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We present analytical bound state solutions of the spin-zero Klein–Gordon (KG) particles in the field of unequal mix-
ture of scalar and vector Yukawa potentials within the framework of the approximation scheme to the centrifugal potential
term for any arbitrary l-state. The approximate energy eigenvalues and unnormalized wave functions are obtained in closed
forms using a simple shortcut of the Nikiforov–Uvarov (NU) method. Further, we solve the KG–Yukawa problem for its
exact numerical energy eigenvalues via the amplitude phase (AP) method to test the accuracy of the present solutions found
by using the NU method. Our numerical tests using energy calculations demonstrate the existence of inter-dimensional
degeneracy amongst the energy states of the KG–Yukawa problem. The dependence of the energy on the dimension D is
numerically discussed for spatial dimensions D = 2–6.
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1. Introduction

The Yukawa potential or static screening Coulomb (SSC)
potential is often used to compute the bound-state normaliza-
tions and the energy levels of neutral atoms[1–6] which have
been studied over the past years. It is known that the SSC po-
tential yields reasonable results only for the innermost states
when the atomic number Z is large. However, for the out-
ermost and middle atomic states, it gives rather poor results.
The bound-state energies of the SSC potential with Z = 1
have been studied in the light of the shifted large-N expan-
sion method.[7] For example, Chakrabarti and Das presented
a perturbative solution of the Riccati equation leading to an
analytical superpotential for the Yukawa potential.[8] Ikhdair
and Sever investigated the energy levels of neutral atoms by
applying an alternative perturbative scheme in solving the
Schrödinger equation for the Yukawa potential model with a
modified screening parameter.[9] They also studied the bound
states of the Hellmann potential, which represents the super-
position of the attractive Coulomb potential −a/r and the
Yukawa potential bexp(−δ r)/r of arbitrary strength b and
screening parameter.[10] Some authors studied relativistic and
non-relativistic equations with different potentials.[11–44]

The aim of the present work is to investigate the KG equa-
tion in an arbitrary dimension D [45] with the unequal mixture

of scalar and vector Yukawa potentials:

V (r) =−V0
e−ar

r
, (1a)

S(r) =−S0
e−ar

r
, (1b)

S(r) = βV (r), −1≤ β ≤ 1, (1c)

where V0 = αZ, α = (137.037)−1 is the fine-structure
constant, Z is the atomic number, and a is the screen-
ing parameter.[1] In addition, β is an arbitrary constant
demonstrating the ratio of the scalar potential to the vec-
tor potential.[46] When β = 1, we have an equal mixture,
i.e., S(r) = V (r), representing the exact spin symmetric limit
∆(r) = S(r)−V (r) = 0 (the potential difference is exactly
zero). However, when β = −1, we have S(r) = −V (r),
representing the exact pseudospin (p-spin) symmetric limit
Σ(r) = S(r) +V (r) = 0 (the potential sum is exactly zero).
The strong singular centrifugal term is approximated within
the framework of an improved approximation scheme. Fur-
ther, the spinless D-dimensional KG equation with the scalar
and vector Yukawa potentials is solved using the parametric
generalization of the NU method[47–49] in order to obtain the
approximate analytical energy eigenvalues and corresponding
wave functions for any l-state. The approximated numerical
energy eigenvalues in the present model are compared with
exact numerical results obtained by the AP method.[50–53]

The present work is organized as follows: In Section 2,
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the generalized parametric NU and AP methods are briefly in-
troduced. In Section 3, we give a review to the KG equation
in D-dimensional space and then obtain the bound state solu-
tions of the hyperradial KG equation with an unequal mixture
of scalar and vector Yukawa potentials by using a shortcut of
the NU method. The exact and approximate numerical results
are also obtained by the AP and NU methods, respectively.
Finally, we give our concluding remarks in Section 4.

2. Methods of analysis
In this section, we give a brief review of the analytical NU

and the numerical AP methods.

2.1. Parametric NU method

This powerful mathematical tool could be used to solve
the second-order differential equations. Considering the fol-
lowing differential equation[47–49]

ψ
′′
n (s)+

τ̃(s)
σ(s)

ψ
′
n(s)+

σ̃(s)
σ2(s)

ψn(s) = 0, (2)

where σ(s) and σ̃(s) are polynomials of the second degree at
most, and τ̃(s) is a first-degree polynomial. To make the ap-
plication of the NU method simpler and checking the validity
of solution unnecessary we present a shortcut. We begin the
method by writing the general form of the Schrödinger-like
equation (2) as

ψ
′′
n (s)+

( c1−c2s
s(1−c3s)

)
ψ
′
n(s)+

(−p2s2+p1s−p0

s2(1−c3s)2

)
ψn(s)=0, (3)

where the wave functions ψn(s) satisfies

ψn(s) = ϕ(s)yn(s). (4)

By comparing Eq. (3) with its counterpart Eq. (2), one can
obtain

τ̃(s) = c1− c2s, σ(s) = s(1− c3s),

σ̃(s) =−p2s2 + p1s− p0. (5)

According to the NU method,[47] one can obtain the bound-
state energy equation as[48,49]

c2n− (2n+1)c5 +(2n+1)(
√

c9 + c3
√

c8)

+n(n−1)c3 + c7 +2c3c8 +2
√

c8c9 = 0. (6)

In addition, we also find that

ρ(s) = sc10(1− c3s)c11 , ϕ(s) = sc12(1− c3s)c13 ,

c12 > 0, c13 > 0,

yn(s) = P(c10,c11)
n (1−2c3s), c10 >−1, c11 >−1, (7a)

are necessary in calculating the wave functions

ψnl(s) = Nnlsc12(1− c3s)c13 P(c10,c11)
n (1−2c3s), (7b)

where P(µ,ν)
n (x), µ >−1, ν >−1, x∈ [−1,1] are Jacobi poly-

nomials with constant parameters[30]

c4 =
1
2
(1− c1), c5 =

1
2
(c2−2c3),

c6 = c2
5 + p2, c7 = 2c4c5− p1,

c8 = c2
4 + p0, c9 = c3(c7 + c3c8)+ c6,

c10 = c1 +2c4 +2
√

c8−1 >−1,

c11 = 1− c1−2c4 +
2
c3

√
c9 >−1, c3 6= 0,

c12 = c4 +
√

c8 > 0,

c13 =−c4 +
1
c3
(
√

c9− c5)> 0, c3 6= 0, (8)

with c12 > 0, c13 > 0 and s ∈ [0,1/c3], c3 6= 0.
In a more special case of c3 = 0, equation (7b) becomes

lim
c3→0

P(c10,c11)
n (1−2c3s) = Lc10

n (c11s),

lim
c3→0

(1− c3s)c13 = ec13s,

ψ(s) = Nsc12 ec13sLc10
n (c11s), (9)

where Lα
n (x) are the associated Laguerre polynomials

2.2. Amplitude phase method

The amplitude–phase (AP) method used for calculating
bound states was presented by Korsch and Laurent in 1981.[50]

The Schrödinger equation can be converted into an equation
for the so-called amplitude function which has a formal rela-
tionship to a local wave number that determines the so-called
phase function. It begins by writing the radial solution Rnl(r)
of the Schrödinger equation in the form[50–53]

Rnl(r) = u(r)sinϕ(r) (10)

with an imposed relationship

ϕ
′(r) = u(r)−2. (11)

One can derive a nonlinear second-order differential equation

d2u(r)
dr2 +

{
2[Enl−V (r)]− l(l +1)

r

}
u(r) =

1
u(r)3 (12)

for the amplitude function. Equation (12) is the Milne-type
equation.[50] Here, a phase reference condition (because of an
arbitrary integration constant) is required, and it is formally
accomplished with

ϕ(r)→ 0, as r→ 0. (13)

The integration of Eq. (12) goes in two steps: from the poten-
tial minimum towards +0, and from the potential minimum
towards +∞. Using initially the (first-order) semiclassical for-
mula of the amplitude as[50]

u(rmin)≈
[
2(Enl−V (rmin))−

l(l+1)
(rmin)2

]−1/4
, u′(rmin)=0. (14)

As the wave function will vanish at r→+∞, the quantization
condition as

ϕ(+∞) = (1+n)π, n = 0,1, . . . , (15)

where n is the (nodal) radial quantum number. Equation (15) is
solved by using the Newton’s iteration with respect to energy.
Further details of the numerical aspects are recently given in
Ref. [53].
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3. The hyperradial part of the KG equation in
DDD-dimensional space
In spherical coordinates, the KG equation with vector

V (r) and scalar S(r) potentials can be written as[46] (in units
of h̄ = c = 1)[

∆D +(Enl−V (r))2− (M+S(r))2]
ψnlm(r,ΩD) = 0 (16)

with

∆D = ∇
2
D =

1
rD−1

∂

∂ r

(
rD−1 ∂

∂ r

)
− Λ 2

D(ΩD)

r2 , (17)

where Enl , Λ 2
D, (ΩD)/r2, and ΩD are the energy eigenvalues,

the generation of the centrifugal barrier for the D-dimensional
space, and the angular coordinates, respectively.[45] The eigen-
values of Λ 2

D(ΩD) are given by[45]

Λ
2
D(ΩD)Ym

l (ΩD) =
(D+2l−2)2−1

4
Ym

l (ΩD), D > 1 (18)

where Ym
l (ΩD) is the hyperspherical harmonic. For D = 2,

and D = 3, we have

Λ
2
D=2(ΩD=2)Ym

l (ΩD=2) = (m2−1/4)Ym
l (ΩD=2)

and a familiar form

Λ
2
D=3(ΩD=3)Ym

l (ΩD=3) = l(l +1)Ym
l (ΩD=3),

respectively. Using the separation of variables by means of the
wave function ψnlm(r,ΩD) = r−(D−1)/2Rnl(r)Ym

l (ΩD), equa-
tion (16) reduces to[ d2

dr2 − (M2−E2
nl)−2(EnlV (r)+MS(r))+V 2(r)−S2(r)

− (D+2l−2)2−1
4r2

]
Rnl(r) = 0. (19)

Substituting the scalar and vector Yukawa potentials into
Eq. (19), we obtain[ d2

dr2 − ε
2 +

(V 2
0 −S2

0)

r2 e−2ar +
2(MS0 +EnlV0)

r
e−ar

− (D+2l−2)2−1
4r2

]
Rnl(r) = 0, (20)

where ε2 = M2−E2
nl . We investigate the asymptotic behavior

of Rnl(r). First, equation (20) shows that when r approaches
∞, the asymptotic solution R0(r) of Eq. (20) satisfies the dif-
ferential equation

d2R0(r)
dr2 − ε

2R0(r) = 0,

assuming the solution of R0(r) ∼ a1 e−εr, where a1 is a con-
stant. The solution is an acceptable physical solution since the
solution becomes finite as r→ ∞. Meanwhile, as r→ 0, the
asymptotic solution R∞(r) of Eq. (20) satisfies the differential
equation,

d2R∞(r)
dr2 − (k2−1/4)

r2 R∞(r) = 0,

where
k =

1
2

√
(D+2l−2)2 +4(S2

0−V 2
0 ),

which assumes the solution of R∞(r)∼ a2rk+1/2+a3r−(k+1/2),
where a2 and a3 are two constants. r−(k+1/2) is not a satisfac-
tory solution because it becomes infinite when r→ 0, while
the term r k+1/2 is well-behaved. Consequently, the asymptotic
behavior of R(r) suggests we choose the appropriate ansatz
as R(r) = Ark+1/2 e−εrF(r), where F(r) is a hypergeometric
function to be found from Eq. (20) in the region r ∈ (0,∞).

It is obvious that equation (20) does not have an exact so-
lution due to the singular terms 1/r and 1/r2. So we make
approximations for these two terms in Eq. (20) as[36–40]

1
r2 ≈ 4a2 e−2ar

(1− e−2ar)2 , (21a)

1
r
≈ 2a

e−ar

(1− e−2ar)
, (21b)

which are valid when ar� 1.[54–58] Thus, the vector and scalar
Yukawa potential in Eqs. (1a) and (1b) can be approximated as

V (r) =−2aV0
e−2ar

(1− e−2ar)
, (22a)

and

S(r) =−2aS0
e−2ar

(1− e−2ar)
, (22b)

respectively. To show the accuracy of our approximation, we
plot the Yukawa potential of Eq. (1a) and its approximation
of Eq. (22a) with parameter values V0 =

√
2, a = 0.05V0

[59] in
Fig. 1 (1 fm = 10−15 m).
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↽
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Fig. 1. (color online) The Yukawa potential (red line) and its ap-
proximation in Eq. (16) (green line).

Substituting Eq. (21) into Eq. (19), one obtains{ d2

dr2 − ε
2 +4a2(V 2

0 −S2
0)

e−4ar

(1− e−2ar)2

+4a(MS0 +En,lV0)
e−2ar

(1− e−2ar)

−a2(D+2l−1)(D+2l−3)
e−2ar

(1− e−2ar)2

}
Rnl(r) = 0. (23)

Making a suitable change of variables as s = e−2ar, and map-
ping r ∈ (0,∞) to s ∈ (0,1), we can recast Eq. (23) as follows:

d2Rn,l(s)
ds2 +

1− s
s(1− s)

dRn,l(s)
ds

+
1

s2(1− s)2

[
− ε2

4a2 (1− s)2 +(V 2
0 −S2

0)s
2
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+
(MS0 +EnlV0)

a
s(1− s)− (D+2l−2)2−1

4
s
]
Rnl(s)

= 0. (24)

Comparing Eq. (24) with Eq. (3), we obtain the solutions of
Eq. (24)

c1 = 1, p0 =
ε2

4a2 ,

c2 = 1, p1 =
2ε2

4a2 +
(MS0 +EnlV0)

a
− (D+2l−2)2−1

4
,

c3 = 1, p2 =
ε2

4a2 − (V 2
0 −S2

0)+
(MS0 +EnlV0)

a
. (25)

In addition, the values of constant coefficients ci (i =

4,5, . . . ,13) are obtained from Eq. (8) and displayed in Ta-
ble 1. Thus, using Eq. (6), the energy eigenvalue equation can
be expressed as(

2n+1+
√
(D+2l−2)2−4(V 2

0 −S2
0)+

1
a

√
M2−E2

nl

)2

=
M2−E2

nl
a2 +

4(MS0 +EnlV0)

a
+4(S2

0−V 2
0 ), (26a)

or(
2n+1+

√
(D+2l−2)2 +4(S2

0−V 2
0 )+

1
a

√
M2−E2

nl

)2

=−
(Enl

a
−2V0

)2
+
(M

a
+2S0

)2
, (26b)

as a simplification, where −M < Enl < M. Some other ap-
proximate numerical results of energy levels for various val-
ues of dimension D and quantum numbers n and l are shown
in Tables 2, 3, and 4 for V (r) 6= S(r), V (r) = S(r), and
V (r) =−S(r), respectively, where the potential parameters are
chosen as a= 0.05 fm (1 fm= 10−15 m) and M = 1.0 fm−1.[56]

It can be seen from these Tables that the two inter-dimensional
states are degenerate according to the relationship (n, l,D)→
(n, l±1,D∓2). A knowledge of E(D)

nl for D= 2 and D= 3 pro-

vides the necessary information to find E(D)
nl for other higher

dimensions. For example, we see that E(4)
2,0 = E(2)

2,1 .[60] Further-
more, we noticed that the energy states become less attractive
for larger n, l, and D. When S0 = ±V0 (i.e., β = ±1), E21

is equal to E30 for any D = 2–6. However, this degeneracy
is removed for β 6= ±1. Moreover, to show the accuracy of
our approximation, we calculate the exact numerical energy
eigenvalues of Eq. (20) without making any approximation to
the centrifugal term by using the AP method with arbitrary n,
l, and D. We obtain the percentage error∣∣∣ Eapprox−Eexact

Eexact

∣∣∣×100%

for a few states in Table 2 as 2.7403%, 2.4987%, and 1.8994%
for (n, l,D) = (3,1,2), (3,1,3), and (3,1,6), respectively. It
is found that the exact numerical energy states obtained from
Eq. (20) are in good agreement with the approximate ones ob-
tained from Eq. (24) for a low screening regime, i.e., ar� 1,
since our approximation works well only for the lowest energy
states.[56]

In Table 2, when n = 1 and l = 0, all energy states are
attractive (negative) for 2 ≤ D ≤ 5 and become less attrac-
tive with the increase of the dimension. However, when n≥ 2
and l ≥ 0, all energy states become more repulsive (positive)
with the increase of the dimension. In Table 3, for n = 1 and
l = 0, the system is attractive for all states when D≥ 2 and be-
comes less attractive with the increase of the dimension. When
n = 2 and l = 0, the system is less attractive for all states when
2≤D≤ 5 and repulsive for D > 5. When n = 2 and l = 1, to-
gether with n = 3 and l = 0, the system is less attractive when
D = 2,3 and more repulsive for D > 3 when the dimension
increases. Furthermore, when n ≥ 3 and l ≥ 1, it is more re-
pulsive for D≥ 2 as the dimension increases. In Table 3, when
n = 1 and l = 0, all energy states are less repulsive with the in-
crease of the dimension. However, when n = 2 and l = 0, the
system is less repulsive for 2 ≤ D ≤ 5 and more attractive for
D > 5. When n = 2 and l = 1, together with n = 3 and l = 0,
the system is less repulsive when D = 2,3 and more attractive
for D > 3 for all states when the dimension increases. Finally,
when n ≥ 3 and l ≥ 1, it is more attractive for D ≥ 2 as the
dimension increases.

Table 1. The values of the parametric constants used to calculate the
energy eigenvalues and eigenfunctions.

Constant Analytical value
c4 0
c5 −1/2

c6
1
4
+

ε2

4a2 − (V 2
0 +S2

0)+
(MS0 +En,lV0)

a

c7 −2ε2

4a2 −
(MS0 +En,lV0)

a
+

(D+2l−1)(D+2l−3)
4

c8
ε2

4a2

c9 −(V 2
0 +S2

0)+
(D+2l−1)(D+2l−3)+1

4

c10 2

√
ε2

4a2

c11 2

√
−(V 2

0 +S2
0)+

(D+2l−1)(D+2l−3)+1
4

c12

√
ε2

4a2

c13 −1
2
+

√
−(V 2

0 +S2
0)+

(D+2l−1)(D+2l−3)+1
4

Let us now calculate the corresponding eigenfunctions.
We use the relationship in Eq. (7) to obtain the necessary func-
tions

ρ(s) = sε/a(1− s)
√

4(S2
0−V 2

0 )+(D+2l−2)2
,

φ(s) = sε/2a(1− s)(−1+
√

4(S2
0−V 2

0 )+(D+2l−2)2)/2,

yn(s) = P
(ε/a,
√

4(S2
0−V 2

0 )+(D+2l−2)2)
n (1−2s),

Rnl(s) = Nnlsε/2a(1− s)(−1+
√

4(S2
0−V 2

0 )+(D+2l−2)2)/2

×P
(ε/a,
√

4(S2
0−V 2

0 )+(D+2l−2)2)
n (1−2s), (27)

where Nnl is the normalization constant. The radial wave func-
tions can also be rewritten in a more convenient form in terms
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of the potential parameters as

Rnl(r) = Nnl eεr(1− e−2ar)(−1+
√

4(S2
0−V 2

0 )+(D+2l−2)2)/2

×P
(ε/a,
√

4(S2
0−V 2

0 )+(D+2l−2)2)
n (1−2e−2ar), (28)

which behaves well at boundaries, i.e., r = 0 and r→ ∞.
From Eq. (26b), we obtain the energy eigenvalues of the

KG particles in two- and three-dimensional spaces, respec-
tively, as(

2n+1+2

√(
m− 1

2

)2
+(S2

0−V 2
0 )+

1
a

√
M2−E2

nm

)2

=−
(Enm

a
−2V0

)2
+
(M

a
+2S0

)2
, (29a)(

2n+1+2

√(
l +

1
2

)2
+(S2

0−V 2
0 )+

1
a

√
M2−E2

nl

)2

=−
(Enl

a
−2V0

)2
+
(M

a
+2S0

)2
. (29b)

In two-dimensional space case, we inserted l → m− 1/2 in
Eq. (29a).

Setting V (r)→V (r)/2Enl +M→ 2µ/h̄2, and Enl−M→
Enl ,[56] we can obtain the solution of the Yukawa problem in
the non-relativistic limit. Here µ = m1m2/(m1 +m2) is the

reduced mass where m1 and m2 represent the masses of the
electron e and the atom Ze, respectively. In these conditions,
one can obtain the non-relativistic energy eigenvalues of the
Yukawa potential[40]

Enl =−
h̄2

2µ

[(
n+

D
2
+ l− 1

2

)
a− µV0

h̄2
(

n+ D
2 + l− 1

2

)]2

(30)

and the corresponding radial wave functions

Rnl(r) = Nn,l e−
√

2µEnlr/h̄(1− e−2ar)l+1

×P(
√

2µEnl/h̄a,2l+1−
√

2µEnl/h̄a)
n (1−2e−2ar). (31)

Also, when the screening parameter a approaches zero, equa-
tion (1) reduces to a Coulomb potential. Thus, in this limit,
the energy eigenvalues of Eq. (30) become the energy levels
of the Coulomb interaction, i.e.,

Enl =−
µV 2

0

2h̄2
(

n+ D
2 + l− 1

2

)2 , (32)

which is identical to the result in Refs. [45] and [58] when
D = 3.

Table 2. The energy levels of the KG particles in the field of scalar and vector Yukawa potentials for various D, n, and l values with
V0 = 4.5 and S0 = 5.

En,l /fm−1

n, l 1,0 1,0 2,0 2,0 2,1 2,1 3,0 3,0 3,1 3,1

D NU AP NU AP NU AP NU AP NU AP

2 −0.214913 −0.219440 0.112670 0.105122 0.174406 0.166646 0.368030 0.357228 0.415044 0.403974

3 −0.194399 −0.198948 0.129002 0.121398 0.240311 0.232333 0.380497 0.369622 0.464924 0.453590

4 −0.137038 −0.141652 0.174406 0.166646 0.317325 0.309115 0.415044 0.403974 0.522848 0.511245

5 −0.052932 −0.057646 0.240311 0.232333 0.397892 0.389478 0.464924 0.453590 0.583068 0.571249

6 0.046537 0.041712 0.317325 0.309115 0.476916 0.468366 0.522848 0.511245 0.641793 0.629861

Table 3. Bound state energy levels of the KG particle subject to scalar and vector Yukawa potentials for various D, n, and l values with
V0 = S0 = 5.

En,l /fm−1

n, l 1,0 1,0 2,0 2,0 2,1 2,1 3,0 3,0 3,1 3,1

D NU AP NU AP NU AP NU AP NU AP

2 −0.795853 −0.784988 −0.506330 −0.493815 −0.190290 −0.194878 −0.190290 −0.194878 0.098154 0.090716

3 −0.659219 −0.660899 −0.347361 −0.351045 −0.040662 −0.046067 −0.040662 −0.046067 0.224479 0.216023

4 −0.506330 −0.508584 −0.190290 −0.194878 0.098154 0.092028 0.098154 0.092028 0.337828 0.328501

5 −0.347361 −0.350140 −0.040662 −0.046067 0.224479 0.217748 0.224479 0.217748 0.438486 0.428448

6 −0.190290 −0.193533 0.098154 0.092028 0.337828 0.330622 0.337828 0.330622 0.527179 0.516612

Table 4. Bound state energy levels of the KG particle in the field of scalar and vector Yukawa potentials for various D, n, and l values with
V0 =−5 and S0 = 5.

En,l /fm−1

n, l 1,0 1,0 2,0 2,0 2,1 2,1 3,0 3,0 3,1 3,1

D NU AP NU AP NU AP NU AP NU AP

2 0.795853 0.784988 0.506330 0.493814 0.190290 0.194878 0.190290 0.194878 −0.098154 −0.090716

3 0.659219 0.660899 0.347361 0.351046 0.040661 0.046069 0.040661 0.046069 −0.224478 −0.216023

4 0.506330 0.508584 0.190290 0.194878 −0.098154 −0.092028 −0.098154 −0.092028 −0.337828 −0.328501

5 0.347361 0.350140 0.040661 0.046069 −0.224479 −0.217748 −0.224479 −0.217748 −0.438485 −0.428448

6 0.190290 0.193533 −0.098154 −0.092028 −0.337828 −0.330621 −0.337828 −0.330621 −0.527180 −0.516612
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4. Concluding remarks
We have used a simple shortcut of the NU method as

well as an appropriate approximation to deal with the strong
and soft singular terms to obtain approximate analytical bound
states of the D-dimensional KG equation for scalar and vec-
tor Yukawa potentials. Numerical tests using energy calcu-
lations show the existence of inter-dimensional degeneracy
of energy states prevailing to the transformation: (n, l,D)→
(n, l± 1,D∓ 2) as shown in Tables 2 to 4. Furthermore, it is
noted that when V0 6= S0, the weakly attractive system turns to
become less attractive with the increase of the dimension D,
and strongly repulsive with the increase of quantum numbers
n and l. When V0 = S0, the strongly attractive system becomes
less attractive with the increase of D and strongly repulsive
with the increases of n and l. However, when V0 = −S0, the
strongly repulsive system becomes less repulsive with the in-
crease of D and strongly attractive with the increases of n and
l. We have also calculated the exact numerical energy eigen-
values of Eq. (20) via the numerical AP method, the solution of
which coincides with the approximate solution of Eq. (24). We
have not encountered any cumbersome and time-consuming
procedures when obtaining the numerical and analytical eigen-
values and wave functions of the problem. Our results could
be widely applied to the relevant fields.
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