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Abstract. The problem of displacing a line with a definite point on it from one spatial position to another is
studied by utilizing the concept of screw matrix. It is known that all the available finite twists (screws) associated
with this displacement form a ruled surface, the so-called finite screw cylindroid. If the definition of the pitch
given by Parkin is used, then the finite screw cylindroid can be regarded as a 2-system of screws. This brings
to one’s mind the question as to whether there exist different appropriate measures for pitch other than Parkin’s
under which all the available finite twists form a 2-system. This question is answered in this paper. By deriving a
general expression of the pitch for these available finite twists under the said condition, it is shown that Parkin’s
pitch plus an arbitrary constant is the only possible measure of pitch under which the finite screw cylindroid
represents a 2-system of screws. However, since adding a constant to the pitches of all screws of any 2-system
still gives a 2-system, constant term may be omitted. It is also shown that the determined 2-system of screws can
be described as a linear combination of two special basis screws which are called in this paper theα = 0 and
theα = π screws.

Sommario.Il problema dello spostamento di una linea con un punto definito viene studiato utilizzando il concetto
di matrice elicoidale. E’ noto che tutte le possibili rototraslazioni elicoidali associate con questo spostamento
formano una superficie rigata chiamata cilindroide elicoidale finito. Se viene usata per il passo la definizione
di Parkin, allora il cilindroide pùo essere considerato come un doppio sistema di viti. Ciò pone il problema
della possibile esistenza di altre definizioni di passo (oltre a quella di Parkin) per le quali tutte le rototraslazioni
elicoidali formino un doppio sistema di viti. In questo lavoro si fornisce una risposta a questa questione. Derivando
una espressione generale del passo per le rotazioni elicoidali con le condizioni citate, viene mostrato che il passo
di Parkin pìu una costante arbitrariàe l’unica possibile definizione di passo per la quale il cilindroide degli assi
elicoidali rappresenti un doppio sistema di viti. Visto che la costante additivaè arbitraria, il termine costante può
essere omesso. Viene anche mostrato che il sistema a doppia vite cosı̀ determinato pùo essere descritto come
una combinazione lineare di due elicoidi elementari che in questo lavoro vengono chiamati l’elicoideα = 0 e
quelloα = π .

Key words: Screw systems, General mechanics.

1. Introduction

The displacement of a rigid body in space, when completely specified, can be described as the
combination of a rotation (angle) about and a translation along a unique screw axis; the ratio of
the translation to the rotation is called the cardinal pitch of the finite screw [1]. This displacement
is usually referred to as finite twist displacement [2]. The mathematical analog of a physical
screw which would produce a specified spatial displacement of a rigid body is the screw matrix.
Beggs [3] has given a derivation for a screw matrix by using two different coordinate systems;
however, the resulting screw matrix is a complicated 4× 4 matrix. In a right-hand coordinate
system this matrix has a determinant equals unity, while its inverse is obtained by negating the
translation along and the rotation about the corresponding screw axis.

The finite displacement of a rigid body can completely be represented by six independent
parameters. When less than six independent parameters are specified, the displacement is called
incompletely specified displacement [2]. The displacement of a line with a point on it which
is considered as the element of a rigid body is an incompletely specified displacement. Indeed,
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only five independent parameters are specified rather than six. The transformation associated
with this displacement depends upon one free parameter. Hence, there are∞1 available screws
to perform the same displacement. All of the possible screw axes actually form a ruled surface,
the so-called the finite screw cylindroid. Many of the properties related with the cylindroid are
given in [1, 4, 5]. Previously, Tsai and Roth [6] had studied all possible screws associated with
the incompletely specified displacements of a line with a point, a line only, a point and a point
on a plane. They have investigated the problem based on the concept of the screw triangle [1,
7]. Sticher [5], by choosing a special coordinate system, had derived the finite screw cylindroid.
He followed a geometric approach different from that in [6]. Parkin [4], by defining the pitch
for a finite screw as the ratio of one-half the translation to the tangent of one-half the rotation,
has shown that the finite screw cylindroid can be represented by the linear combinations of two
bases screws. In other words, Perkin’s work shows under his definition of pitch that all available
finite screws for displacing a line with a point form a linearly dependent set, namely, a 2-system
of screws. Huang and Roth [2] showed that, in addition to the case studied by Parkin [4] and by
using Parkin’s definition of pitch, the screw systems associated with other incompletely specified
displacements can also be represented by linear systems or their nonlinear subsets. They derived
explicit analytic expressions for screw systems corresponding to finite displacements of a line
with a point, a line only and also a point. Finally, Huang and Chen [8], by using Parkin’s definition
of pitch, derived the linear representation of the screw triangle. Using this linear representation
of the screw triangle, they also performed the finite kinematic analysis of multi-link serial chains
to demonstrate a unification of finite and infinitesimal kinematics.

In this paper, using only ordinary linear algebra, the screw matrix as a transformation matrix
is expressed in a fixed reference coordinate system. By using this transformation matrix in
the study of the incompletely specified displacement of a line with a point, the possibility of
obtaining simplified analytic description of the set of the∞1 available screws associated with
this displacement is given. Without loss of generality, the Sticher’s coordinate system is selected
to further simplify the re-derivation of the finite screw cylindroid and many of its basic properties.
This selection makes it also possible in an easy way to derive a general expression (measure)
of the pitches for the finite screw cylindroid. Note that Parkin only defined an appropriate pitch
and did not give any clue as to how he arrived at this definition. Although it appears that Parkin’s
definition is sufficient to represent the cylindroid as a 2-system, it brings to one’s mind the
question that whether there exists pitches other than Parkin’s under which all the available finite
twists will also form a 2-system. It is found that Parkin’s definition of pitch, plus an arbitrary
constant term, is the only suitable measure of pitch. On the other hand, the constant term can
be omitted without altering the existence of the 2-system. Therefore one can state that Parkin’s
pitch is not only a sufficient condition for the cylindroid to represent a 2-system of screws but it
is also a necessary condition. Furthermore, it is shown that the determined 2-system of screws
can be described as a linear combination of two special screws which are called in this paper
theα = 0 and theα = π screws.

2. Preliminary Considerations

A special vectora, in a fixed Cartesian coordinate system6o is represented by a 3× 1 column
matrix or a 3× 3 skew symmetric matrix:

a =

 ax

ay

az


 , A =


 0 −az ay

az 0 −ax

−ay ax 0


 , (AT = −A). (1)
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Therefore, the scalar productl = a · b and the vector productc = a × b of two vectorsa andb
are conveniently denoted in6o by the respective matrix productsl = aT b andc = Ab. The use
of such representation usually provides some simplifications in the establishment of vectorial
relations, see Tokad [9].

The Plucker representation of a lineL in space may be given by a pair of column matrices
L = (n; m), wheren andm, respectively, represent the direction cosine vector of the line with
nT n = 1, and its moment vector with respect to the origin of6o:

m = −Nζ, (2)

whereζ is the coordinate matrix of any point on the line. SinceNn = 0 andnT N = 0, then
nT m = 0 is the constraint on the pair(n; m). When the pair of column matricesn andm are
given, satisfying the conditionnT m = 0, then from equation (2) the position vector can be
solved as

ζ = λn + Nm, (3)

whereλ is an arbitrary real number, and the second termNm represents the perpendicular
component ofζ with respect ton i.e.,

ζ⊥ = Nm. (4)

A screw℘ is a line of unit directionn at a radius vectorζ⊥ from the origin with an associated
scalar pitch valuep. Therefore, a line is a screw with zero pitch. A general screw can be
represented in Plucker coordinates as

℘ = (no; mo) = (n; m + pn). (5)

Hence, with this notation,ζ⊥ = Nmo = Nm andp = nT mo.
n-system of screws is a set of screws constructed by the linear combination ofn linearly

independent (basis) screws [1]. When any two linearly independent screws℘1 = (n1; m1 +
p1n1) and℘2 = (n2; m2+p2n2) are given as basis, the set of all possible real linear combination
of those screws form a 2-system of screws. Any screw℘ belonging to this set can be represented
as℘ = (µ1n1 + µ2n2; µ1(m1 + p1n1) + µ2(m2 + p2n2)) whereµ1 andµ2 are two arbitrary
real constants.

3. The Screw Matrix

When a new Cartesian coordinate system6 is attached rigidly to a body and the body rotating
about the origin of the fixed coordinate system6o, the determination of the displacement of a
point on the body requires a knowledge on the coordinate transformation or rotation matrixT
which may be given by [7, 10, 11]

T = cosθ I + (1 − cosθ)nnT + sinθN = I + (1 − cosθ)N2 + sinθN, (6)

where, according to Euler’s theorem [12],n is the direction cosine vector of the rotation axis
and theθ is the rotation angle about this axis.T is an orthonormal matrix and(I − T)n = 0.
WhenT is given one can obtain the parametersθ andn from

cosθ = 1

2
(1 − tr T); N = 1

2 sinθ
(T − TT ), (7)

where tr(.) indicates the trace of the square matrix (.).
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On the other hand, if6 is not only rotating but also translating by an amountζ with respect
to 6o, then the homogeneous transformation matrix [13, 14] of order four is required for the
determination of the general displacement:

H =
[

T ξ

0 1

]
.

However, by Chasles theorem [12], the same displacement can be obtained by a finite twist
about a certain screw axis. To find a mathematical representation of this equivalent finite twist,
we again letn be the direction cosine matrix of the screw axis andζ be the coordinate matrix
of a point on this screw axis. The finite twist displacement can be achieved in four steps. First
translate the screw axis to the origin of6o, then rotate the moving coordinate system6 by an
angleθ about this new position of the screw axis. Then translate the screw axis back to its initial
location, and finally translate6 by an amountλ along the screw axis. These operations can be
expressed in terms of homogeneous transformation matrices yielding[

I λn
0 1

] [
I ζ

0 1

] [
T ∗ 0
0 1

] [
I −ζ

0 1

]
=

[
T ξ

0 1

]
, (8)

whereT ∗ is a 3× 3 orthonormal matrix representing the rotation about the screw axis shifted
to the origin. After simplification, equation (8) becomes

$ =
[

T ∗ (I − T ∗)ζ + λn
0 1

]
=

[
T ξ

0 1

]
. (9)

The 4× 4 matrix $ on the left-hand side of equation (9) is the screw matrix in its compact form.
WhenT andξ are given, thenT ∗ = T and

(I − T ∗)ζ + λn = −((1 − cosθ)N2 + sinθN)ζ + λn = ξ. (10)

Now, from equation (7) we know the direction of the screw axis, and the rotation about it. We
also have, from equation (10), the translation along the screw axis asλ = nT ξ . To determine
the location of the screw axis, i.e.,ζ , the relation in equation (10) can not be used directly since
(I − T) is a singular matrix. However, one can show that these equations are consistent and
yield infinitely many solutions forζ . This is expected since the vectorζ describes the screw
axis. In the following we follow a different rout for the solution. One can modify the relation in
equation (10) into

((1 − cosθ)N + sinθ I )m = −N2ξ.

Since the coefficient matrix of the moment vectorm is now nonsingular with the inverse

[(1 − cosθ)N + sinθ I ]−1 = 1

2

[
1

tan(θ/2)
I + tan(θ/2)nnT − N

]

then the momentm of the screw axis, with respect to the origin of6o, is

m = −1

2

[
1

tan(θ/2)
N + I

]
Nξ. (11)
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Furthermore the perpendicular vector from the origin of6o to the screw axis becomes

ζ⊥ = 1

2

[
1

tan(θ/2)
I − N

]
Nξ. (12)

Therefore, the physical properties of a screw can be summarized in a quadruple of the form
(θ, n, λ, ζ⊥).

Note also that the screw matrix $ has a determinant equals unity and an inverse

$−1 =
[

TT (I − TT )ζ − λn
0 1

]
.

It is also not difficult to show that the expression of $ described in6 coordinate system is

$6 = H−1$H =
[

T (I − TT )(ξ − ζ ) + TT λn
0 1

]
.

Successive finite twist displacements can be represented as the product of screw matrices. For
instance, the product $3 = $2$1 suggests that there is a single screw℘3, equivalent to two
corresponding screws℘1 and℘2 which are operated on6 coordinate in this order. Therefore
the physical properties of℘3 can uniquely be determined in terms of those of℘1 and℘2.

4. General Displacement of a Directed Line with a Point on it

We consider two oriented lines,L1 andL2, with the corresonding direction cosine vectorsg1
andg2 respectively, in6o together with respective pointsv1 andv2 on these lines. The position
vectors of the pointsv1 andv2 are respectivelyv1 andv2. As it is mentioned in the introduction,
a transformation which carriesg1 into g2 andv1 into v2 is not unique. Therefore there are∞1

set of screws that can perform the same transformation. We are interested in describing this
set. To obtain analytic expressions for describing all possible screws, the displacement can be
decomposed into two steps: first, transformg1 into g2 andv1 into v2. Second, rotate aboutL2 by
an amountα, (−π < α < π), whereα is the free parameter is this displacement. The first step
can be performed by a homogeneous matrixH12 whose submatricesT12 andξ12 are completely
determined as

T12 = I + (1 − cosθ12)N2
12 + sinθ12N12;

ξ12 = v12 − T12v1 (13)

in which

n12 = G1g2

| G1g2 | and tanθ12 = | G1g2 |
| gT

1 g2 | .

Note thatN12 is the skew symmetric representation of the common perpendicular,n12, of the
vectorsg1 andg2, whileθ12 is the angle betweeng1 andg2 measured, in a right hand rule, about
the common perpendicularn12. The second step can be performed by a screw matrix $2α which
represents a zero translation screw whose respective axis and angle of rotation areL2 andα.
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However, the entire displacement from location 1 to any location determined by the parameter
α, can be described by a single screw matrix $1α. This operation can be represented as

$1α = $2αH12 =
[

T2α (I − T2α)v2
0 1

] [
T12 ξ12
0 1

]

=
[

T1α (I − T1αζ1α + λ1αn1α

0 1

]
, (14)

where

T2α = I + (1 − cosα)G2
2 + sinαG2. (15)

From equation (14) and by making use of equations (7) and (12), the physical properties of the
equivalent screws(θ1α, n1α, λ1α, ζ⊥

1α) are

cosθ1α = 1

2
(1 − tr T1α); N1α = 1

2 sinθ1α

(T1α − TT
1α);

λ1α = nT
1αξ1α; ζ⊥

1α = 1

2

[
1

tan(θ1α/2)
I − N1α

]
N1αξ1α, (16)

where

T1α = T2αT12 and ξ1α = v2 − T1αv1.

Equation (16) gives analytic description of all possible screws associated with the general spatial
displacement of a line with a point on it. For the simplification of this analytic description, the
Sticher’s selection of coordinate system is specially considered in the following section.

5. The Finite Screw Axis Cylindroid

Figure 1 displays the Sticher’s selection of coordinate system in which the two locations (L1
andL2) of the line are brought to specific positions. In this selection letv1 andv2 be located,
respectively, at distancesq andq + h from thex-axis, then the following expressions can be
written

g1 = [ 0 sinβ cosβ ]T , g2 = [ 0 − sinβ cosβ ]T

v1 = [ d q sinβ q cosβ ]T , v2 = [ −d −(q + h) sinβ (q + h) cosβ ]T .

By making use of equation (13), we obtain

T12 =

 1 0 0

0 cos 2β − sin 2β
0 sin 2β cos 2β


 ; ξ12 = [ −2d −h sinβ h cosβ ]T (17)

and from equation (15) we have

T2α =

 cosα − sinα cosβ − sinα sinβ

sinα cosβ cosα cos2 β + sin2 β (cosα − 1) cosβ sinβ

sinα sinβ (cosα − 1) cos sinβ cosα sin2 β + cos2 β


 . (18)
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Figure 1. The Sticher’s coordinate system.

Hence, using equation (16), the physical properties of the equivalent screw are

cosθ1α = −1
2(cos 2β + (1 + cos 2β) cosα − 1)

or

tan
(

θ1α

2

)
= 1

cosβ

√
sin2 β + tan2(α/2);

n1α = sinβ cosβ(cosα + 1)

sinθ1α

[
1 0

tan(α/2)

sinβ

]T

= sinβ√
sin2 β + tan2(α/2)

[
1 0

tan(α/2)

sinβ

]T

;

λ1α = cosβ

sinθ1α

(h cosβ sinα − 2d sinβ(1 + cosα))

= h cosβ tan(α/2) − 2d sinβ√
sin2 β + tan2(α/2)

;
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ζ⊥
1α = −

[
0

(d cosβ sinα + h sinβ)

(1 + sin2 β) − cosα cos2 β
0

]T

= −
[

0
2d cosβ tan(α/2) + h sinβ(1 + tan2(α/2))

2(sin2 β + tan2(α/2))
0

]T

, (19)

wheren1α andζ⊥
1α are respectively the unit direction and the location, along they-axis, of every

possible screw axis. In these terms, the two vectorsn1α andζ⊥
1α describe a ruled surface of the

type known as cylindroid (or conoid). The nodal line of this cylindroid is contained in they-axis.
Indeed, the expression ofn1α in equation (19) shows clearly that all possible screw axes are
perpendicular intersectors of they-axis with the positive slopee in thex–z plane:

e = tan(α/2)

sinβ
. (20)

The expression ofζ⊥
1α in equation (19) suggests that the location of an intersection point along

the nodal line is

−Yα = 2d cosβ tan(α/2) + h sinβ(1 + tan2(α/2))

2(sin2 β + tan2(α/2))
. (21)

The two end positions of the cylindroid along the nodal line can be found by calculating the
derivative of equation (21) with respect to parameterα and equating it to zero. Doing so, the
following two solutions forα are found

tan1,2(α/2) =
−h sinβ cosβ ∓ sinβ

√
h2 cos2 β + 4d2

2d
. (22)

Substituting, tan1,2(α/2), into equation (21) yields

Y1 = −h sinβ

2
− d2 cosβ

sinβ(

√
h2 cos2 β + 4d2 − h cosβ)

,

Y2 = −h sinβ

2
+ d2 cosβ

sinβ(

√
h2 cos2 β + 4d2 + h cosβ)

,

whereY1 andY2 are the two end positions of the cylindroid along they-axis. Hence, the region
of the cylindroid between the two end positions can be described as

Y1 < Yα < Y2

and its mid point is

Ymid = Y1 + Y2

2
= −h(sin2 β + 1)

4 sinβ
.
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From equation (21), for any value ofYα = Y , with Y1 < Y < Y2 we have two solutions for
tan(α/2)

tan1,2(α/2) = −2d cosβ ∓
√

4d2 cos2 β − 4(h sinβ + 2Y )(h sinβ + 2Y sin2 β)

2(h sinβ + 2Y )
. (23)

Note that the expression under the square root is greater than or equal zero forY1 < Y < Y2. It
follows from equation (23) that for any given value ofYα = Y in this interval there are exactly
two screw axes intersect one another. The slopes of these axes, as given in equation (21), are

e1 = tan1(α/2)

sinβ
, e2 = tan2(α/2)

sinβ
.

Now if we letY = Ymid, then from equation (23) we get

e1mid =
2d +

√
4d2 + h2 cos2 β

h cosβ
, e2mid =

2d −
√

4d2 + h2 cos2 β

h cosβ
,

wheree1mid ande2mid are, respectively, the slopes of the two central generators. It can be seen
easily that the multiplication of these slopes yieldse1mide2mid = −1. This implies that the two
intersecting generators at the center point of the cylindroid are mutually perpendicular.

6. The Cylindroid as a 2-System of Screws

In this section we derive a general expression of pitch under which the cylindroid can be rep-
resented as a 2-system of screws. A general screw in the cylindroid can be written in Plucker
coordinate as℘1α = (n1α; m1α + p1αn1α). By making use of equations (2)–(4),℘1α can be
written as

℘1α = (n1α; −N1αζ⊥
1α + p1αn1α) (24)

substitution of the expressions ofn1α andζ⊥
1α from equation (19) into (24), together with the

fact thatN1α is the skew symmetric representation ofn1α, gives

℘ = 1√
sin2 β + tan2(α/2)

×

×







sinβ

0

tan
(

α

2

)

 ;

2d cosβs tan
(

α

2

)
+ h sinβ

(
1 + tan2

(
α

2

))
2(sin2 β + tan2(α/2))

×

×




− tan
(

α

2

)
0

sinβ


 + p1α




sinβ

0

tan
(

α

2

)




 .
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As given in equation (20), the above equation can be expressed in terms of the slope parameters
of the screw axis as

℘1α = 1√
1 + e2





 1

0
e


 ; e2h sin2 β + 2ed cosβ + h

2 sinβ(1 + e2)


 −e

0
1


 + p1α


 1

0
e





 . (25)

For the sake of further simplification, let

k1α = e2h sin2 β + 2ed cosβ + h

2 sinβ(1 + e2)
, (26)

therefore, the screw℘1α takes the simple form

℘1α = 1√
1 + e2





 1

0
0


 + e


 0

0
1


 ;


 −ek1α + p1α

0
k1α + ep1α





 . (27)

Now, in order that the screw in equation (27), to form a 2-system of screws, it must be put into
the form [2]

℘1α = fAα℘A + fBα℘B, (28)

wherefAα andfBα are scalar functions of the free parameterα, while ℘A and℘B are two
screws in Plucker’s representation whose components are functions of known constants. One
can easily see that for the screw in equation (27) to be written in the form of equation (28), it is
necessary that its moment component could be expressed as

 −ek1α + p1α

0
k1α + ep1α


 =


 R1

0
R2


 + e


 R3

0
R4


 , (29)

whereRi , i = 1, 2, 3, 4 are real constants to be determined. Actually, from equation (29) the
following two relations can be written as

p1α = R2 − k1α

e
+ R4, (30)

k1α = 2 sinβ(R2 + e(R4 − R1) − e2R3)

2 sinβ(1 + e2)
. (31)

Comparing the expression ofk1α in equation (31) with that in equation (26), the following
relation can be obtained

R1 = R4 − d cosβ

sinβ
; R2 = h

2 sinβ
; R3 = −h sinβ

2
,

in which R4 remains as an arbitrary constant. By direct substitution ofR2 andk1α (in equa-
tion (26)) into equation (30), a general expression of pitch for the 2-system associated with the
finite screw cylindroid is obtained as

p1α = eh cosβ − 2d

2(1 + e2) tanβ
+ R4. (32)
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Comparing this expression with that in equation (19), we finally have

p1α = λ1α

2 tan(θ1α/2)
+ R4. (33)

The first term of the right-hand side of equation (33) is Parkin’s definition of pitch. Therefore,
Parkin’s pitch, plus an arbitrary real constant, is the only pitch under which the finite screw axis
cylindroid can be represented as a 2-system of screws. In the example section we show that
R4 can take any real value without changing the physical properties of the general screw℘1α.
Therefore, settingR4 = 0 will always be adequate. In fact, Parkin in his work [4] made use of
this property by a uniform additive adjustment to the pitch of every generator belonging to the
finite screw cylindroid.

7. Analytic Description of the Determined 2-System

In this section we show that the determined 2-system can be described as a linear combination
of two special screws. If we consider the expressions ofRi , i = 1, 2, 3, 4 the general screw℘1α

can be written as

℘1α = 1√
1 + e2





 1

0
0


 ;




R4 − d

tanβ
0
h

2 sinβ





 + e√

1 + e2





 0

0
1


 ;




−h sinβ

2
0
R4





 . (34)

Comparing equation (34) with that in equation (28), the screws℘A and℘B are:

℘A =





 1

0
0


 ;




R4 − d

tanβ
0
h

2 sinβ





 and ℘B =





 0

0
1


 ;




−h sinβ

2
0
R4





 .

One can easily see from equation (34) that the two screws℘A and ℘B are special screws
corresponding, respectively, toα = 0 (i.e., e = 0), and (in the limiting case)α = π (i.e.,
e → ∞). Therefore, it is reasonable to call these two special screws, respectively, as℘α=0
and℘α=π screws. The unit direction of℘α=π is nα=π = G1g2/|G1g2| and has a pitch value
pα=π = R4 and intersecting the nodal line (they-axis) atYα=π = −(h sinβ)/2. However,
the unit direction, pitch value and the intersection point along the nodal line of℘α=0 are,
respectively,nα=0 = (g1 + g2)/|g1 + g2|, pα=0 = R4 − (d/ tanβ) andYα=0 = −h/(2 sinβ).
It is now clear that these two special screws are perpendicular to each other and symmetrically
intersecting the nodal line at a distance|Y | = h cos2 β/4 sinβ measured from the mid point,
Ymid = −h(sin2 β+1)/4 sinβ, of the cylindroid. In fact, withR4 = 0, these two special screws,
namely,℘α=0 and℘α=π , correspond, respectively, to Parkin’sT x andT π key generators [4].
Now, we show how the description in equation (34) of the determined 2-system can directly be
established from the unit directions(g1, g2) of the given lines and the position vectors(v1, v2) of
the corresponding points on them. Since the form in equation (34) corresponds to the Sticher’s
selection of coordinate system with thex-axis along the common perpendicular ofg1 andg2,
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then all what is needed to evaluate equation (34) is to determine the values of the constantsd, h

andβ. In fact these constants can be calculated directly as

d = (v1 − v2)
T G1g2

2 | G1g2 | =
[

1

2
0 0

]
(v1 − v2); h = vT

2g2 − vT
1g1

tan 2β = | G1g2 |
| gT

1g2 | . (35)

In what follows we show that a resultant screw of any real combination of two linearly indepen-
dent screws which belong to the finite screw cylindroid is also a screw belonging to the same
cylindroid (see also [2]). Now we may let℘11 and℘12 be any two linearly independent screws
obtained by using equation (34) corresponding to two different free parametersα1 andα2, then
the linear combination of these two screws is℘13 = µ1℘11 + µ2℘12, whereµ1 andµ2 are
arbitrary real constants. In these terms the direction component (not necessarily normalized) of
℘13 has the form

n13 = µ1√
1 + e2

1


 1

0
0


 + e1µ1√

1 + e2
1


 0

0
1


 + µ√

1 + e2
2


 1

0
0


 + e2µ2√

1 + e2
2


 0

0
1




=




µ1√
1 + e2

1

+ µ2√
1 + e2

2
0

e1µ1√
1 + e2

1

+ e2µ2√
1 + e2

2




. (36)

In order thatn13 in equation (36) to have the same form as that in equation (34), one can see
without difficulty that the slope of the axis of the screw℘13 must have the following form

e3 =
µ1e1

√
1 + e2

2 + µ2e2

√
1 + e2

1

µ1

√
1 + e2

2 + µ2

√
1 + e2

1

. (37)

Therefore, for any givenµ1 andµ2 we obtain a unique screw, belonging to the same cylindroid
whose slope is as given in equation (37), and its physical properties(θ13, λ13, n13, ζ

⊥
13), can be

determined directly as demonstrated in the next section.

8. Numerical Examples

In this section we give two numerical examples. In the first example we simply obtain a plot of the
finite screw cylindroid. However, in the second example we show how the physical properties
of a resultant screw (of any real combination of two linearly independent screws belong to
the cylindroid) can directly be determined. We also show that these physical properties are
independent of the value of the constant pitch termR4.

9. Example 1

By making use of equation (19) or equation (34), the finite screw cylindroid (FSC) can be
parameterized as

FSC(α, t) = ζ⊥
1α + tn1α, (38)
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Figure 2. A 3-D, plot of the finite screw cylindroid (d = 8, h = 2 andβ = π/3).

wheret is a real number. Let the linesL1 andL2 and the points on them be given as

g1 =

 0

0.86602
0.5


 , g2 =


 0

−0.86602
0.5


 , v1 =


 8

1.73205
1




and v2 =

 −8

−3.4641
2


 ,

so that from equation (35) we have

d = 8, h = 2 and β = π/3.

Based on these values ofd, h and β together with(π − 0.001) > α > (−π + 0.001) and
6> t > − 6, a plot of equation (38) is shown in Figure 2.

10. Example 2

In equation (37), if we lete1 = 1 (i.e.,α1 = 1.42744 rad),e2 = 4 (i.e.;α2 = 2.57952 rad),
µ1 = 5 andµ2 = 6.5, thene3 = 1.92516 (i.e;α3 = 2.06105 rad), and hence from equation (34),
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with d, h andβ being the same as in example 1, we obtain

℘13 = 0.4605





 1

0
1.92516


 ;


 R4 − 6.28604

0
1.15470+ 1.92516R4





 ,

from which the physical properties of℘13 can directly be obtained as

n13 = 0.46095[1 0 1.92516]T ,

ζ⊥
13 = N13mo

13 = −[ 0 2.81675 0]T ,

λ13 = nT
13(v2 − v1) = −6.48792,

p13 = nT
13m

o
13 = (0.46095)2(4.70624R4 − 4.06305),

since

p13 = λ13

2 tan(θ13/2)
+ R4,

then we have

θ13 = 2.62138 rad.

This result shows clearly that the constantR4 dose not enter into the picture of the physical
properties of℘13. Note also that the same results can be obtained by using equation (19) with
α = α3 = 2.06105 rad.

11. Conclusions

In this paper, using only the ordinary linear algebra, a simplified form of the expression for a
screw matrix, and the properties of the corresponding physical screw, are introduced. Using this
transformation matrix, analytic description of the set of all available finite twists associated with
the displacement of a line with a point from one spatial position to another is obtained. Based
on the Sticher’s selection of coordinate system, the finite screw cylindroid and many of its basic
properties are re-derived. This selection makes it possible to derive a general expression for the
pitches of the finite screw cylindroid to give an answer to the question as to whether there exist
different appropriate measures of pitch other than Parkin’s under which all the available finite
twists from a 2-system. It is found that Parkin’s pitch plus an arbitrary constant term is the only
suitable measure of pitch. Further this constant term may be taken as zero without changing the
physical properties of the twists in the cylindroid, or violating the existence of the 2-system.
With this very definite result one can state that the expression of the pitch given by Parkin is
not only sufficient for the finite screw cylindroid to be described as a 2-system but it is also a
necessary condition. Furthermore, it is found that the determined 2-system can be considered
as a linear combination of two special screws which are called in this paper theα = 0 and the
α = π screws. These two special screws, with the constant pitch term taken as zero, correspond,
respectively, to Parkin’sX andπ key screws.

In conclusion, this paper has proved that Parkin’s pitch can be considered as a necessary and
sufficient measure for the pitches of the finite screw cylindroid under which the cylindroid form
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a 2-system of screws. Moreover, in the paper a compact analytical description of the proposed
2-system which resides on the finite screw cylindroid is introduced.
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