium and magnesium. Other elements were not studied due to their low concentrations.

Conclusion:

Chlorination of water is known to affect trace metal concentrations and can increase zinc and magnesium. Storage of samples without acidification in glass containers results in the adsorption of appreciable amounts of calcium and magnesium. Other elements were not studied due to their low concentrations.
التأثيرات السامة للعناصر المقصاة في البحث:

Toxicity of the Elements Studied in this Paper

وجيز في ما يلي بعض أهم التأثيرات السامة للعناصر المقصاة في هذا البحث.

\[\text{Pb} \]

1- عنصر الرصاص

ليس عنصر الرصاص نفسه أثر سام ولكن أيوناته وأملاحه هي السامة. (20)

17. يوجد عنصر الرصاص في جسم المصاب على كل من الجهاز العصبي، الجهاز الهضمي، الدم وعلى الكلى في حالات التسمم الشديد فان تأثير مركبات الرصاص يؤدي إلى تلف دائم في أجهزة الدماغ. (21)

ويسبب أيضاً في فقدان زائد خلايا الدم في يؤدي إلى الإصابة بفار الدم "الانيميا". (22)

يتعتبر الحد الاقصى المسموح فيه من الرصاص في مياه الشرب 0.1 ملغم / لتر. (23)

\[\text{Zn} \]

2- عنصر الزئبق

يميل عنصر الزئبق عند وجوده في الجسم على تركيز نفسه في الكبد، كريات الدم الحمراء وفي العظام. (24)

18. من ظواهر التسمم بالزنك عن طريق الشرب الحمي، التقيؤ، الاضطرابات المعوية والاسهال، وقد لوحظ أيضاً عند أعطاء جرعة كبيرة من الزئبق لحيوانات التجارب ظهور أورام سرطانية في الخصية. (25)

يتعتبر الحد الاقصى المسموح من الزئبق في مياه الشرب 5 ملغم / لتر. (26)

\[\text{Cu} \]

3- عنصر النحاس

يعتبر عنصر النحاس نورياً ضرورياً لتمور بعض الأعضاء في الجسم ولذلك فإن كميات بسيطة منه لا تعتبر ضارة. (27) ولكن شأنه شأن الكثير من العناصر الأساسية في الجسم فان تركيز مرتقب منه تعتبر سامة وفي حالات التسمم الشديد يؤدي إلى تهتك الكبد. (28)

19. وترسب بعض النحاس الزائد في العيون. (29)

يتعتبر الحد الاقصى المسموح من النحاس في مياه الشرب 1 ملغم / لتر. (30)

\[\text{Ni} \]

4- عنصر النيكل

يميل عنصر النيكل عند وجوده في الجسم إلى التمركز في الرئة، الكبد، والكليتين. (31)

20. ومن ظواهر التسمم بالنيكل الصداع، والتقيؤ ومن ثم الحذام والانهيار العصبي. وفي الحالات الحادة يؤدي التسمم بالنيكل إلى السوفاة. (32) كذلك فإن من آثار التسمم بالنيكل تهتك عضلات القلب والكبد. (33)

ويؤدي التسمم بالنبيكل أيضاً إلى سرطان الرئة. (34)
يُعتبر الحد الأقصى المسموح به من السيكل في مياه الشرب 0.05 ملمغ / لتر من مركبات النيكل السامة «كاربونيل النيكل» Ni[CO]3.

Mn - عنصر المجنيز

يُعتبر عنصر المجنيز عند وجوده في الجسم في التمرکز في الكبد، الكليتين، الأمعاء، والبنكرياس (28). يظهر المجنيز أثراً سامة قلبة نسبياً، حينها يؤخذ عن طريق الفم ولكن أثاره السامة تظهر بعدها عندمأ يؤخذ عن طريق التنفس حيث يؤدي إلى الانهيار العصبي، وأناعياً تنتج عن نقص الحديد في الدم (28). هذا ويمكن أن ينتج عن التسمم بالمجنيز أيضاً حالة تسمم مزمن يكون من نتائجه الاضطراب النفسي، صعوبة الشم، اضطراب القدرة على النطق ومرض باركنسون (32).

Fe - عنصر الحديد

يُعتبر عنصر الحديد من العناصر الأساسية في جسم الإنسان. ومع ذلك فإن زيادة في الجسم تسبب آثاراً سامة تظهر على شكل اضطرابات في المعدة، والأمعاء، والتقزُّم. ويمكن أن يصبح ذلك نزيف في المعدة أو الأمعاء. ومن أثاره أيضاً الblur وانأثاره على القلق النفسي (28). وفي حالات التسمم الشديدة يصاب الشخص بالتشنج وال أغامء، مع نزيف حاد في المعدة والأمعاء (28).

يُعتبر الحد الأقصى المسموح به من الحديد في مياه الشرب 0.3 ملمغ / لتر (25).

Mg - عنصر المغنيسيوم

يُعتبر عنصر المغنيسيوم إلى أن يتركز في خلايا العظام والعضلات عند وجوده في الجسم (28). وتأثير المغنيسيوم عند تناوله عن طريق الفم نادراً ما يؤدي إلى التسمم ولكن زيادة قد تؤدي إلى تلف الكلى، انخفاض في ضغط الدم، وضيق في التنفس (28). كما أن زيادة نسبة المغنيسيوم في الماء تضر أيضاً بالصناعة وللبلديات الكهربائية في المنزل (28).

يُعتبر الحد الأقصى المسموح به من المغنيسيوم في مياه الشرب 50 ملمغ / لتر (28).

Ca - عنصر الكالسيوم

يُعتبر عنصر الكالسيوم من العناصر الضرورية في الجسم لنمو العظام ولكن زيادة ينتج عنها اضطراب صحية في من أهرام تكون الحصة في الماري البولية. من جهة أخرى فإن زيادة الكالسيوم في الماء يُعتبر ضاراً لصناعة والبلديات المنزل (28).

يُعتبر الحد الأقصى المسموح به من الكالسيوم في المياه 75 ملمغ / لتر (28).

Trace Metal Pollution Levels In...
9 - درجة الحموضة في المياه

درجة حموضة المياة الطبيعية يجب أن تتراوح بين 6.5 - 8.5 (3). ويكون انخفاض درجة الحموضة عن هذا المستوى ضاراً لأنه يساعد على ذوبان بعض العناصر الموجودة في البشرة مثل عناصر المغنيسيوم والكالسيوم (3). ومن جهة أخرى فإن تأثير بعض العناصر السامة يزيد حدة عند درجات الحموضة المنخفضة (4).

الطريق والمواد المستعملة في البحث:

1 - جمع العينات

أخذت العينات التي درست في هذا البحث من عدد من العيون المحيطة بمنطقة نابلس والمستخدمة للشرب فيها. بين شكل (1) خريطة توحي العيون التي أخذت منها العينات. في كل مرة كانت تؤخذ ثلاث عينات من ماء العين في ثلاثة أوان زجاجية سعة 100 ملم لكل منها. كانت أخذ هذه الزجاجات تجري حمض النتريك بحيث يكون تركيز الحامض في العينة بعد جمعها 0.1 جزيئي وذلك لمنع امتصاص أي عيون العناصر الموجودة في الماء على سطح الزجاج. العينة الثانية كانت تؤخذ بدون وجود الحامض من نفس العين ولكن بعد مرحلة إضافة الكليرو الذي يضاف من قبل البلدية لأغراض التعقيم. أما العينة الثالثة فكانت تؤخذ بدون وجود حامض قبل إضافة الكليرو. وفي كل مرة كانت تعود درجة الحرارة وحالة الطقس عند أخذ العينات. وكانت تحصل العينات عند وصولها للختبر مباشرة وكان ذلك يستغرق حوالي ساعتين.

2 - طريقة التحليل

القياس المتبعة لتحديد تركيز العناصر المختلفة في عينات الماء كانت طريقة تحليلAtomic Absorption Spectroscopy (AAS). هذه الطريقة ميزة كثيرة مثل نوع الدراسة الحالية. من هذه الدراسات أنها يمكن استخدامها لتحديد عدة عناصر. حجم العينة اللازمة للتحليل قليل جداً أقل من (0.11 مل). مما يعني أمكانية إعادة التحليل لمرات عديدة دون الحاجة إلى حجم كبير من العينة. وأيضاً فهذه الطريقة لا تحتاج مهارات خاصة من يقوم بإجراءها مما يسهل استعمالها. كذلك فإنها من الطرق المعروفة بجبذتها (نسبة الخطأ حوالي 1% تحت الظروف الطبيعية).

3 - الكيمياء والزجاجات:

أُستخدمت في البحث المواد الكيميائية النهائية جداً (Analar) وال материалов المستخدم لجمع العيناتPyrex هي أواني زجاجية من نوع جيداً من الثوارد. عن طريق تعنيتها بحامض نتريك

١٠٠ جزيئي لـ ٢٥ مل. ثم تنظيفها جيداً بالماء المفتطر بعد ذلك. قبل تعينتها بعينة الماء كان البناء يعبأ.
Corning pH-Meter Model 12 Calibration Curves

The measurements were taken by using standard addition method, where a set of standard solutions was prepared and the pH was measured for each solution. The results were then plotted on a graph to obtain the calibration curve.

Results and Discussion:

1. Analysis for metals in spring water: The table below shows the results of the analysis of metals present in spring water using the Pye Unicam Atomic Absorption Spectrometer model SP 192.

<table>
<thead>
<tr>
<th>Metal</th>
<th>Concentration (mg/L)</th>
<th>pH</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>0.4</td>
<td>5.5</td>
<td>25</td>
</tr>
<tr>
<td>Zn</td>
<td>2.1</td>
<td>6.0</td>
<td>30</td>
</tr>
<tr>
<td>Cu</td>
<td>0.1</td>
<td>5.0</td>
<td>20</td>
</tr>
<tr>
<td>Ni</td>
<td>0.3</td>
<td>6.5</td>
<td>35</td>
</tr>
<tr>
<td>Mg</td>
<td>0.01</td>
<td>4.5</td>
<td>22</td>
</tr>
<tr>
<td>Ca</td>
<td>0.005</td>
<td>7.0</td>
<td>40</td>
</tr>
</tbody>
</table>

The results show that the concentrations of Pb, Zn, Cu, Ni, Mg, and Ca in the spring water samples were within the acceptable limits.
جدول رقم (2)
تراكيز بعض العناصر في عينات مأخوذة من عيون مدينة نابلس

<table>
<thead>
<tr>
<th>اسم العين</th>
<th>تاريخ الخروج على الماء</th>
<th>درجة الحرارة</th>
<th>درجة الحمل</th>
<th>رصاص زنك</th>
<th>حديد</th>
<th>مغنيسيوم</th>
<th>نحاس</th>
<th>تينك</th>
<th>مغنيسيوم</th>
<th>تينك</th>
<th>نحاس</th>
<th>حديد</th>
<th>مغنيسيوم</th>
<th>زنك</th>
<th>رصاص</th>
<th>درجة الحرارة</th>
</tr>
</thead>
<tbody>
<tr>
<td>بيت الماء</td>
<td>11/10</td>
<td>7.3</td>
<td>4.2</td>
<td>4.6</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>7.3</td>
</tr>
<tr>
<td>راس العين</td>
<td>11/19</td>
<td>7.2</td>
<td>4.1</td>
<td>3.8</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>7.2</td>
</tr>
<tr>
<td>العسل</td>
<td>11/19</td>
<td>7.1</td>
<td>4.0</td>
<td>3.7</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>7.1</td>
</tr>
<tr>
<td>القرون</td>
<td>11/19</td>
<td>7.0</td>
<td>4.0</td>
<td>3.5</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>7.0</td>
</tr>
<tr>
<td>الدفنة</td>
<td>11/19</td>
<td>6.9</td>
<td>3.8</td>
<td>3.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>6.9</td>
</tr>
<tr>
<td>ريديا</td>
<td>11/19</td>
<td>6.8</td>
<td>3.8</td>
<td>3.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>6.8</td>
</tr>
<tr>
<td>الكثير</td>
<td>11/19</td>
<td>6.7</td>
<td>3.8</td>
<td>3.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>6.7</td>
</tr>
<tr>
<td>117.1</td>
<td>11/19</td>
<td>6.6</td>
<td>3.7</td>
<td>3.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>6.6</td>
</tr>
<tr>
<td>150</td>
<td>11/19</td>
<td>6.5</td>
<td>3.6</td>
<td>3.0</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>6.5</td>
</tr>
<tr>
<td>10.2</td>
<td>11/19</td>
<td>6.4</td>
<td>3.6</td>
<td>2.9</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>6.4</td>
</tr>
<tr>
<td>10.7</td>
<td>11/19</td>
<td>6.3</td>
<td>3.5</td>
<td>2.8</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>6.3</td>
</tr>
</tbody>
</table>

* هذه الأرتفاع تشمل أقل تركيز من هذه العناصر (detection limit) يمكن قياسها باستخدام طريقة تحليل أنظمة المطيافية الذرية (AAS) المذكورة في هذا البحث.
توضيح دراسة الجدول رقم (2) ما يلي:

أ- تراكيز عناصر الرصاص، الزئبق، النحاس، التيكيل، المنغنيز والهيدروجين جميعها تراكيز منخفضة جداً حيث يمكن اعتبار مياه العيون المدروسة هنا نقياً من جميع هذه العناصر السامة.

ب- تراكيز عنصر المغنيسيوم موجود بنسب أعلى من تراكيز عنصر المجموعة (أ) وترتفع أحياناً إلى حوالي 30 ملغم / لتر ولكنها أيضاً أقل من النسبة المسموحة للمغنيسيوم في الماء (500 ملغم / لتر).

ج- تراكيز عنصر الكالسيوم مرتفع نسبياً عن باقي المعادن ويزيد في معظم الحالات عن النسبة المسموحة بهما في الماء (75 ملغم / لتر) ومن هنا يمكن اعتبار مياه هذه العيون غير مناسبة لأنواع الصناعات التي لا تحتمل النسبة العالية من الكالسيوم أو لشرب مجموعة الناس الذين عندهم قابلية لتكوين الحصوة. ويتضح بطلع هذه المياه لترطيب الهواء والداخلة من الكالسيوم قبل استهلاكها.

د- مقارنة تراكيز العناصر في العين الواحدة يتبين أن تراكيز بعض العناصر المدروسة تتفاوت في العين الواحدة من وقت لآخر تفاوتاً كبيراً في بعض الأحيان (انظر مثلاً تفاوت تركيز المغنيسيوم في العينات المأخوذة من عيني الفيلخ) وهذا يدل على ضرورة متابعة قياس تراكيز العناصر السامة في هذه العيون على مدار السنة لتتبع تغييرات هذه التراكيز في العيون والتأكد من عدم زيادةها عن النسب المسموحة.

<table>
<thead>
<tr>
<th>تراكيز العناصر (ملغم / لتر)</th>
<th>درجة الحرارة</th>
<th>النتيجة</th>
<th>النتيجة</th>
<th>التراكيز</th>
<th>النتيجة</th>
<th>النتيجة</th>
<th>النتيجة</th>
<th>النتيجة</th>
<th>النتيجة</th>
</tr>
</thead>
<tbody>
<tr>
<td>كالسيوم</td>
<td></td>
<td></td>
<td></td>
<td>متفاوت</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مغنيسيوم</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نحاس</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تيكيل</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>منغنيز</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

: تراكيز العناصر المذكورة في هذه البحث (AAS) صممت في هذا البحث (detection limit) يمكن قياسها باستخدام طريقة تحليل انتقاص الطيف الضوئي.

**: تغيل نطاق الخراطة الموضحة في شكل (1) تقع في بلدة بسبب إم الوفاء على بعد حوالي 3 كم إلى الشرق من مدينة نابلس.
Trace Metal Pollution Levels In ...

- درجة حموضة المياه pH تقع ضمن الحدود المألوفة بالنسبة للياء الشرب.

Effect of chlorination

- تأثير معالجة المياه بالكلور لدراسة تأثير معالجة المياه بالكلور قيست تراكيز العناصر المدروسة في عينات من مياء العيون قبل إضافة الكلور إليها وفي عينات مأخوذة من نفس العيون بعد إضافة الكلور فيها.

بالنظر إلى النتائج جدول رقم (3) يتضح أن تأثير الكلور أدى إلى زيادة تراكيز كل من عنصري الزنك والمغنيسيوم وربما يكون ذلك ناتجًا عن وجود هذه العناصر نفسها في مادة الكلور المضافة ولكن لم يتسن لنا الحصول على عينة من الكلور المستخدم لاثبات ذلك.

جدول رقم (3)

تأثير إضافة الكلور إلى الماء (بدون وجود حامض) على تراكيز بعض العناصر

<table>
<thead>
<tr>
<th>تركيز العناصر (ملغم / لتر)</th>
<th>مغنيسيوم</th>
<th>زننك</th>
</tr>
</thead>
<tbody>
<tr>
<td>مع كلور بدون كلور</td>
<td>مع كلور</td>
<td>بدون كلور</td>
</tr>
<tr>
<td>9.9</td>
<td>4.1</td>
<td>0.07</td>
</tr>
<tr>
<td>4.8</td>
<td>3.8</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>3.4</td>
<td>3.3</td>
<td>-</td>
</tr>
<tr>
<td>0.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.5</td>
<td>2.4</td>
<td>0.09</td>
</tr>
<tr>
<td>3.6</td>
<td>3.9</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>0.1</td>
<td>0.6</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>17</td>
<td>-</td>
</tr>
</tbody>
</table>

صادر العينة «عين النبع » سنة 1985

- بيت الماء
- رأس العين
- الغابون
- الدفنه
- الكفيف
- البذاي
Effect of storage in glass containers on the concentrations of calcium and of magnesium

In previous studies (1985), we studied the effects of storage in glass containers on the concentrations of calcium and of magnesium. The study was conducted in three phases: 1) calculating the effect of storage on the concentration of calcium and of magnesium; 2) calculating the effect of storage on the concentration of calcium and of magnesium; and 3) calculating the effect of storage on the concentration of calcium and of magnesium.

Table: Effects of Storage in Glass Containers on the Concentrations of Calcium and Magnesium

<table>
<thead>
<tr>
<th>مدة تحت الحفظ (الدней)</th>
<th>الادساص الكلسيوم و المغنيسيوم على سطح الأؤدات الزجاجية</th>
<th>المصدر (عين النبع)</th>
<th>تاريخ الخروج عليها</th>
<th>الitre</th>
<th>التخزين</th>
<th>الادساص الكلسيوم دون الادساص</th>
<th>الادساص الكلسيوم دون الادساص</th>
<th>الادساص الكلسيوم دون الادساص</th>
<th>الادساص الكلسيوم دون الادساص</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>4.2</td>
<td>7.1</td>
<td>11.1</td>
<td></td>
<td>4.1</td>
<td>7.1</td>
<td>4.1</td>
<td>7.1</td>
<td>4.1</td>
</tr>
<tr>
<td>7.2</td>
<td>4.3</td>
<td>7.2</td>
<td>11.2</td>
<td></td>
<td>4.2</td>
<td>7.2</td>
<td>4.2</td>
<td>7.2</td>
<td>4.2</td>
</tr>
<tr>
<td>7.3</td>
<td>4.4</td>
<td>7.3</td>
<td>11.3</td>
<td></td>
<td>4.3</td>
<td>7.3</td>
<td>4.3</td>
<td>7.3</td>
<td>4.3</td>
</tr>
<tr>
<td>7.4</td>
<td>4.5</td>
<td>7.4</td>
<td>11.4</td>
<td></td>
<td>4.4</td>
<td>7.4</td>
<td>4.4</td>
<td>7.4</td>
<td>4.4</td>
</tr>
<tr>
<td>7.5</td>
<td>4.6</td>
<td>7.5</td>
<td>11.5</td>
<td></td>
<td>4.5</td>
<td>7.5</td>
<td>4.5</td>
<td>7.5</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Note: The table represents the results of the study and the data is presented in a tabular format.
<table>
<thead>
<tr>
<th>المصدر العينة (عينات العناصر في المحلول)</th>
<th>تاريخ الخصل على (سنة 1985)</th>
<th>توزيع عدد العناصر</th>
<th>توزيع عدد العناصر</th>
<th>توزيع عدد العناصر</th>
<th>توزيع عدد العناصر</th>
</tr>
</thead>
<tbody>
<tr>
<td>الكيف</td>
<td>11/19</td>
<td>11/19</td>
<td>11/19</td>
<td>11/19</td>
<td>11/19</td>
</tr>
<tr>
<td>الصبيان</td>
<td>11/26</td>
<td>11/26</td>
<td>11/26</td>
<td>11/26</td>
<td>11/26</td>
</tr>
<tr>
<td>البان</td>
<td>12/3</td>
<td>12/3</td>
<td>12/3</td>
<td>12/3</td>
<td>12/3</td>
</tr>
<tr>
<td>بيت ابا</td>
<td>12/27</td>
<td>12/27</td>
<td>12/27</td>
<td>12/27</td>
<td>12/27</td>
</tr>
<tr>
<td>المتوسط</td>
<td>12/22</td>
<td>12/22</td>
<td>12/22</td>
<td>12/22</td>
<td>12/22</td>
</tr>
</tbody>
</table>

الكالسيوم والمغنيسيوم في العينات المضافة إليها الحامض (وجود الحامض يمنع انتقال هذه العناصر من المحلول إلى الزجاج حيث يعمل أيون الهيدروجين الموجود في الحامض على احتلال جميع المراكز في الزجاج التي يمكنها استيعاب أيونات العناصر من المحلول) مع عينات مأخوذة في نفس الفترة الزمنية بدون إضافة حامض وبعض تركها في الأواني الزجاجية لمدة ساعتين لاحظ ما يلي:

- أن تراكيز كل من الكالسيوم والمغنيسيوم التي تنتقل من المحلول إلى سطح الزجاج عالية، يجب أن تؤخذ بالحسان عند تحليل عينات الماء لذين العنصرين. الطريقة المثل التي تم انتقال العناصر إلى سطح الزجاج هي عن طريق إضافة حامض للعينة لتتمثل درجة الحموضة إلى 1.5 (17).

ب - نسبة الكالسيوم التي تضمن من المحلول أعلى بكثير من نسبة المغنيسيوم الضائعة في نفس الوقت حيث وصلت نسبة الكالسيوم الضائعة إلى ما يقارب أربعة أضعاف نسبة المغنيسيوم الضائعة من نفس العينة على نفس الزجاج.

ج - تناولت النسب الضائعة من كل من الكالسيوم أو المغنيسيوم باختلال العينة وباختلال الوعاء وهذا أمر متوقع حيث أن العوامل التي تؤثر على معدل ضياع العنصر من المحلول عديدة فهي تتأثر مثلا بتراكيز العناصر الأخرى في العينية وشكل الوعاء ومدى استبابته (18).
الخلاصة:
يمكن من البحث الحالي استخلاص النتائج التالية:

1 - تعتبر مياه عيون مدينة نابلس نقطة من عنصر الرصاص، النحاس، النيكل، المغنيسيوم والزنك.
2 - تراكيز المغنيسيوم في بعض العيون عال ولقد لا يصل درجة الخطورة.
3 - تراكيز عنصر الكالسيوم في جميع العيون المدروسة عالية جدا وفوق المستوى المسموح به عالمياً.
4 - تتفاوت تراكيز بعض العناصر في مياه العين الواحدة في وقت آخر وهذا يستدعي الربط المستمرة لتراكيز هذه العناصر على مدار العام.
5 - إضافة الكلور إلى الماء للتعقيم تؤدي إلى زيادة تراكيز كل من عنصر الزئبق والمغنيسيوم في الماء.
6 - تضعف نسبة كبيرة من كل عنصر المغنيسيوم والكالسيوم على سطح الأراضي الزراعية في حالة
أخذ العينة بدون إضافة الحمض.
7 - ضعف هذه العناصر عن طريق الادمتصاص على الأراضي الزراعية قبل تحليلها.

الشكر:
يود الملفحون تقديم الشكر للسيد «جواهد شاهين» مهندس بلدية نابلس لمساعدته في جمع العينات اللازمة لعمل هذا البحث.

References
