On Lipschitz Functions of subnormal Operators

*Mahmoud M Kutkut, **Mahmoud I. Al-Masri *Dept. of math, Faculty of science, University of Jordan, Amman-Jordan **Dept. of math, Faculty of science, Najah University, Nablus-Palestine

Received on: 11/12/1996 Accepted on: 27/11/1996

النامن هر دات الهذار المزارات الطبيعية الجزارية

البنتا في هذا البحث النظرية التالبة: إذا كان \$حوش أمن النوع الطبيعي الجزئي يصل على فضاء هلبرث H وكـانت f النتر أما تحقق شرط ليبشتر على جواز مفتوح يحتوي المجموعة الطبيعة الموثر \$ فإن: شرط ليبشتر على جواز مفتوح يحتوي المجموعة الطبيعة الموثر \$ فإن: [S)X−Xf(S)} حدد المقتوح يحتوي المجموعة الطبيعة الموثر \$ k||SX−XS||

> حوث x>0 ، ولكل مؤثر X يعمل على H حيث را ا هو مقياس هلبرت-شمودت. كذلك فإن البحث يحتري على بعض النتائج والنظريات ذلت الملاقة بالنظرية الرئيسية. ABSTRACT

We prove the following:

Theorem: Let S be a subnormal operator on an infinite dimensional separable complex Hilbert space H. Let f be analytic and Lipschitz on a neighborhood E of the spectrum $\sigma(S)$ of S. Then $\|f(S)X - Xf(S)\|_2 \le k \|SX - XS\|_2$

for some k > 0 and for every $X \in B(H)$, the algebra of all bounded linear operators on H, where $\|\cdot\|_2$ is the Hilbert-Schmidt norm. A.M.S. Subject classification number 1990: 47 B 20, 47 A 25

Key Words: Operator, Subnormal, Hilbert space, Hilbert-Schmidt norm, Lipschitz Function, Spectrum and Analytic Function.

INTRODUCTION

Let H denote an infinite dimensional complex Hilbert space, B(H) denote the algebra of all bounded linear operators on H. For a compact subset E of the complex plane C, let R(E) denote the algebra of all bounded analytic functions defined on E; and L(E) the set of all functions which satisfies Lipschitz condition on E, i,e., $f \in L(E)$ if and only if there is a real number k > 0 such that:

$$|f(z)-f(t)\leq k|z-t|$$
,

for all $z,t \in E$.

In [1], it is proved that if A is a self adjoint operator and $f \in L(\sigma(A))$ then

$$\|\mathbf{f}(\mathbf{A})\mathbf{X} - \mathbf{X}\mathbf{f}(\mathbf{A})\|_{2} \leq \mathbf{k}\|\mathbf{A}\mathbf{X} - \mathbf{X}\mathbf{A}\|_{2}$$

for some k>0, and every $X\in C_2$, the class of Hilbert-Schmidt operators, where $\sigma(A)$ is the spectrum of A and $\|\cdot\|_2$ is the Hilbert-Schmidt norm, defined by

$$\|T\|_{2} = \left(\sum_{n=1}^{\infty} \|Te_{n}\|^{2}\right)^{\frac{1}{2}},$$

where (e_n) is an orthonormal basis of H, and T is any operator on H. In [6], this result has been generalized to normal operators as follows;

Theorem: If N is a normal operator on H, and $f \in L(\sigma(N))$ then,

$$||f(N)X - Xf(N)||_2 \le k||NX - XN||_2$$
,

for some k > 0, and every $X \in B(H)$, where an operator N is said to be normal if $NN^* = N^*N$, (The operator N^* is the adjoint of N).

For the proof see [6].

In this article we generalize the above theorem to subnormal operators on H. An operator S on H is called subnormal if there is a normal extension N on a Hilbert space $K \supset H$. If N is a minimal normal extension of S, i.e., if N has no reducing subspace L of K which contains H properly; then N has the following representation

$$N = \begin{bmatrix} S & A \\ 0 & T^* \end{bmatrix}, \tag{1}$$

on $K = H \oplus H^{\perp}$, where A is some operator from H^{\perp} to H. In this case T is called the dual of S, (and T^* is the adjoint of T).

A subset E of the complex plane is called a spectral set of an operator $S \in B(H)$ if and only if, the spectrum $\sigma(S)$ of S is a subset of E and $||f(S)|| \le ||f||_{\infty} = \sup\{|f(z)|: z \in E\}$,

for every rational function f with poles off E, or equivalently $f \in R(E)$. Conway [4] proved that if S is a subnormal operator with dual T and E is a spectral set of S then,

$$f(N) = \begin{bmatrix} f(S) & A' \\ 0 & f(T') \end{bmatrix}, \tag{2}$$

for any $f \in R(E)$, where A' is some operator from H^{\perp} to H. The following theorem is the main result of this article.

Theorem 1: Le S be a subnormal operator on H. If $f \in R(E) \cap L(E)$, then

$$\|f(S)X - Xf(S)\|_{2} \le k\|SX - XS\|_{2}$$
 (3)

for some k>0, and every $X \in B(H)$.

Proof: Since S is a subnormal operator on H, therefore there is a sequence of normal operators (N_i) such that (N_i) converges to S, in the strong operator topology, denoted by sot; (see Conway [3] pages 123, 124, 125).

We claim that if $f \in R(E)$, then $f(N_i)$ converges to f(S) (sot). Indeed; by the construction of (N_i) ,

$$N_i = v_i^{-1} N v_i, I = 1, 2, 3, ...,$$
 (4)

where N is a normal extension of S to a Hilbert space $K \supset H$, (See the proof of Theorem 1.17, page 125 in Conway [3]), and

 $v_i: H \rightarrow K$

is an isomorphism such that vi=identity on Hi, where

$$H_i \!\!=\!\! V\{e_1, ..., \!\!e_i \ Se_1, ... Se_i\} \!\!=\!\! Span\{e_i, ..., \!\!e_i, \!\!Se_1, ..., \!\!Se_i\}.$$

This means that N_i and N are similar (where two operators S,T are said to be similar if there is an invertible operator $X:S=X^{-1}TX$). Thus, by problem 75 in Halmos [5], (page 42, which says that two similar operators has the same spectrum).

$$\sigma(N_i) = \sigma(N), i=1,2,3,...$$

Since N is a normal extension of S, it follows that $\sigma(N) \subset \sigma(S)$. Therefore

$$\sigma(N_i)\subset E, i=1,2,3,...$$

Thus $f(N_i)$ is well-defined for every f in R(E) and every i=1,2,3,...

Now, since $f \in R(E)$, there is a sequence of polynomials (P_n) such that (P_n) converges to f, uniformly on compact subsets of E. This implies, using Conway [2] (page 206, by Riesz functional calculus theorem) that $P_n(N_i)$ converges to $f(N_i)$, in the uniform operator topology (denoted by (uot).), i.e., given $f(N_i)$, we have:

$$\|P_n(N_i) - f(N_i)\| \to 0, \ n \to \infty, i = 1,2,3,...$$

 $\|P_n(S_i) - f(S)\| \to 0, \ n \to \infty.$

Thus, for every $\in > 0$, and nonzero $e \in H$, there is J such that:

$$||P_{n}(N_{i}) - f(N_{i})|| < \frac{\epsilon}{3||e||}, n > J, i = 1,2,3,...$$

$$||P_{n}(S_{i}) - f(S)|| < \frac{\epsilon}{3||e||}, n > J.$$

For arbitrary $e \in H$, and $n_0 = J+1$, this implies that:

$$\begin{split} \| (f(N_{i}) - f(S)) e \| &\leq \| (f(N_{i}) - P_{n_{0}}(N_{i})) e \| + \| (P_{n_{0}}(N_{i}) - P_{n_{0}}(S)) e \| \\ &+ \| (P_{n_{0}}(S) - f(S)) e \| \\ &\leq 2 \epsilon / 3 + \| (P_{n_{0}}(N_{i}) - P_{n_{0}}(S)) e \|. \end{split}$$
(5)

Since P_{n_0} is a polynomial and since the strong convergence is sequentially continuous (see Halmos [5], problem, 113 page 62), one concludes that

$$P_{n_0}(N_i) \to P_{n_0}(S)$$
, as $i \to \infty$, (sot),

and thus to every $\in >0$, \exists J such that:

$$\|(P_{n_0}(N_i) - P_{n_0}(S))\| \le \le /3, \text{ for } i > J.$$
 (6)

Combining (5) and (6) gives the convergence of $f(N_i)$ to f(S), (sot), for every $f \in R(E)$, (notice that this result is trivial for e=0).

Now, applying problem 112 page 62 in Halmos [5], (which inserts that product is left and right continuous with one argument fixed, $A\rightarrow AB$ or $A\rightarrow BA$) one obtains the following:

$$N_iX \rightarrow SX$$
, sot; $XN_i \rightarrow XS$, sot, $i \rightarrow \infty$,

$$f(N_i)X \rightarrow f(S)X$$
, sot; $Xf(N_i) \rightarrow Xf(S)$, sot, $i \rightarrow \infty$,

for an arbitrary X in B(H). This implies that:

$$N_i X - X N_i \rightarrow S X - X S$$
, sot, $i \rightarrow \infty$, (7)

$$f(N_i)X-Xf(N_i) \rightarrow f(S)X-Xf(S)$$
, sot, $i \rightarrow \infty$, (8)

In [6], we have, for every $\in >0$, $N=D_{\epsilon}+K_{\epsilon}$ and $f(N)=f(D_{\epsilon})+C_{\epsilon}$, where D_{ϵ} is a diagonal operator, $\|K_{\epsilon}\|_{2} < \epsilon, \|C_{\epsilon}\|_{2} \to 0$, as $\epsilon \to 0$.

If $D_{\epsilon}e_n = \lambda_n e_n$, and $X = (x_{ij})$, is the corresponding matrix of X, relative to the orthonormal basis (e_n) of H, then the (ij) entry for $D_{\epsilon}X - XD_{\epsilon}$ is $(\lambda_i - \lambda_j)x_{ij}$. Also the (ij) entry for $f(D_{\epsilon})X - Xf(D_{\epsilon})$ is $\left(f(\lambda_i) - f(\lambda_j)\right)x_{ij}$.

Hence,

$$\left\| (NX - XN)e_n \right\| - \left\| (D_{\epsilon}X - XD_{\epsilon})e_n \right\| \le \left\| (K_{\epsilon}X - XK_{\epsilon})e_n \right\|$$

$$\le 2 \left\| K_{\epsilon} \right\|_2 \|X\|,$$

and

$$\| (f(N)X - Xf(N)) e_n \| - \| (f(D_{\epsilon})X - Xf(D_{\epsilon})) e_n \| \le \| (C_{\epsilon}X - XC_{\epsilon}) e_n \|$$

$$\le 2 \| C_{\epsilon} \|_2 \| X \|.$$

Moreover,

$$\begin{split} \left\| \left(f(D_{\epsilon}) X - X f(D_{\epsilon}) \right) e_{n} \right\|^{2} &= \sum_{i=1}^{\infty} \left| f(\lambda_{i}) - f(\lambda_{n}) \right|^{2} \left| x_{in} \right|^{2} \\ &\leq k^{2} \sum_{i=1}^{\infty} \left| \lambda_{i} - \lambda_{n} \right|^{2} \left| x_{in} \right|^{2} \leq k^{2} \left\| (D_{\epsilon} X - X D_{\epsilon}) e_{n} \right\|^{2}. \end{split}$$

Letting $\in \rightarrow 0$, we obtain:

$$\|(f(N)X - Xf(N))e_n\| \le k\|(NX - XN)e_n\|,$$
 (9)

for every n.

Having obtained these results we have,

$$\left\| (SX - XS)e_n \right\| - \left\| (N_iX - XN_i)e_n \right\| \le \left\| \left[(SX - XS) - \left(N_iX - XN_i \right) \right]e_n \right\| \to 0$$
as $i \to \infty$.

Since $f(N_i)$ converges to f(S) in (sot) one has:

$$\begin{aligned} \left\| (f(S)X - Xf(S))e_{n} \right\| - \left\| (f(N_{i})X - Xf(N_{i}))e_{n} \right\| \\ & \leq \left\| \left[(f(S)X - Xf(S)) - (f(N_{i})X - Xf(N_{i})) \right] \right\|_{n} + 0 \end{aligned}$$

as $i \rightarrow \infty$.

Combining these inequalities, for arbitrary $\in >0$, e in H and sufficiently large i and using (9), one obtains:

$$\begin{split} \big\| (f(S)X - Xf(S))e_n \big\| &\leq \big\| (f(N_i)X - Xf(N_i))e_n \big\| + \epsilon/2 \\ &\leq k \big\| (N_iX - XN_i)e_n \big\| + \epsilon/2 \\ &< k \bigg\| (SX - XS)e_n \big\| + \frac{\epsilon}{2k} \bigg\} + \epsilon/2 \\ &< k \big\| (SX - XS)e_n \big\| + \epsilon. \end{split}$$

Thus (since \in is arbitrary),

$$\|(f(S)X - Xf(S))e_n\| \le \|(SX - XS)e_n\|,$$
 (10)

Therefore,

$$\begin{aligned} \left\| f(S)X - Xf(S) \right\|_{2}^{2} &= \sum_{n=1}^{\infty} \left\| (f(S)X - Xf(S))e_{n} \right\|^{2} \\ &\leq \sum_{n=1}^{\infty} k^{2} \left\| (SX - XS)e_{n} \right\|^{2} \\ &\leq k^{2} \left\| SX - XS \right\|_{2}^{2} \end{aligned}$$

which ends the proof.

Remark: The analyticity of the Lipschitz function in Theorem 1 is essential, this is emphasized by the following.

Example: Let S be the unilateral shift on H, defined by $Se_n = e_{n+1}$, n=1,2,... and U be the bilateral shift on H, defined by $Ue_n = e_{n+1}$, n=..., -1, 0, 1, 2,... and let $f(z) = \overline{z}$. This function is Lipschitz with k=1, but not analytic on a neighborhood of $\sigma(S)$, which is the closed unit disc \overline{D} . It is known that S is subnormal (but not normal), with adjoint $S^* = f(S) = f(U)|_{H} = U^*|_{H}$, where U is the bilateral shift; a normal extension of S to $H \oplus H^{\perp}$, see [3]. If we assume that Theorem 1 is true

for non analytic Lipschitz function, and we let X=S, we would obtain that:

$$\|S^*S - SS^*\| \le \|SS - SS\| = 0,$$

which means that S is normal, which is a contradiction.

Corollary: Let S_1 , S_2 be subnormal operators in B(H) and let $f \in R(E) \cap L(E)$, $E \supset \sigma(S_1) \cup \sigma(S_2)$ then:

$$\|f(S_1)X - Xf(S_2)\|_{1} \le k\|S_1X - XS_2\|_{2}$$
,

for some k>0, and every X in B(H). If X=I, then

$$\|\mathbf{f}(\mathbf{S}_1) - \mathbf{f}(\mathbf{S}_2)\|_2 \le \mathbf{k} \|\mathbf{S}_1 - \mathbf{S}_2\|_2$$

Proof: Define S and Y on H⊕H by:

$$S = \begin{bmatrix} S_1 & 0 \\ 0 & S_2 \end{bmatrix}, Y = \begin{bmatrix} 0 & X \\ 0 & 0 \end{bmatrix}.$$

The operator S is subnormal and for any $f \in R(E)$,

$$\mathbf{f}(\mathbf{s}) = \begin{bmatrix} \mathbf{f}(\mathbf{S}_1) & \mathbf{0} \\ \mathbf{0} & \mathbf{f}(\mathbf{S}_2) \end{bmatrix} \quad ,$$

Therefore, we have:

$$\|SY - YS\|_2 = \|S_1X - XS_2\|_2$$

and

$$||f(S)Y - Yf(S)||_2 = ||f(S_1)X - Xf(S_2)||_2$$

Applying Theorem 1 to S, for $f \in R(E) \cap L(E)$, we obtain the conclusion, and the special case follows by taking X=I.

Theorem2: If S is a subnormal operator on H, whose dual is T on H^{\perp} and if f is in R(E) \cap L(E), where σ (S) \subset E, then,

$$\left\|f(S)X-Xf(T^*)\right\|_2 \leq k \left\|SX-XT^*\right\|_2,$$

for some k>0, and every $X \in B(H^{\perp},H)$; the algebra of bounded linear operators from H^{\perp} to H. In particular, if H^{\perp} is a copy of H, (i.e., $H^{\perp}\cong H$), then:

$$||f(S) - f(T^*)||_2 \le k ||S - T^*||_2$$

Proof: for $X \in B(H^{\perp}, H)$, define $Y \in B(K)$, $K = H \oplus H^{\perp}$ by,

$$\mathbf{Y} = \begin{bmatrix} 0 & \mathbf{X} \\ 0 & 0 \end{bmatrix}.$$

Using the representations (1) one can show that:

$$\mathbf{N}\mathbf{Y} - \mathbf{Y}\mathbf{N} = \begin{bmatrix} \mathbf{S} & \mathbf{A} \\ \mathbf{0} & \mathbf{T}^* \end{bmatrix} \begin{bmatrix} \mathbf{0} & \mathbf{X} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} - \begin{bmatrix} \mathbf{0} & \mathbf{X} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{S} & \mathbf{A} \\ \mathbf{0} & \mathbf{T}^* \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{S}\mathbf{X} - \mathbf{X}\mathbf{T}^* \\ \mathbf{0} & \mathbf{0} \end{bmatrix}.$$

Similarly for $f \in R(E) \cap L(E)$, and using (2), one obtains:

$$f(N)Y - Yf(N) = \begin{bmatrix} 0 & f(S)X - Xf(T^*) \\ 0 & 0 \end{bmatrix}.$$

For an orthonormal basis (e_n) for H^{\perp} , we obtain:

$$(NY - YN) \begin{bmatrix} 0 \\ e_n \end{bmatrix} = \begin{bmatrix} (SX - XT^*)e_n \\ 0 \end{bmatrix},$$
 (11)

and

$$(f(N)Y - Yf(N)) \begin{bmatrix} 0 \\ e_n \end{bmatrix} = \begin{bmatrix} (f(S)X - Xf(T^*))e_n \\ 0 \end{bmatrix}.$$
 (12)

Combining (11), (12) and applying (9), one obtains:

$$\begin{split} \left\| \left(f(S)X - Xf(T^*) \right) e_n \right\| &= \left\| (f(N)Y - Yf(N)) e_n \right\| \\ &\leq k \left\| (NY - YN) e_n \right\| \\ &\leq k \left\| (SX - XT^*) e_n \right\|, \end{split}$$

for every n, and thus:

$$\begin{split} \left\| f(S)X - Xf(T^{\bullet}) \right\|_{2}^{2} &= \sum_{n=1}^{\infty} \left\| (f(S)X - Xf(T^{\bullet})) e_{n} \right\|^{2} \\ &\leq k^{2} \sum_{n=1}^{\infty} \left\| (SX - XT^{\bullet}) e_{n} \right\|^{2} \\ &\leq k^{2} \left\| (SX - XT^{\bullet}) e_{n} \right\|_{2}^{2} \; . \end{split}$$

This implies that:

$$\left\|f(S)X - Xf(T^{\bullet})\right\|_{2} \leq k \left\|SX - XT^{\bullet}\right\|_{2},$$

for the other conclusion let X=I on $H^{\perp}=H$, and this proves the theorem.

Two operators T, S on H are said to be unitarily equivalent if there is a unitary operator u on H such that:

$$T=uSu^*$$
.

For unitarily equivalent operators we prove the following:

Theorem3: Let $S \in B(H)$, $f \in R(E) \cap L(E)$, where $\sigma(S) \subset E$, such that

$$||f(S)X - Xf(S)||_{2} \le k||SX - XS||_{2}$$
 (13)

for some k>0, and any $X \in B(H)$. If $T \in B(H)$ is unitarily equivalent to S, then

$$||f(T)Y - Yf(T)||_2 \le |k||TY - YT||_2$$
,

for some k>0, and any $Y \in B(H)$.

Proof: Let u be a unitary operator on H, such that $T=uSu^*$. Since $f \in R(E)$, it is not difficult to show that $f(T)=uf(S)u^*$. If (e_n) is an orthonormal basis for H, it is known that (u^*e_n) is an orthonormal basis for H too, for any unitary operator u. Thus one has

$$\| (f(T)Y - Yf(T))e_{n} \| = \| (uf(S)u^{*}Y - Yuf(S)u^{*})e_{n} \|$$

$$= \| (uf(S)u^{*}Yuu^{*} - uu^{*}Yuf(S)u^{*})e_{n} \|$$

$$= \| (uf(S)X - Xf(S))u^{*}e_{n} \|$$

$$= \| (f(S)X - Xf(S))e_{n} \|,$$
(14)

where

$$X=u^{*}Yu, Y \in B(H), (g_{n})=(u^{*}e_{n}).$$

Using (14), we have:

$$\|f(T)Y - Yf(T)\|_{2}^{2} = \sum_{n=1}^{\infty} \|(f(T)Y - Yf(T))e_{n}\|^{2}$$

$$= \sum_{n=1}^{\infty} \|(f(S)X - Xf(S))g_{n}\|^{2}$$

$$= \|f(S)X - Xf(S)\|_{2}^{2}.$$

By the assumption of the theorem one concludes that

$$\begin{split} \left\| f(T)Y - Yf(T) \right\|_{2}^{2} & \leq k^{2} \left\| SX - XS \right\|_{2}^{2} \\ & \leq k^{2} \sum_{n=1}^{\infty} \left\| (SX - XS) \mathbf{g}_{n} \right\|^{2} \\ & \leq k^{2} \sum_{n=1}^{\infty} \left\| \mathbf{u}(SX - XS) \mathbf{u}^{*} \mathbf{e}_{n} \right\|^{2} \\ & \leq k^{2} \sum_{n=1}^{\infty} \left\| (\mathbf{u}S\mathbf{u}^{*} \mathbf{u}X\mathbf{u}^{*} - \mathbf{u}X\mathbf{u}^{*} \mathbf{u}S\mathbf{u}^{*}) \mathbf{e}_{n} \right\|^{2} \\ & \leq k^{2} \sum_{n=1}^{\infty} \left\| (TY - YT) \mathbf{e}_{n} \right\|^{2} \\ & = k^{2} \left\| (TY - YT) \right\|_{2}^{2}, \end{split}$$

which shows that

$$||f(T)Y - Yf(T)||_{2} \le k ||TY - YT||_{2}$$
.

To end up the proof we should remark that since T is unitarily equivalent to S, they have the same spectrum, so that $\sigma(T) \subset E$ as well. Finally we end this article by the following.

Theorem:4: If S satisfies (13), then every operator in the closure of the unitary orbit u(S) of S in the uniform operator topology (uot) satisfies (13), where

$$u(S)=\{uSu^*: u \text{ is unitary on } H\}.$$

Proof: Since $S \in B(H)$ such that for $f \in R(E) \cap L(E)$, we have

$$\|f(S)X - Xf(S)\|_{2} \le k \|SX - XS\|_{2},$$
 (15)

for some k>0, and every X in B(H). Theorem 3 shows that every operator in u(S) satisfies (13). So that, we assume that (u_n) is a sequence of unitary operators on H, such that $(u_nSu^*_n)$ converges to A in (uot), and we want to show that A satisfies (13). Indeed, from uniform convergence: $\|u_nSu_n^* - A\| \to 0$, we have $(u_nf(S)u^*_n)$ converges to f(A) in (uot), for every $f \in R(E)$. By the upper semi continuity of the spectrum, one has

$$\sigma(f(A)) \subset \sigma(u_n f(S)u_n^*) \subset E$$
.

Since uniform operator topology convergence of (T_i) to A implies uniform operator topology convergence of $f(T_i)$ to f(A), for $f \in R(E)$, one concludes for unitary (u_n) that

$$(u_n f(S)u_n^*) = f(u_n Su_n^*),$$

converges to f(A) in (uot). Now we have

$$\begin{split} &\|(f(A)X - Xf(A))e\| \leq \|(f(A)X - Xf(A)) - ((u_n f(S)u_n^*)X - X(u_n f(S)u_n^*))e\| \\ &+ \|((u_n f(S)u_n^*)X - X(u_n f(S)u_n^*))e\| \\ &\leq \epsilon/2 + \|u_n (f(S)Y_n - Y_n f(S)u_n^*)e\| \\ &\leq \epsilon/2 + \|(f(S)Y_n - Y_n f(S))g\| \\ &\leq \epsilon/2 + k\|(SY_n - Y_n S)g\| \\ &\leq \epsilon/2 + k\|(u_n Su_n^*X - Xu_n Su_n^*)e\| \\ &\leq \epsilon/2 + k\|(u_n Su_n^*X - Xu_n Su_n^*)e - (AX - XA)e\| \\ &+ k\|(AX - XA)e\| \\ &\leq \epsilon/2 + k\|(AX - XA)e\| . \end{split}$$

Since \in is arbitrary, we have

$$||(f(A)X - Xf(A))e|| \le k||(AX - XA)e||$$
.

Now, for an orthonormal basis (e_n) for H,

$$\|f(A)X - Xf(A)\|_{2}^{2} = \sum_{n=1}^{\infty} \|(f(A)X - Xf(A))e_{n}\|^{2}$$

$$\leq k^{2} \sum_{n=1}^{\infty} \|(AX - XA)e_{n}\|^{2}$$

$$\leq k^{2} \|AX - XA\|_{2}^{2},$$

and thus A satisfies (13) for every A in the uniform closure of u(S).

Acknowledgements

I would like to thank to referees for their useful suggestions.

REFERENCES

- 1) Amrein, W.O. Pearson D.B., Commutators of Hilbert-Schmidt type and scattering cross section. Ann. Inst. Poincare sect. A(N.S)30,1979 (89-107).
- Conway J.B., A first course in functional analysis. Springer verlag N.Y.1985.
- Conway J.B., Subnormal operators. Pitman book limited, London, 1981.
- 4) Conway J.B., The dual of subnormal operators. J. operator theory, 5, 1981 (195-21 1).
- 5) Halmos P.R., Hibert space problem book. Springer verlag, Berlin, second ed. 1982.
- 6) Kittaneh F, on Lipschitz functions of normal operators, proc. Amer. Math. Soc. V. 94, No. 3, 1985 (416-418).
- 7) Saito Teishiro, Dilation of operators and Spectral sets. Lectures on operator algebra, L.N. in Math. Springer verlag N.Y, 1971.