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Abstract

The Hardy-Orlicz space H, 1is the space of all analytic

functions f on the open unit disk D such that the subharmonic function
#¢(] T |) has a harmonic majorant on D, where ¢ is a modulus function.

H, is the subspace of H ,consisting of all f € H, such that ¢(| f |) has
a quasi-bounded harmonic majorant on D. If ¢(x) =x", 0< p <1, then
H¢is the Hardy space HP and if ¢(x)=1log(1+x), then H¢is the
Nevanlinna class N and H; is the Smirnov class N ™. In this paper we
generalize some of N. Yanagihara's and A. Hartmann's and others
interpolation results fromN and N"to H , and H; . For that purpose we
generalize a canonical factorization theorem to functions inH jor H ; and
introduce an F-space of complex sequences.
AMS subject Classification: Primary: 46Axx.Secondary: 46E10, 30HOS.
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Introduction

If ¢ is a real-valued function on [0,%0)such that ¢ is increasing,
subadditive, ¢(x)=0 iff x=0, and continuous at zero from the right
(hence uniformly continuous on [0,%)), then ¢ is called a modulus
function. Examples of modulus functions are x",0<p<1, and
log(1+ X) . We note that the composition of two modulus functions is a
modulus function and if ¢ is a modulus function, then
o(lax)<([|a|]+D¢(| x|) for all X in the real numbers R and for
all & in the complex numbers C; where [ X ] is the greatest integer in X.

LetD be the open unit disk in the complex plane C and H be the

space of all analytic functions in D. Throughout this paper we assume
that ¢ is a strictly increasing unbounded modulus function such that

¢(| f|) is subharmonic on D for allf e H. The Hardy-Orlicz
spaceH,is the space of all f € H such that ¢(| f [)has a harmonic

majorant on D, i.c., there is a function u harmonic on D such that
#(| f(2)])<u(z) for all zeD. It follows that [8] for each feH,,
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#(] f |)has a least harmonic majorant u,, i.e., ¢(| f(2)|) <u,(z) , for
all zeD and u,(z)<ov(z) for all ze D, where v is any harmonic

majorant of ¢(|] f |). A non-negative harmonic function on D is called
quasi-bounded if it is the pointwise increasing limit of non-negative
bounded harmonic functions on D. The Hardy-Orlicz space H, is the

space of all f e H, such that ¢(| f [) has a quasi-bounded harmonic

majorant on D.

The Hardy-Orlicz spaces H,and H; were studied by W. Deeb and

M. Marzugq in [2]. M. Masri in [8] and [10] considered these spaces when
D is replaced by a domain Q in C. Special cases of these spaces were
studied by several authors. (See, for example, [3], [4], [7], [11], [15] and

[17]).

If ¢(x)=x°,0<p<1, thenH,=H" and if @(x)=1log(l+X),
thenH,= Nand H;=N". Also, if ¢(x)=(log(1+x))", 0< p<1, then
H, =N? ,andif ¢(x) =log(1+x"), 0< p<1,then H,=N .

We note that the space H” of bounded analytic functions in Dis
contained inH ;.

If z,is a fixed point in D, which is called the point of reference, then
the quasi-norm || ||, on H, is defined by

If1ly=ur(Zo)
forall feH,. If d(f,g)=[| f-gl,forall f,geH,, then (H,,d) is

a metric space . If ¢ is a strictly increasing unbounded modulus function,
then (H,,d) is an F-space, ie., a topological vector space with

complete translation invariant metric (See [1], [2] and [8]).
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Let T =0D be the boundary of the open unit disk D in the complex
plane C and H ™ be the set of all functions f € H such that

lim f(re')= f"(e'") exists a.e.o,
r-1-

where o is the normalized Lebesgue measure on T .The function f is
called the radial limit of f . When there is no ambiguity we denote the
function f and its radial limit by f .The Hardy-Orlicz spaces H, and

H, are given by

H,={ feH :supI¢(| f. Ddo <o }

0<r<I T

and

Hy={ feH sup [¢( f.(2) Ddo(2)= [¢(| f(2))do(2)< = },

0Sr<1-|-
where f (z)= f(rz),zeTuUD. [8].

For each f € H , the quasi-norm of f is given by

I £ ll,=u; )= sup [¢(| f, Ddo=lim [¢(| f, Ndo

0<r<l1 T

and for each f e H;
I ll,= 4 f hdo . (See [8)).
T

Moreover, f e H/ iff y, = P[g(| f|)] , where P denotes the

Poisson kernel.
Using Harnack’s inequality, it follows that:
2| f

¢(|f(z)|)STZH|¢ forall feH, and zeD. (See[10]).
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: . N :
Thus, if a sequence{f }converges tofinH or Hj, then it

converges uniformly to f on compact subsets of D .

Let A =(4,) be a sequence in D such thati(l—|/1n|)< . If Ahas

n=1
non- zero terms, M is a non-negative integer and

0

B(z)—z"‘H( “')(

%),2eD,
2,2

n

then the function Bis called a Blaschke product. The term Blaschke
product will also be used if there are only finitely many factors of B.

In section 2 of this paper, we give a canonical factorization theorem
for functions in H,jor Hjwhen gis a strictly increasing unbounded
modulus function which is a generalization of the special
cases@d(X) =Xx",0< p<1 and ¢(x)=log(l+ X). Other similar canonical
factorization theorems involving Blaschke products, singular inner

functions and outer functions are still open problems even when ¢ is
strongly modulus, which is defined in [2] as a modulus function
satisfying Jﬂ—;()dk lim—— 99
X
1

X~>w 0

>0 and ¢(| f |)is subharmonic on D for

all f € H . Some consequences of the constraint lim-—— #(x)

=qa €[0,00]on
X—0 log X

H, and Hj are given in section 4 of this paper.
When A =(4,) is a sequence of distinct points in D such that
z (1 - |/1n |)< oo we introduce the following class of complex sequences:

| ~{(e): St ole <.

n=1
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If ¢g(x)=x",0<p<I, then /,(¢)=¢" and if @(x)=log(l+x),
then ¢ A(¢) = (", . For these special cases one can see [15] and [16] where
A=()=,)-2.

In section 3 of this paper we proved that /¢ A(¢) is an F-space. Also,
when ¢(ab)< ¢(a)+¢(b), a,b>0, we give a characterization of the
bounded subsets of 7 (¢) , a generalization to that of /7 in [16].

A space /of complex sequences is called an ideal if /“l |1, i.e.,
(w,C,) €/ whenever (W,)e¢*and (C,)e /(. LetA = (ﬂn )be sequence in

Dand X a space of analytic functions in D. The interpolation problem
consists of describing the trace X |A={(f(4,)):f e X}of Xon A.

One approach is to fix a target space ¢and look for conditions so that
X | A =1. Another approach is to require that X | Ais an ideal and call

Aa free interpolating sequence for X . We denote this by A € Int(X).
For certain spaces such as the Hardy and Bergman spaces, the two
approaches of interpolation are equivalent with /as an /P with the
appropriate weight (See [5]).

For any function algebra X containing the constants it is easily seen
that [5] £ < X | A iff A € Int(X).This implies that if Y is a subalgebra
of a function algebra X , then A e Int(X)whenever A € Int(Y).

Free interpolation for H, and H;j requires the existence of nonzero
functions vanishing on all the terms of the sequence A except one. Thus,

we assume that i (l - |/1n |)< 0.

n=l

The linear operators T and T,, given by:
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Tf =(f(2,)) and T, f = ) forall f e H,,
g
=[]
are related to interpolation. We note that

X |A={(f(4,): feX}=T(X). When ¢(x)=x",0<p<1,T, is the
operator T in [3, Theorem 9.1], where it is shown that
Tp(H p)zz” ,0<p<oo,T, =Tiff (1,) is uniformly  separated
(Carleson sequence). i.e., there exists ¢ > 0 such that

A=A

m ~ “*n

1-4,4,

o0

20, n=123,..

m=l1
m=n
Some of the interpolation techniques of N. Yanagihara in [17] for
N and N* carry overto H,and H ;. A. Hartmann’s characterizations of

free interpolation in [5] are based on the canonical factorization of
functions in N and N"in terms of Blaschke products, singular inner
functions and outer functions which is not available in H;, and Hj in
general.

In section 4 of this paper, we extend some of their results to
H,and HJ and give some consequences in interpolation under certain

restrictions on ¢ .

Finally, the following version of the dominated convergence theorem
[12] 1s found out to be useful:

Let {g,}be a sequence of integrable functions which converges a.e.

to an integrable functiong. Let {f }be a sequence of measurable
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functions such that |f |<g,and{f } converges tof ae . If
Ig zlimIgn ,thenjf zlim_[ f,.

Canonical factorization of functions in H 4 or H;

The following canonical factorization theorem for functions in H ,or

H, is an extension of those in [3] and [4] for N" and H?,0< p<1.

Canonical factorization theorem Let f € H, be not identically
zero. Then f = Bg , where Bis a Blaschke product, g € H, is unique
with no zerosin D and

1) I fll,<lgll,<21fl,
Moreover ,if feH; ,thengeH  and | g]|,=|f]l,.

Proof: First assume that f has infinitely many zeros A4,,4,,4,.,...
in D repeated according to their respective multiplicities and
A, #0forall n=1,23,.... Let

no Al A -1
b,(2) =] [()(=—)andg, =
H Ay 1-4;2

n=1,2,3,..

il
b, ’
Then | b, |is continuous on the closure D of D and = 1
on T .Thus for a fixed n
and € (0,1),|b,(z) |> 1 - & when r = z]|is sufficiently close to 1.
Hence,
f(re')
b (re’)

(2)4( 9,(re”) |) = 4( ) K F0E) < (10 e,
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which implies that || g, [|,< 2 f ||,, by integrating (2) , letting r — 1"

and then € —> 0" . Noting that | g , |=]| bL |>| f |, we obtain

<l g, ll,< 21 f1l,.
The subharmonicity of ¢(| g, |)and f (0) = 0 give

0<g(— D) =g g,0D< [ #1(a), Ddo <2] 1.

[T141
j=1

Therefore, forall n=123,..., []I4| 2_l|f¢>
=1 =21 1)
Letting n— oo it follows that
= f(0
3) 1§ (ENE AL
j=I =21l )

Thus, by [14, Theorem 15.5], (3) is equivalent toZ(l—Mj |) <.

j=1
Hence,

B(2) =1_[(|:11—”|)(1/qbn /%ZZ), zeDis a Blaschke product and
n=1 n -

n

{ b, } converges uniformly on compact subsets of D to B . Therefore,
[4, p. 56], {Q,}converges uniformly on compact subsets of D to

f
= — .Thus,
9 B

“ J#1 9, hdo =1lim[4((g,), Ddo <lim | g, [, <2| f |-

Therefore, we obtain (1) from (4) and noting that | g [>| f |.
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10 “On Interpolation in Hardy- Orlicz Spaces”

In case, f € H; the dominated convergence theorem and (2) imply
that

19, 1,= fim [41(3,), Ddor = [4( 9, Ddor = [ 41~ o
= [¢(1(f pdo = £ .

Also, by Fatou's lemma we get

I £, =J40ghdo = [limg( g, pdo <lim[4( g, pdo =] g,
T T T
= limlim [ (| (9,,), Ndo < lim lim | g, [, = | £ Il
)

Therefore, g e H; and || T ||, = g |, .

The above argument easily shows that the same results hold
when f has finitely many zeros in D or f (0) = 0 . The uniqueness

of g follows from properties of zeros of analytic functions.
The space 7, (¢) and its bounded subsets

AsinH,, A and ¢ induce on / A(¢) a quasi-norm || || on given by:

o, = S 0=12, b, @)). vu = (e, (), (9).

n=1

For notation convenience we write || || ) instead of || || e

Theorem 3.1 The space / A(¢5) is an F-space with the distance
function o defined by

o(u,v)=|u —v||¢ ,Vu,vel,(¢).

That is,

An - Najah Univ. J. Res. (N. Sc.) Vol. 27,2013




Mahmud Masri 11

(i) o(u,v)=c(u-v,0)

(i) If o(u,,u)—>0 as k > o, then o(au, ,au) — 0 as k — oo for all
a €C.

(iii) If @, > as k > o, then o(e,u,au)—0 as k — o for all
ue’,(9).

(iv) 7 ,(p) is complete.
Proof: The Ilinearity of / A(¢) and (i1)) follow from

#ax)< (laf]+ 1)g(x), x > 0, while (i) is obvious from the definition of

o . To prove (iii), let ue/ A(¢) be fixed. Then, for all & > 0, there exists

N, €N such that i(l—|ﬂn|2)¢QCn(u)|)<%. LetK > max

1<n<n,

C (u] and

n=ny+1
0<9, = mm{l E¢ (—)} Then there exists k,eN such that

|ak —a| < ¢, forall k >k, . Thus,

o) SN il -0

<> olKler, e+ 2l-12,] Jole, w))

n=n,+1

e ¢
<—+—=¢,
2 2

for all k >k, . Thus, (ii) holds.
To prove (iv) let (uk) be a Cauchy sequence in ¢ A(¢). First we show

that for each fixed je N, the complex sequence (Cj (uk )) is Cauchy. Let
&>0 be given. Then there exists k, €N such that for all km>k we have
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12 “On Interpolation in Hardy- Orlicz Spaces”

oy )= 3 (1 e ) g V)< (=2, o o).

n=1

Hence, for all k,m>k,, we have ‘Cj(uk)—cj(umj <eg,le, (Cj(uk)) is

Cauchy.

Let ¢, = lim ¢ (u, ). For all £>0, there exists k, €N such that, for

k—o0

all k,m>k,, we have o(u,,u_ )= (1—|/1n|2)go(]cn(uk)—cn(um))<%.
n=1

Therefore, for each
jeNand for all k,m>k, we have
i
Z(l _|/1n|2)¢(|cn (uk)_cn(uml)< % .
n=1
Letting m — oo and then j — oo, it follows that u = (c, )e/ , (#) and
a(uk ,u) —>0ask—o. Thus,ﬁ,\(¢) is complete.

In an F-space X with topology induced by a complete translation
invariant metric p, there are two none equivalent notions of bounded

sets. The first is in the metric sense, i.€., a subset E of X is p - bounded
if there exists a constant M such that p(x,y) < M < oo for all x,y €E

.The second is in the topological vector space sense, i.e., a subset E of X
is topologically bounded if for each neighborhood V of zero there exists
a number t, > Osuch that Ect V for all t>t;,. We refer the interested

reader to [13].

The bounded subsets of N*and ¢% are studied by N. Yanagihara in
[16]. When ¢(ab)<g(a)+g¢(b) for all a,b>0, his results about

N were generalized to Hjin [9] where it is shown that a subset E of

H, is topologically bounded iff (V& >035 =d(¢)>0 such that for

An - Najah Univ. J. Res. (N. Sc.) Vol. 27,2013




Mahmud Masri 13

cach subset Aof T with o(A)<dwe have [4(] ) do <z, vf €E ).
A

Moreover, as a corollary of this, a necessary but not sufficient condition
for topological bounded sets is given, namely if a subset E of H/ is

topologically bounded, then there exists a positive continuous function
@ (r), independent of f e E, @(r)4 0 as r — 1", and such that

M(r,f)£¢’l(%) ,forallf eE and O<r<1,

where M(r, f)=max | f(2)]|.

|z]=r
Here, we prove the corresponding results for 7 , (¢)

Theorem 3.2 Let ¢(ab)< ¢(a)+¢(b) for all a,b>0 and E be a
subset of 7, (). Then E is topologically bounded iff

(@) Jul, <M =M(E)<w», VueE

and
(i) Ye>03n, =n,(e,E)eN such that

0

S (=14 (e, ) < &. ¥ u=(c, (W)<E .

n=n,+1

Proof: Assume that E is a topologically bounded subset of / A((15).
Therefore, Vn>0,3a= a(n) >0,0<a<l, such that
PEcV(n)=1{uet,(9);
Ja=all),0<a<l, such that SE cV(l) whenever 0<fg<a.

|u||¢ < 77} whenever 0 < f <« . Lety =1. Then

LetM =1+ {l} Then for all u=(c,(u))eE, we have
a
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14 “On Interpolation in Hardy- Orlicz Spaces”

e

Thus, (i) holds.

1
|MW-;au

Next, let €>0 be given. Choose 7 such that 0<77<§ and

a =a(n) as above. Sincei(l—|ln|2)<oo, there exists n,eN such

thatni (1—|/1n|2)<(%¢(a1)).

=N, +1

Then, (ii) holds, since for all u = (c,(u))eE we have

0

3 bWl 3 0 b( L]+ 3 -l bl )

<£+||au|| <fin<e.
2 )

Conversely, assume that (i) and (ii) hold. Let V(n) be any
neighborhood of zero. Continuity of ¢ at zero from the right implies that
there exists & >0 such & <7/2 and @(x)<7/2K whenever 0 < X< &

where K = i(l—|ﬂn|2)< w.
n=1
Therefore, there exists n, € N as in (ii). For each u = (c, (u))eE, let

5 = min (1—|/1n|2)>0 and A, ={neN: ¢ cn(u)|)<%}.Thus,

1<n<n,

M > ul, > -1 ol @)= 2 S 0-[4[)

ngA, ngA,
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Hence, Z(l—|/1n|2)< o . This implies that {1,2,...,n0}g A, . Letting
ngA,

&

O<a<minil, ——F——
{ 297 (M /)

} , we have

o, = 35012 olre, )+ 3 -1 Jole, )

n=n,+1

EVS (- k4
<¢(2j;(1 |4, )+g<¢[2)K+2<n.

Therefore, aEgV(n), which shows that E is topologically
bounded.

Corollary 3.3 Let g(ab)<g(a)+¢(b),a,b>0 and E be a
topologically bounded subset of 7/ A(¢5).Then there exists a positive
sequence (,), @, + 0 as n — oo and

|cn(u1£¢‘[16|0—/;|2], V u=(c,(u))eE and ¥ne N.

Proof: From the proof of theorem 3.2 it follows that, for all n >0,
there exists & = &(17)> 0 such that

M
(1=[2)6 (e, @N)= (112 5+2
for all u = (Cn (u))e E and for all ne N.

Let (17,) be a positive sequence with7, ¥ 0as k — o . Hence, for
each k e N there exists 5, = J(17, ) > 0 such that

(=14, (e, )< (-2

An - Najah Univ. J. Res. (N. Sc.) Vol. 27, 2013



16 “On Interpolation in Hardy- Orlicz Spaces”

for all u=(c,(u))eE and forall neN.

Choose a strictly increasing sequence (N, ) in N such that n, T o as
kK — oo and

(1|2, e, W) < (1=, )+ e T T gy

for all n>n, and forall u=(c,(u))cE .

Define the positive sequence (@) by:

MH] I<n<n
w =106 " 1

NN, <n<n...k=123,..
Then, (w,)) satisfies the required properties.

We mention that although the spaces Hjand ¢ A (#) look similar, a
topologically bounded subset of 7 , (¢5) could be relatively compact while
a topologically bounded subset of H; need not be relatively compact.
This is the case when ¢(X) = log(1+ X) as in [16].

Interpolation in H, and H;

The first result of this section is a generalization from N* [17,
Theorem 1(second part)] to H(; while the second is a generalization from

N [17, Theorem 4] to H,.

n—o

Theorem 4.1 1f 7, (¢) T(H;)7 then hm(l _|}“n|2)¢(|5;j =0

where

An - Najah Univ. J. Res. (N. Sc.) Vol. 27,2013
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-1
Proof: Let K=kerT ={f eH;:f(4,)=0,vneN}. Then K is a

closed subspace of H; since the convergence of a sequence in H;

implies its convergence on compact subsets of D. Thus, by [13, Theorem
1.41] the quotient space H, /K = {f +K: fe H;} is an F-space. Let p

be the metric on H;/K and z:H; — H;/K be the quotient map
where 7z(f)=f +K for all fe H, For each u= (c,(u))e’,(¢) there
exists f eH fsuch that T f = (f(4,)=u.

LetTu = z(f). Then it is easy to see that T : ¢, (¢) —> H, /K is a

well defined linear operator. Using the closed graph theorem we prove
that it is continuous and hence bounded (See [13]).

Let u, -0 in ¢,(¢) as k> and -FUKZﬂ'(fk)—)ﬂ(f*) in
H, /K as kK — o0,

We show that f eK i.e. ﬂ(f*): K.

Let TF" = (f(2,))=(c,) » T =(£,(2,)=(c, (u,))= v and n,eN
be fixed .Then V&> 0,3k, k, €N such that if k >k, then

o).

Thus, if k >k, , then ‘fk(ﬂnl) =c, (ukj < &. Therefore, f,(1,)—0

as kK — for all neN. Also, if k>k, then

p(ﬂ(fk), ﬂ(f*)):p(ﬂ'(fk — f*), 71'(0))<§

0

o, = 20 Il )< (1-

A

Mo
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18 “On Interpolation in Hardy- Orlicz Spaces”

For each k > k|, choose g, eH; such that 7(g,)= 7Z'(fk - f*) and
Jol, <=

(See [13, p. 30]).Thus, for each k > k; and ¥ne N we have

=l ol ()=} = -1 o) - £ ))
=02l Jolon(h) < 4o, <o

Let kK > o0 and then € >0 we get f'(4,)=c, =0VneN, ie. ,
f eK.

Next, let €, =(c,(e,)), where ¢ (e )=1 if n=k and c,(e,)=0 if
n=k. Then ||ek||¢ :(1—|/1k|2)¢(1)—>0 as k —oo. Therefore, the
continuity of T implies that p(z(f, ), 7(0))—>0 as k — oo, where
Te =z(f)and Tf, =e¢,.

Thus, V& > 0, 3 K, €N such that if k >k, , then p(z(f, ), 7(0))<¢.
For each k >k, , choose h, eH, such that z(h )= 7(f,) and ||hk||¢ <g.

Therefore, there exists a sequence (h,)in H; which converges to zero
and (h,(4,))=(f(4,)) forall k,neN. For k >n, let

Bn,k(z)— 15[ Mﬂ and H , =h /B ,.

- ml A, 1= A7
Then, H.eH, and ‘Hn’k ;= ||hn||¢. Hence,
_ 2 1 __ 2 fn(ﬂ'n)
b W g M)

~ (1=, Jo(Ho (2, )= 40 -

An - Najah Univ. J. Res. (N. Sc.) Vol. 27,2013




Mahmud Masri 19

Letting kK — o and then n — o we get

im (1—|An|2)¢f#j=o. -

Ba (4 )

Theorem 4.2 Let (4,) be uniformly separated. Then
T(H,)ct,(w), where y(x)=(¢(x)’, x>0 and 0<p<I.
Moreover, the above inclusion could be proper.

Proof: Let f eH,.Then f = Bg where B is the Blaschke product of
the zeros of f in D and geH, with no zeros in D. Let h=u, +iv,
where v, is a harmonic conjugate of U, the least harmonic majorant of
¢Qg|). Since the analytic function h has a positive real part, then by [3,

Theorem 3.2] heH® , 0< p<1.Then, The/% , 0< p<1(See[l7,p.
429]). Therefore,

o0

oL, = S0l Nolr ) = 32012 otz )

n=1

p

<t o ) < - Inta) <o

n=1

Next, let 4, =1-b" where 0<b<1 and (c,)= (¢"l(n/b")). Then, by
[3, Theorem 92, p. 155] (4,) is uniformly separated and

o P w

e, ), < zzbn(binj 23" <o, e (¢,)el, (). Also,
n=1 n=1

r111_r>n(1 —|/1n|)¢(]0n|) = 0. Thus, there isno f eH  such that Tf = (c,) since

(1-[Z)#(f(2))<2|f], . ¥f H, and VzeD.
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We note that 1° c1” cl,(¢),0< p<oo. Moreover, for each
f e H, we have [9, Theorem 2.1, p. 14] lim(1-r)g(M(r,f))=0 .
r-1-
Hence, it follows that T,(H ;) < 1”. Also, when ¢(x) =x", 0< p<1, it
is easy to see that
T,(H)=IPiff TH;)=1,(9).

Thus, in this case, theorem 9.1 in [3] can be restated as
T(H,)=1,(¢) iff (4,)is uniformly separated. So, it is natural to ask for

what other kinds of @this is true. When ¢(x) =log(l + x), it is shown
[17, Theorem 3] that there exists a uniformly separated sequence
(A4,)and  f eH such that T(f)g¢l,(#). Furthermore, if (4,)is

uniformly separated, then I, (¢) c T(H )

(See [17, Theorem 1]). This motivated the following theorem whose
converse is still open.

Theorem 4.3 If T,(H;)=¢", 0< p<ow, gab)<ga)+4b), a,b>0,
then (4,) is uniformly separated.

Proof: The closed graph theorem implies that
T,:H, = ¢°for 0<p<oo is continuous since T¢(H;)g ¢? Then

K, =kernel of T, is a closed subspace of H; and the quotient space
H, /K, is an F-space. Since T¢(H;)=£p,T¢ induces a bijective
bounded linear operator 'Ii, :H; /K, — ¢° such that T, = 'Iz 0 # where
m:H; ->H;/K, is the quotient map (see [13, p. 37]).The open
mapping theorem [13] implies that ﬁ)_l 0P > H;/K,, the inverse of
ﬁ,, is bounded, i.c., continuous. Let e _=(c (e )) be as before and

E=le k=12 .}. For each keN there exists f eH  such that
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T,f,=¢.Let E = {fk eH, :T,f, = ek}.We prove that E, is a bounded
subset of H;. Let V=V(y)= {f eH, :||f||¢ <77}, n>0,be a
neighborhood of zero in H;. Since 7z and qu are open there

exists; > Osuch that W = {u el? :||u||p < }g ('F¢ O7Z')(V)

(See [13]). Let 0<a <min{l,e}.Then 0<a <1 and SE cW
whenever 0< f<a. Thus, SBE C (ﬂon)(v )= T, (V).  Hence,

Ec T¢ [l VJ .Therefore,
p

BE, < /BT¢71(E)§ IBT¢ I(R{%VJJ cV

whenever 0 < # <« .Thus E, is a topologically bounded subset of H .

Clearly, E, = {fn/Bmk :nk=12,...k> n} is bounded since
f,/B,x€H, and |f /B, fn||¢. Therefore, by [9, Corollary 3.2, p.

¢
18], there exists a positive continuous function @(r){ 0 as r -1~ and

M(r, f,/B,,)< ¢‘[26”—(r)j

1-r’

v re(0,1) and V k,neN where k>n. Since rn=|/1n|—>1 as

n — oo, there exists N, € N such that

f(4,) A1
I <M(r,, f,/B,, )<
By (4n) 10/ Joo (1 ]

for all n>n, .Thus,
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L e |
B4y A 1

,k( x ¢ 1[1 Z]Bn,k(ﬂ“n)

_rn
forall n>n,.If |z <r <1, then

o z-A, o A (A, -1 , &

1_ = < 1— — < 1_ .
Zf Y mzf A [l—ﬂmzj<1_r;( [ Au|) <0

Therefore, by [14, Theorem 15.5], |Bn (/In)| >0  for
n=12,..,n,—-1. Let 6= min {1, B, (4, )I}.Then (4,) 1is uniformly

1<n<n,-1

separated since |Bn (in)| >0 >0 forall neN.

Next we consider the relation between free interpolation and
harmonic functions. Let Har(D) denote the space of harmonic functions

in Dand Har, (D) the subspace of its positive functions.

When A =(4,) is a sequence in D such that i(l—\ﬂh\k o, we define

n=1
¢, ={(c,):3h e Har, (D)such that¢(|c,|) <h(4,),n =1,2,3,...}
and

ﬁ; = {(Cn ) : Jaquagsi-bounded € Har (D)suchthatg(|c,|) <h(4,),n=1,2, 3,...}

The main results of A. Hartmann [5 ] is giving equivalent conditions
for free interpolation in N andN*depending on the canonical
factorization of functions in them in terms of Blaschke products, singular
inner functions and outer functions which is not available in

H,andH jin general. Also, in [6] he defined big Hardy-Orlicz spaces

and characterized free interpolation in them. Here we prove the following
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results noting that, according to his results, when @(X)=1og(l+X),
equivalence holds in theorem 4.4(i) and (iii) below.

Theorem 4.4 Let g(ab)< g(a)+¢(b), a,b>0.
(i) If ¢,=(H,|A),then A< Int(H,)
(i) If AelInt(H,),then (H,|A) <],
(iii) If ¢, =(H,; [A) ,then A e Int(H;)
(iv) If Aent(H;)), then(H; [A) |
(v) Let ¢(x) =w(log(l+ x)),x >0, where  is a modulus function.
If AeInt(N), then Aelnt(H,). Moreover, If AelInt(N"), then
Aelnt(H;).

Proof: (i) Assume that 7/, =(H, | A)and (Cn ) e |”. Then there exists
a positive constant Csuch that ¢(| C, |) < ¢(c) <oo,n =1,2,3,.... Therefore,
(Cely,=(H,N).

This implies that A e Int(H ;)since /™ = (H, | A).

(i) Assume that A e Int(H,)and (Cn)e(H 51 A). Then there exists
feH, suh that (c,)=(f(4,) . Let h = u, .
Theng( c, )= 4( f(4,))<h(4,).n=12,3,....

Therefore, (H, |A) <,

The proof of (iii) and (iv) is similar to (i) and (i1).
For (v) the inequalities X<1+[X]<1+X,x>0imply that
w(X) <y (1)(1+Xx),x=>0.
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Hence, ¢(X) = w(log(1 + x)) <w(1)(1 + log(l + X)), X > 0.Thus,
N c H¢andN+ c H;
which implies (v).

Finally under certain constraints on ¢ we get the following results.

Theorem 4.5 Let g(ab)<4(a)+¢(b), a,b>0 and lim 1¢(x))( =«
X—>00 Og

(i) If @ e(0,0),then A eInt(H,)iff AeInt(N)and A e Int(H ) iff
Aclnt(N*)

(i) If @ =00, then Aelnt(H,)= AelInt(N) and
Aent(H;)= Aelnt(N").

(ii)If =0, then AeInt(N)= Aelnt(H,) and AeInt(N") =
Aelnt(H;).

Proof: (i) Let o € (0,0) .Then there exists X, > 1such that
%log X < P(X) < 370[log X, forall x> X,.
Hence,
log(1+x)<1+log" X=1+10gxsl+§¢(x), forall x> X,.
Thus,
log(1+ X) <1+ log(1+ X0)+§¢(X) ,forall x>0,

implies that H, < N and H; < N". Also, we have

#(X) < 37“1og(1 +X) + (X, ), for all x>0
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implies that N < H, and N* < H ;. Therefore, (i) holds since N = H ,and
N"=H/.
(ii) Let o = . Then there exists X, > 1such that

log x < ¢(X), for all x> X,.

Hence,

log(1+x) <1+log(1+X,)+¢@(X), forall x=>0.
Thus, H, = N and H; < N"which implies (ii).
(iii) Leta = 0. Then there exists X, > 1such that
#(X) <logx, for all x=>X,.

Hence,

#(X) <logx <log(l+ Xx) < log(1+x,)+log(1+x), forall x=0.

Thus, N ¢ H,andN" < HJ which implies (iii).
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