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INTRODUCTION

Let H denote an infinite dimensional complex Hilbert space, B(H)

denote the algebra of all bounded linear operators on H. For a compact

subset E of the complex plane C, let R(E) denote the algebra of all

bounded analytic functions defined on E; and L(E) the set of all

functions which satisfies Lipschitz condition on E, i,e., f EL(E) if and

only if there is a real number k > 0 such that:

if(z) -f(0�1ciz-ti,

for all z,t EE.

In [1], it is proved that if A is a self adjoint operator and fEL(o-(A))

then

kf(A)X — Xf(A)II2 MAX XAk2

for some k>0, and every XEC2, the class of Hilbert-Schmidt operators,

where a(A) is the spectrum of A and 11112 is the Hilbert-Schmidt norm,

defined by

0 -1112 	 ,
Go	 2)i
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where (en ) is an orthonormal basis of H, and T is any operator on H.

In [6], this result has been generalized to normal operators as follows;

Theorem: If N is a normal operator on H, and f E L(a(N) ) then,

Ilf(N)X— Xf(N)II, kIINX — XNII, ,

for some k > 0, and every XEB(H), where an operator N is said to be

normal if NN* N*N, (The operator N * is the adjoint of N).

For the proof see [6].

In this article we generalize the above theorem to subnormal operators

on H. An operator S on H is called subnormal if there is a normal

extension N on a Hilbert space K H. If N is a minimal normal

extension of S, i.e., if N has no reducing subspace L of K which

contains H properly; then N has the following representation

N 
[ S A
0 T * '

(1)

on K H HI, where A is some operator from HI to H. In this case T

is called the dual of S, (and T * is the adjoint of T).
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A subset E of the complex plane is called a spectral set of an operator

S e B(H ) if and only if, the spectrum a(S) of S is a subset of E and

s	 = sup{lf(z)1:z c E} ,

for every rational function f with poles off E, or equivalently f eR(E).

Conway [4] proved that if S is a subnormal operator with dual T and E

is a spectral set of S then,

rf(S) A' 1
f(N) = 0 f(ni' (2)

for any f E R(E), where A' is some operator from Hi to H.

The following theorem is the main result of this article.

Theorem 1: Le S be a subnormal operator on H. If fER(E)nL(E),

then

Ilf(S)X — Xf(S)I12 kl1SX — XSIL
	

(3)

for some k>0, and every XEB(H).
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Proof: Since S is a subnormal operator on II, therefore there is a

sequence of normal operators (Ni) such that (Ni) converges to S, in the

strong operator topology, denoted by sot; (see Conway [3] pages 123,

124, 125).

We claim that if fER(E), then f(N i) converges to f(S) (sot). Indeed; by

the construction of (Ni),

I=1,2,3,...,	 (4)

where N is a normal extension of S to a Hilbert space K H, (See the

proof of Theorem 1.17, page 125 in Conway [3]), and

vi: H-+K,

is an isomorphism such that vi=identity on H i, where

This means that Ni and N are similar (where two operators S,T are

said to be similar if there is an invertible operator X:S=X 1TX). Thus,

by problem 75 in Halmos [5], (page 42, which says that two similar

operators has the same spectrum).

a(Ni) = a(N),

Since N is a normal extension of S, it follows that a(N)ca(S).

Therefore
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i=1,2,3,...

Thus f(Ni) is well-defined for every fin R(E) and every i=1,2,3,...

Now, since fE R(E), there is a sequence of polynomials (Pn) such that

(Ps) converges to f, uniformly on compact subsets of E. This implies,

using Conway [2] (page 206, by Riesz functional calculus theorem)

that Ps(N i) converges to f(N i), in the uniform operator topology

(denoted by (uot).), i.e., given i, we have:

OPn (Ni) — f(Ni) -+0, n —> oo, = 1,2,3, ...

P. (S ) f(S)11 —* 0, n

Thus, for every E > 0, and nonzero e E H, there is J such that:

P.(Ni) — f(N <
31

, n > J, i = 1,2,3,...
0e

11 13. (S ) 
f(S) < 	 n> j.

For arbitrary eE H, and no=J+1, this implies that:

Kf(N ) — f(S))ell Kf(N ) — 13.0 (N )0 + 1(13„ „ (N i ) — 	 (S)>0

+ (p,„ (s) f(S)) 	 (5)

< 2 E /3+ 	 (N i ) —13 ,1/4 (S)Y.

284



Mu'tah Journal For Research and Studies Vol. 11, No.6, 1996

Since Pn 0 is a polynomial and since the strong convergence is

sequentially continuous (see Halmos [5], problem, 113 page 62), one

concludes that

Pno(Ni) ---> Pno(S), as i 	 co, (sot),

and thus to every E >0, 3 J such that:

Kiln° (N; ) Pm° (S) <E/3, fori >J. 	 (6) 

Combining (5) and (6) gives the convergence of f(Ni) to f(S), (sot), for

every fER(E), (notice that this result is trivial for e=0).

Now, applying problem 112 page 62 in Halmos [5], (which inserts that

product is left and right continuous with one argument fixed, A-4AB

or A-5BA) one obtains the following:

NiX--->SX, sot; XN, -->XS, sot, i-->G0 ,

f(N i)X-4f(S)X, sot; Xf(N i)—>Xf(S), sot, i-->co

for an arbitrary X in B(H). This implies that:

NiX-XN, -.SX-XS, sot, i—>00 , 	 (7)

f(Ni)X-Xf(Ni) -->f(S)X-Xf(S), sot, i-4 0o 	 (8)
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In [6], we have, for every E>0, N=D E -FKE and fti•D=f0V+CE, where

DE is a diagonal operator, OKE 11 2 <E,1C e ll2 —) 0, as E-4 0.

If DEen=knen, and X= (x ii), is the corresponding matrix of X, relative to
the orthonormal basis (en) of H, then the (ij) entry for D EX-XD E is (Xi-

-Xi)x ij . Also the (ij) entry for f(D E )X-Xf(DE ) is (f(X. i ) — f(X i xii

Hence,

111(NX— XN)e n 11-11(D.X—XD E )e„111 � 11(( EX—XICE)e n ll
211K E 11 2 11X11,

and

Kf(N)X — Xf(N))e„ II —1l(f(DE)X — Xf(D .))e n � 1KC .X XC Oe n 11
� 211C .112 I1X11-

Moreover,

11(f(D )X — Xf(D )r.11 2 t Ink) — f(an)1 2 1xinr 2

—X.I 2 1x„,1 2 � 1c 2 11(D EX—XD.)e n 11 2 .
1= 1

Letting E -+0, we obtain:
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Kf(N)X — Xf(N))e,J 14(NX — XN)e t,11,	 (9)

for every n.

Having obtained these results we have,

il(SX — XS)e„i1-11(N,X XN,)e„1 �. VSX — XS)—(N,X —

as i—>oo.

Since f(14,) converges to f(S) in (sot) one has:

l(f(S)X — Xf(S))e r, —11(nN i )X — Xf(N i ))en ill
af(S)X - Xf(S))- (f(N)X - Xf(N,)4,1 —> o

as i—>oo.

Combining these inequalities, for arbitrary E >0, e in H and

sufficiently large i and using (9), one obtains:

11(f(S)X — Xf(S))e,4 5 (f(1•1 1 )X — Xf(N i ));11- E /2

kli(N X - XN,)e„11+ € /2

< 41(SX - XS)e„11+ Fi -cc }+ E /2

< kil(SX — XS)e„11 -1- E •

Thus (since E is arbitrary),

0
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1(f(S)X — Xf(S))e n ll 11(SX — XS)e.11
	

(10)

Therefore,

f(S)X — Xf(S)11 2 = E11(f(S)X Xf(S))ed

2

k2 li(SX XS)en ll
n=1

k 2 11SX — XSII22

which ends the proof.

Remark: The analyticity of the Lipschitz function in Theorem 1 is

essential, this is emphasized by the following.

Example: Let S be the unilateral shift on H, defined by Sen=e„,,,

n=l,2,... and U be the bilateral shift on H, defined by Uen=e„, i , n=...,

-1, 0, 1, 2,... and let f(z) = z. This function is Lipschitz with k=1, but

not analytic on a neighborhood of a(S), which is the closed unit

disc D. It is known that S is subnormal (but not normal), with adjoint

S s = f(S)=RU)1H=CIH, where U is the bilateral shift; a normal

extension of S to HEDHI, see [31. If we assume that Theorem 1 is true
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for non analytic Lipschitz function, and we let X=S, we would obtain

that:

OS'S - SS'lI � MSS - SSI1 = 0,

which means that S is normal, which is a contradiction.

Corollary: Let S1, 52 be subnormal operators in B(H) and let

fER(E)nL(E), E D 6(S i )uo-(S2) then:

ilf(si)x - Xf(S2)1I 2 � klIS,x - XS2112 ,

for some k>0, and every X in B(H). If X=I, then

If(Si) - f(s 2 )11, � kis, - SA,

Proof: Define S and Yon HEBH by:

[S I 0 	 ^0 X
S = 	 .0 S21' Y 	0 01•

The operator S is subnormal and for any feR(E),

[f(S,)	 0f(s) = 	 1
0	 f(S2)]
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Therefore, we have:

1IsY	 =s ix— XS2 
2 ,

and

f(S)Y — Yf(S)112 =)f(SI)X— Xf(S2)12

Applying Theorem 1 to S, for feR(E)nL(E), we obtain the

conclusion, and the special case follows by taking X=I.

Theorem2: If S is a subnormal operator on H, whose dual is T on H I

and if f is in R(E)nL(E), where cr(S)cE, then,

f(S)X — Xf(T*)02 klsx - XT*12,

for some k>0, and every XEB(H±,H); the algebra of bounded linear

operators from HI to H. In particular, if HI is a copy of H, (i.e.,

then:

f(S) — f(T* )
	

S — T * 11 2 ,
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Proof: for X E B(H -L,H), define YEB(K), K=H011 1 by,

Y
[0 X
0 01 •

Using the representations (1) one can show that:

	NY - YN = [S A 
TO X1 [0 XIS A 	 V

	

0T * 0 0 	 000T * 	0	 0
i [0 SX - X]

Similarly for fER(E)nL(E), and using (2), one obtains:

f(N)Y - Yf(N) = [0 f(S)X - Xf(T * )]
0 	 0

For an orthonormal basis (e n) for HI, we obtain:

(NY 
yN)[ 0 1 . [(SX XTleni

	

e„	 0

and

oasoy yf(N4e0 	 (f(S)X — Xf(T*)„] .

0
	 (12)

Combining (11), (12) and applying (9), one obtains:
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10(S)X Xf(n)e.11 = 11(f(N)Y - Yf(N))e n ll

• k il(NY YN)enll
• kil(SX -	 ,

for every n, and thus:

Il f(S)X Xf(T)11: = Ell(f(S)X Xf(T*))en11 2n=1

• k2 	_ Xnen 0 
2

n=1

• k 2 11(SX — XT`)en .

This implies that:

lif(S)X — Xf(T . )11 2. k 11SX XT1 ,

for the other conclusion let X=I on H -L=H, and this proves the

theorem.

Two operators T, S on H are said to be unitarily equivalent if there is a

unitary operator u on H such that:

T=uSu*

For unitarily equivalent operators we prove the following:
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Theorem3: Let SEB(H), fER(E)nL(E), where a(S)cE, such that

If(S)X — Xf(S)11 2 5 14SX — XS112 	 (13)

for some k>0, and any XEB(H). If TEB(H) is unitarily equivalent to

S, then

Ilf(T)Y — Yf(T)1 2 klITY — YI112

for some k>0, and any Y E B(11).

Proof: Let u be a unitary operator on H, such that T=uSu* . Since

fER(E), it is not difficult to show that f(T)=uf(S)u * . If (en) is an

orthonormal basis for H, it is known that (u *en) is an orthonormal basis

for H too, for any unitary operator u. Thus one has

kf(T)Y — Yf(T))e n Kuf(S)u*Y — Yuf(S)u * ,,

= (uf(S)u * Yuu * — uu * Yuf(S)u i >„1

=11(uf (S) X — Xf(S))u e

=11(f(S) X — Xf(S))g n 11,	 (14)

where

X—usYu, YEB(H), (gn)—(u*en).
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Using (14), we have:

2
lif(T)Y — Yf(T)11 2 = Kf(T)Y — Yf(T))e n il

= °±110(S)X — Xf(S))&11 2
n=1
Ilf(S)X Xf(S)Ir2 .

By the assumption of the theorem one concludes that

If(T)Y — Yf(T)I1 2 k 2 IISX XSII:

k 2 i(KSX — XS)g t, 2
n=1

2
±11u(SX — XS)u * e n

KuSu*uXu* — uXu suSu* R 11 2
n=1

k2 t3 l(rrY YT)e n 11 2n=1

= k2 1KTY Y11122

which shows that

IIf(T)Y Yf(T)II, 	k	 .
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To end up the proof we should remark that since T is unitarily

equivalent to S, they have the same spectrum, so that cr(T)cE as well.

Finally we end this article by the following.

Theorem:4: If S satisfies (13), then every operator in the closure of

the unitary orbit u(S) of S in the uniform operator topology (uot)

satisfies (13), where

u(S)---{uSu* : u is unitary on H}.

Proof: Since S€B(H) such that for fER(E)nL(E), we have

Ilf(S)X - Xf(S)II,	 k 11SX - XS11,	 (15)

for some k>0, and every X in B(H). Theorem 3 shows that every

operator in u(S) satisfies (13). So that, we assume that NO is a

sequence of unitary operators on H, such that (unSen) converges to A

in (uot), and we want to show that A satisfies (13). Indeed, from

uniform convergence: IlunSu: -	 0, we have (unf(S)u*„) converges

to f(A) in (uot), for every fER(E). By the upper semi continuity of the

spectrum, one has
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a(f(A)) c a(unf(S)u*n) c E.

Since uniform operator topology convergence of (T 1) to A implies

uniform operator topology convergence of f(T i) to f(A), for feR(E),

one concludes for unitary (u n) that

(unf(S)u*, ) f(u„Su* ,,),

converges to f(A) in (uot). Now we have

11(f(A)X - Xf(A))4 11(f(A)X Xf(A)) —((u n f(S)u sn )X X(u r,f(S)u:))4

+ 11((u n f(S)u:)X — X(u n f(S)u:)>

5:E /2 + u (f(S)Y„ Y„ f(S)u

� E /2 +11(f(S)Y„ Y,, f(S))01

� E /2 + 	 —

� e/2 +kKu n Su:X—Xu,,Su:

� E /2 +kku,,Su:X — Xu ,,Su: — (AX —

+ kll(AX - XA)eli

�E /2+. k(--) + 	 — XA)0
2k

�E ACIKAX

Since E is arbitrary, we have
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II(f(A)X — Xf (A)) ell kil(AX — XA)elI

Now, for an orthonormal basis (en) for H,

Ilf(A)X — Xf(A)Il = ±11(f(A)X Xf(A))en112
n=1

k2El(Ax xA)enlr

k2 IIAX - XA 1 22
and thus A satisfies (13) for every A in the uniform closure of u(S).
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