On Interpolation in Hardy- Orlicz Spaces حول الاستكمال في فضاءات هاردي ـ اورلكس

Mahmud Masri

محمود المصرى

Department of Mathematics, Faculty of Science, An-Najah National University, Palestine

Sabbatical: Department of Mathematics, Palestine Polytechnic University, Visitor

E-mail: mhalaseh@najah.edu

Received: (27/9/2010), Accepted: (11/11/2012)

Abstract

The Hardy-Orlicz space H_{ϕ} is the space of all analytic functions f on the open unit disk D such that the subharmonic function $\phi(\mid f\mid)$ has a harmonic majorant on D, where ϕ is a modulus function. H_{ϕ}^+ is the subspace of H_{ϕ} consisting of all $f \in H_{\phi}$ such that $\phi(\mid f\mid)$ has a quasi-bounded harmonic majorant on D. If $\phi(x) = x^p$, $0 , then <math>H_{\phi}$ is the Hardy space H^p and if $\phi(x) = \log(1+x)$, then H_{ϕ} is the Nevanlinna class N and H_{ϕ}^+ is the Smirnov class N^+ . In this paper we generalize some of N. Yanagihara's and A. Hartmann's and others interpolation results from N and N^+ to H_{ϕ} and H_{ϕ}^+ . For that purpose we generalize a canonical factorization theorem to functions in H_{ϕ} or H_{ϕ}^+ and introduce an F-space of complex sequences.

AMS subject Classification: Primary: 46Axx.Secondary: 46E10, 30H05.

Key words: Hardy-Orlicz space, F-space, modulus function, canonical factorization, interpolation.

ملخص

فضاء هار دي-أورلكز $_{\phi}H$ هو فضاء جميع الدوال التحليلة f على قرص الوحدة المفتوح D بحيث أن الدالة $(|f|)_{\phi}$ المتوافقة جزئيا على D يكون لها داله توافقيه تحدها من أعلى، علما بأن ϕ هي داله مطلقه القيمه. $_{\phi}^{+}H$ هو الفضاء الجزئي من $_{\phi}H$ والمحتوي على جميع الدوال $_{\phi}H \in H$ بحيث أن $(|f|)_{\phi}$ يكون لها داله توافقيه شبه محدوده وتحدها من أعلى. إذا كان $f \in H$ بحيث أن $(|f|)_{\phi}$ يكون لها داله توافقيه شبه محدوده وتحدها من أعلى. إذا كان $(x) = \log(1+x)$ فإن $(x) = \log(1+x)$ هو فضاءهار دي $(x) = \log(1+x)$ وإذا كان $(x) = \log(1+x)$ فإن $(x) = \log(1+x)$ هو فئة سمير نوف $(x) = \log(1+x)$ في هذا البحث نعمم بعض نتائج فإن $(x) = \log(1+x)$ هو فئة سمير نوف $(x) = \log(1+x)$ هي أجل المناف وأخرين في الاستكمال الدالي من $(x) = \log(1+x)$ والدوال في $(x) = \log(1+x)$ وسنقدم فضاء $(x) = \log(1+x)$ ومكون من متتاليات عقديه.

Introduction

If ϕ is a real-valued function on $[0,\infty)$ such that ϕ is increasing, subadditive, $\phi(x)=0$ iff x=0, and continuous at zero from the right (hence uniformly continuous on $[0,\infty)$), then ϕ is called a *modulus function*. Examples of modulus functions are $x^p, 0 , and <math>\log(1+x)$. We note that the composition of two modulus functions is a modulus function and if ϕ is a modulus function, then $\phi(|\alpha x|) \le ([|\alpha|]+1)\phi(|x|)$ for all x in the real numbers \mathbf{R} and for all α in the complex numbers \mathbf{C} ; where [x] is the greatest integer in x.

Let D be the open unit disk in the complex plane $\mathbb C$ and H be the space of all analytic functions in D. Throughout this paper we assume that ϕ is a strictly increasing unbounded modulus function such that $\phi(|f|)$ is subharmonic on D for all $f \in H$. The Hardy-Orlicz $space H_{\phi}$ is the space of all $f \in H$ such that $\phi(|f|)$ has a harmonic majorant on D, i.e., there is a function u harmonic on D such that $\phi(|f(z)|) \le u(z)$ for all $z \in D$. It follows that [8] for each $f \in H_{\phi}$,

 $\phi(\mid f\mid)$ has a least harmonic majorant u_f , i.e., $\phi(\mid f(z)\mid) \leq u_f(z)$, for all $z \in D$ and $u_f(z) \leq \upsilon(z)$ for all $z \in D$, where υ is any harmonic majorant of $\phi(\mid f\mid)$. A non-negative harmonic function on D is called quasi-bounded if it is the pointwise increasing limit of non-negative bounded harmonic functions on D. The Hardy-Orlicz space H_ϕ^+ is the space of all $f \in H_\phi$ such that $\phi(\mid f\mid)$ has a quasi-bounded harmonic majorant on D.

The Hardy-Orlicz spaces H_{ϕ} and H_{ϕ}^{+} were studied by W. Deeb and M. Marzuq in [2]. M. Masri in [8] and [10] considered these spaces when D is replaced by a domain Ω in C. Special cases of these spaces were studied by several authors. (See, for example, [3], [4], [7], [11], [15] and [17]).

If $\phi(x) = x^p$, $0 , then <math>H_{\phi} = H^p$ and if $\phi(x) = \log(1+x)$, then $H_{\phi} = N$ and $H_{\phi}^+ = N^+$. Also, if $\phi(x) = (\log(1+x))^p$, $0 , then <math>H_{\phi} = N^p$, and if $\phi(x) = \log(1+x^p)$, $0 , then <math>H_{\phi} = N_p$.

We note that the space H^{∞} of bounded analytic functions in D is contained in H_{ϕ}^{+} .

If z_0 is a fixed point in D, which is called the *point of reference*, then the *quasi-norm* $\|\ \|_{\phi}$ on H_{ϕ} is defined by

$$\parallel f \parallel_{\phi} = u_f(z_0)$$

for all $f \in H_{\phi}$. If $d(f,g) = \|f - g\|_{\phi}$ for all $f,g \in H_{\phi}$, then (H_{ϕ},d) is a metric space. If ϕ is a strictly increasing unbounded modulus function, then (H_{ϕ}^+,d) is an F-space, i.e., a topological vector space with complete translation invariant metric (See [1], [2] and [8]).

Let $T = \partial D$ be the *boundary* of the open unit disk D in the complex plane \mathbb{C} and H^+ be the set of all functions $f \in H$ such that

$$\lim_{r \to 1^{-}} f(re^{i\theta}) = f^{*}(e^{i\theta}) \text{ exists } a.e.\sigma,$$

where σ is the *normalized Lebesgue measure* on T. The function f^* is called the *radial limit* of f. When there is no ambiguity we denote the function f and its radial limit by f. The *Hardy-Orlicz spaces* H_{ϕ} and H_{ϕ}^+ are given by

$$H_{\phi} = \{ f \in H : \sup_{0 \le r < 1} \int_{T} \phi(|f_r|) d\sigma < \infty \}$$

and

$$H_{\phi}^{+} = \{ f \in H^{+} : \sup_{0 \le r < 1} \int_{T} \phi(|f_{r}(z)|) d\sigma(z) = \int_{T} \phi(|f(z)|) d\sigma(z) < \infty \},$$

where
$$f_r(z) = f(rz), z \in T \cup D$$
. [8].

For each $f \in H_{\phi}$, the quasi-norm of f is given by

$$|| f ||_{\phi} = u_f(0) = \sup_{0 \le r < 1} \int_T \phi(|f_r|) d\sigma = \lim_{r \to 1^-} \int_T \phi(|f_r|) d\sigma$$

and for each $f \in H_{\phi}^+$

$$|| f ||_{\phi} = \int_{T} \phi(|f|) d\sigma$$
. (See [8]).

Moreover, $f \in H_{\phi}^+$ iff $u_f = P[\phi(|f|)]$, where P denotes the Poisson kernel.

Using Harnack's inequality, it follows that:

$$\phi(|f(z)|) \le \frac{2 ||f||_{\phi}}{1 - |z|}$$
 for all $f \in H_{\phi}$ and $z \in D$. (See [10]).

Thus, if a sequence $\{f_n\}$ converges to f in H_{ϕ} or H_{ϕ}^+ , then it converges uniformly to f on compact subsets of D.

Let $\Lambda = (\lambda_n)$ be a sequence in D such that $\sum_{n=1}^{\infty} (1 - |\lambda_n|) < \infty$. If Λ has non-zero terms, m is a non-negative integer and

$$B(z) = z^{m} \prod_{n=1}^{\infty} \left(\frac{|\lambda_{n}|}{\lambda_{n}} \right) \left(\frac{\lambda_{n} - z}{1 - \overline{\lambda_{n}} z} \right), z \in D,$$

then the function *B* is called a *Blaschke product*. The term *Blaschke product* will also be used if there are only finitely many factors of *B*.

In section 2 of this paper, we give a canonical factorization theorem for functions in H_{ϕ} or H_{ϕ}^+ when ϕ is a strictly increasing unbounded modulus function which is a generalization of the special cases $\phi(x) = x^p$, $0 and <math>\phi(x) = \log(1+x)$. Other similar canonical factorization theorems involving Blaschke products, singular inner functions and outer functions are still open problems even when ϕ is strongly modulus, which is defined in [2] as a modulus function satisfying $\int_{1}^{\infty} \frac{\phi(x)}{x^2} dx < \infty$, $\lim_{x \to \infty} \frac{\phi(x)}{\log x} > 0$ and $\phi(|f|)$ is subharmonic on D for

all $f \in H$. Some consequences of the constraint $\lim_{x \to \infty} \frac{\phi(x)}{\log x} = \alpha \in [0, \infty]$ on H_{ϕ} and H_{ϕ}^+ are given in section 4 of this paper.

When $\Lambda = (\lambda_n)$ is a sequence of distinct points in D such that $\sum_{n=1}^{\infty} (1 - |\lambda_n|) < \infty$ we introduce the following class of complex sequences:

$$\ell_{\Lambda}(\phi) = \left\{ (c_n) : \sum_{n=1}^{\infty} (1 - |\lambda_n|^2) \phi(|c_n|) < \infty \right\}.$$

If $\phi(x) = x^p$, $0 , then <math>\ell_{\Lambda}(\phi) = \ell_{\Lambda}^p$ and if $\phi(x) = \log(1+x)$, then $\ell_{\Lambda}(\phi) = \ell_{\Lambda}^+$. For these special cases one can see [15] and [16] where $\Lambda = (\lambda_n) = (z_n) = Z$.

In section 3 of this paper we proved that $\ell_{\Lambda}(\phi)$ is an F-space. Also, when $\phi(ab) \le \phi(a) + \phi(b)$, $a, b \ge 0$, we give a characterization of the bounded subsets of $\ell_{\Lambda}(\phi)$, a generalization to that of ℓ_{Λ}^+ in [16].

A space ℓ of complex sequences is called an ideal if $\ell^{\infty}l \subseteq l$, i.e., $(w_nc_n) \in \ell$ whenever $(w_n) \in \ell^{\infty}$ and $(c_n) \in \ell$. Let $\Lambda = (\lambda_n)$ be sequence in D and X a space of analytic functions in D. The $interpolation \ problem$ consists of describing the $trace \ X \mid \Lambda = \{(f(\lambda_n)) : f \in X\} \text{ of } X \text{ on } \Lambda$. One approach is to fix a $target \ space \ \ell$ and look for conditions so that $X \mid \Lambda = l$. Another approach is to require that $X \mid \Lambda$ is an ideal and call Λ a $free \ interpolating \ sequence$ for X. We denote this by $\Lambda \in Int(X)$. For certain spaces such as the Hardy and Bergman spaces, the two approaches of interpolation are equivalent with ℓ as an ℓ^p with the appropriate weight (See [5]).

For any function algebra X containing the constants it is easily seen that [5] $\ell^{\infty} \subseteq X \mid \Lambda$ iff $\Lambda \in Int(X)$. This implies that if Y is a subalgebra of a function algebra X, then $\Lambda \in Int(X)$ whenever $\Lambda \in Int(Y)$.

Free interpolation for H_{ϕ} and H_{ϕ}^+ requires the existence of nonzero functions vanishing on all the terms of the sequence Λ except one. Thus, we assume that $\sum_{n=1}^{\infty} \left(1-\left|\lambda_n\right|\right) < \infty$.

The *linear operators T and T*_{ϕ}, given by:

$$Tf = (f(\lambda_n)) \text{ and } T_{\phi} f = \left(\frac{f(\lambda_n)}{\phi^{-1}\left(\frac{1}{1-|\lambda_n|^2}\right)}\right) \text{ for all } f \in H_{\phi},$$

are related to interpolation. We note that $X \mid \Lambda = \{(f(\lambda_n)) : f \in X\} = T(X)$. When $\phi(x) = x^p$, $0 , <math>T_{\phi}$ is the operator T_p in [3, Theorem 9.1], where it is shown that $T_p(H^p) = \ell^p$, $0 , <math>T_{\infty} = T$ iff (λ_n) is uniformly separated (Carleson sequence). i.e., there exists $\delta > 0$ such that

$$\prod_{\substack{m=1\\m\neq n}}^{\infty} \left| \frac{\lambda_m - \lambda_n}{1 - \overline{\lambda}_m \lambda_n} \right| \ge \delta , \quad n = 1, 2, 3, \dots$$

Some of the interpolation techniques of N. Yanagihara in [17] for N and N^+ carry over to H_{ϕ} and H_{ϕ}^+ . A. Hartmann's characterizations of free interpolation in [5] are based on the canonical factorization of functions in N and N^+ in terms of Blaschke products, singular inner functions and outer functions which is not available in H_{ϕ} and H_{ϕ}^+ in general.

In section 4 of this paper, we extend some of their results to H_{ϕ} and H_{ϕ}^{+} and give some consequences in interpolation under certain restrictions on ϕ .

Finally, the following version of the dominated convergence theorem [12] is found out to be useful:

Let $\{g_n\}$ be a sequence of integrable functions which converges a.e. to an integrable function g. Let $\{f_n\}$ be a sequence of measurable

functions such that $|f_n| \le g_n$ and $\{f_n\}$ converges to f a.e. . If $\int g = \lim \int g_n$, then $\int f = \lim \int f_n$.

Canonical factorization of functions in H_{ϕ} or H_{ϕ}^{+}

The following canonical factorization theorem for functions in H_{ϕ} or H_{ϕ}^{+} is an extension of those in [3] and [4] for N^{+} and H^{p} , 0 .

Canonical factorization theorem Let $f \in H_{\phi}$ be not identically zero. Then f = Bg, where B is a Blaschke product, $g \in H_{\phi}$ is unique with no zeros in D and

$$||f||_{\phi} \le ||g||_{\phi} \le 2 ||f||_{\phi}$$

Moreover , if $f \in H_{\phi}^+$, then $g \in H_{\phi}^+$ and $\parallel g \parallel_{\phi} = \parallel f \parallel_{\phi}$.

Proof: First assume that f has infinitely many zeros $\lambda_1, \lambda_2, \lambda_3, ...$ in D repeated according to their respective multiplicities and $\lambda_n \neq 0$ for all n = 1, 2, 3, ... Let

$$b_n(z) = \prod_{j=1}^n (\frac{|\lambda_j|}{\lambda_j}) (\frac{\lambda_j - z}{1 - \overline{\lambda}_j z}) \text{ and } g_n = \frac{f}{b_n}, n = 1, 2, 3, \dots$$

Then $|b_n|$ is continuous on the closure \overline{D} of D and $\equiv 1$ on T. Thus for a fixed n and $\varepsilon \in (0,1)$, $|b_n(z)| > 1 - \varepsilon$ when r = |z| is sufficiently close to 1. Hence,

$$(2)\phi(|g_n(re^{i\theta})|) = \phi(|\frac{f(re^{i\theta})}{b_n(re^{i\theta})}|) \le \phi(|\frac{1}{1-\varepsilon}f(re^{i\theta})|) \le ([\frac{1}{1-\varepsilon}]+1)\phi(|f(re^{i\theta})|,$$

which implies that $\|g_n\|_{\phi} \le 2 \|f\|_{\phi}$, by integrating (2), letting $r \to 1^-$ and then $\varepsilon \to 0^+$. Noting that $\|g_n\| = \|\frac{f}{b_n}\| \ge \|f\|$, we obtain

$$|| f ||_{\phi} \le || g_n ||_{\phi} \le 2 || f ||_{\phi}.$$

The subharmonicity of $\phi(|g_n|)$ and $f(0) \neq 0$ give

$$0 < \phi(|\frac{f(0)}{\prod_{j=1}^{n} |\lambda_{j}|}|) = \phi(|g_{n}(0)|) \le \int_{T} \phi(|(g_{n})_{r}|) d\sigma \le 2 ||f||_{\phi}.$$

Therefore, for all
$$n = 1, 2, 3, ..., \prod_{j=1}^{n} |\lambda_j| \ge \frac{|f(0)|}{\phi^{-1}(2 ||f||_{\phi})} > 0.$$

Letting $n \to \infty$ it follows that

(3)
$$\prod_{j=1}^{\infty} |\lambda_j| \ge \frac{|f(0)|}{\phi^{-1}(2 \|f\|_{\phi})} > 0.$$

Thus, by [14, Theorem 15.5], (3) is equivalent to $\sum_{j=1}^{\infty} (1-|\lambda_j|) < \infty$. Hence,

 $B(z) = \prod_{n=1}^{\infty} (\frac{|\lambda_n|}{\lambda_n}) (\frac{\lambda_n - z}{1 - \overline{\lambda_n} z}), z \in D \text{ is } \text{a Blaschke product and}$ $\{b_n\}$ converges uniformly on compact subsets of D to B. Therefore, $[4, p. 56], \{g_n\}$ converges uniformly on compact subsets of D to $g = \frac{f}{B}$. Thus,

$$(4) \qquad \int_{T} \phi(|g_{r}|) d\sigma = \lim_{n \to \infty} \int_{T} \phi(|(g_{n})_{r}|) d\sigma \leq \lim_{n \to \infty} ||g_{n}||_{\phi} \leq 2 ||f||_{\phi}.$$

Therefore, we obtain (1) from (4) and noting that $|g| \ge |f|$.

In case, $f \in H_{\phi}^+$ the dominated convergence theorem and (2) imply that

$$\|g_n\|_{\phi} = \lim_{r \to 1^-} \int_T \phi(|(g_n)_r|) d\sigma = \int_T \phi(|g_n|) d\sigma = \int_T \phi(|f_n|) d\sigma$$

$$= \int_T \phi(|(f|) d\sigma = ||f||_{\phi}.$$

Also, by Fatou's lemma we get

$$|| f ||_{\phi} = \int_{T} \phi(|g|) d\sigma = \int_{T} \lim_{r \to 1^{-}} \phi(|g_{r}|) d\sigma \le \lim_{r \to 1^{-}} \int_{T} \phi(|g_{r}|) d\sigma = ||g||_{\phi}$$

$$= \lim_{r \to 1^{-}} \lim_{n \to \infty} \int_{T} \phi(|(g_{n})_{r}|) d\sigma \le \lim_{r \to 1^{-}} \lim_{n \to \infty} ||g_{n}||_{\phi} = ||f||_{\phi}.$$

Therefore, $g \in H_{\phi}^+$ and $||f||_{\phi} = ||g||_{\phi}$.

The above argument easily shows that the same results hold when f has finitely many zeros in D or f(0) = 0. The uniqueness of g follows from properties of zeros of analytic functions.

The space $\ell_{\Lambda}(\phi)$ and its bounded subsets

As in H_{ϕ} , Λ and ϕ induce on $\ell_{\Lambda}(\phi)$ a quasi-norm $\| \|_{\phi,\Lambda}$ given by: $\|u\|_{\phi,\Lambda} = \sum_{n=1}^{\infty} (1-|\lambda_n|^2)\phi(|c_n(u)|), \forall u = (c_n(u)) \in \ell_{\Lambda}(\phi).$

For notation convenience we write $\| \ \|_{\phi}$ instead of $\| \ \|_{\phi,\Lambda}$.

Theorem 3.1 The space $\ell_{\Lambda}(\phi)$ is an F-space with the distance function σ defined by

$$\sigma(u,v) = ||u-v||_{\Delta}, \forall u, v \in \ell_{\Lambda}(\phi).$$

That is,

- (i) $\sigma(u,v) = \sigma(u-v,0)$
- (ii) If $\sigma(u_k, u) \to 0$ as $k \to \infty$, then $\sigma(\alpha u_k, \alpha u) \to 0$ as $k \to \infty$ for all $\alpha \in C$.
- (iii) If $\alpha_k \to \alpha$ as $k \to \infty$, then $\sigma(\alpha_k u, \alpha u) \to 0$ as $k \to \infty$ for all $u \in \ell_\Lambda(\phi)$.
- (iv) $\ell_{\Lambda}(\phi)$ is complete.

Proof: The linearity of $\ell_{\Lambda}(\phi)$ and (ii) follow from $\phi(|\alpha x|) \le (|\alpha|+1)\phi(x)$, $x \ge 0$, while (i) is obvious from the definition of σ . To prove (iii), let $u \in \ell_{\Lambda}(\phi)$ be fixed. Then, for all $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $\sum_{n=n_0+1}^{\infty} (1-|\lambda_n|^2)\phi(|c_n(u)|) < \frac{\varepsilon}{2}$. Let $K > \max_{1 \le n \le n_0} |c_n(u)|$ and $0 < \delta_1 = \min \left\{ 1, \frac{1}{K} \phi^{-1} (\frac{\varepsilon}{2n_0}) \right\}$. Then there exists $k_o \in \mathbb{N}$ such that $|\alpha_k - \alpha| < \delta_1$ for all $k \ge k_o$. Thus,

$$\sigma(\alpha_{k} u, \alpha u) = \sum_{n=1}^{\infty} \left(1 - \left|\lambda_{n}\right|^{2}\right) \phi\left(\left|(\alpha_{k} - \alpha)c_{n}(u)\right|\right)$$

$$\leq \sum_{n=1}^{n_{o}} \phi\left(K\left|\alpha_{k} - \alpha\right|\right) + \sum_{n=n_{o}+1}^{\infty} \left(1 - \left|\lambda_{n}\right|^{2}\right) \phi\left(\left|c_{n}(u)\right|\right)$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

for all $k \ge k_o$. Thus, (ii) holds.

To prove (iv) let (u_k) be a Cauchy sequence in $\ell_{\Lambda}(\phi)$. First we show that for each fixed $j \in \mathbb{N}$, the complex sequence $(c_j(u_k))$ is Cauchy. Let $\varepsilon > 0$ be given. Then there exists $k_o \in \mathbb{N}$ such that for all $k, m \ge k_o$ we have

$$\sigma(u_k, u_m) = \sum_{n=1}^{\infty} \left(1 - \left|\lambda_n\right|^2\right) \phi\left(\left|c_n(u_k) - c_n(u_m)\right|\right) < \left(1 - \left|\lambda_j\right|^2\right) \phi(\varepsilon).$$

Hence, for all $k, m \ge k_o$, we have $|c_j(u_k) - c_j(u_m)| < \varepsilon$, i.e., $(c_j(u_k))$ is Cauchy.

Let $c_n = \lim_{k \to \infty} c_n(u_k)$. For all $\varepsilon > 0$, there exists $k_o \in \mathbb{N}$ such that, for all $k, m \ge k_o$, we have $\sigma(u_k, u_m) = \sum_{n=1}^{\infty} (1 - \left|\lambda_n\right|^2) \varphi(\left|c_n(u_k) - c_n(u_m)\right) < \frac{\varepsilon}{2}$. Therefore, for each

 $j \in \mathbb{N}$ and for all $k, m \ge k_o$ we have

$$\sum_{n=1}^{j} \left(1 - \left| \lambda_n \right|^2 \right) \phi \left(\left| c_n \left(u_k \right) - c_n \left(u_m \right) \right| \right) < \frac{\varepsilon}{2}.$$

Letting $m \to \infty$ and then $j \to \infty$, it follows that $u = (c_n) \in \ell_\Lambda(\phi)$ and $\sigma(u_k, u) \to 0$ as $k \to \infty$. Thus, $\ell_\Lambda(\phi)$ is complete.

In an F-space X with topology induced by a complete translation invariant metric ρ , there are two none equivalent notions of bounded sets. The first is in the metric sense, i.e., a subset E of X is ρ -bounded if there exists a constant M such that $\rho(x,y) \leq M < \infty$ for all $x,y \in E$. The second is in the topological vector space sense, i.e., a subset E of X is topologically bounded if for each neighborhood V of zero there exists a number $t_0 > 0$ such that $E \subseteq t$ V for all $t \geq t_0$. We refer the interested reader to [13].

The bounded subsets of N^+ and ℓ_Z^+ are studied by N. Yanagihara in [16]. When $\phi(ab) \le \phi(a) + \phi(b)$ for all $a,b \ge 0$, his results about N^+ were generalized to H_ϕ^+ in [9] where it is shown that a subset E of H_ϕ^+ is topologically bounded iff $(\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0$ such that for

each subset A of T with $\sigma(A) < \delta$ we have $\int_A \phi(|f|) d\sigma < \varepsilon, \forall f \in E$).

Moreover, as a corollary of this, a necessary but not sufficient condition for topological bounded sets is given, namely if a subset E of H_{ϕ}^+ is topologically bounded, then there exists a positive continuous function $\omega(r)$, independent of $f \in E$, $\omega(r) \downarrow 0$ as $r \to 1^-$, and such that

$$M(r, f) \le \phi^{-1}(\frac{\omega(r)}{1-r})$$
, for all $f \in E$ and $0 < r < 1$,

where $M(r, f) = \max_{|z|=r} |f(z)|$.

Here, we prove the corresponding results for $\ell_{\Lambda}(\phi)$.

Theorem 3.2 Let $\phi(ab) \le \phi(a) + \phi(b)$ for all $a,b \ge 0$ and E be a subset of $\ell_{\Lambda}(\phi)$. Then E is topologically bounded iff

(i)
$$\|u\|_{\phi} < M = M(E) < \infty, \forall u \in E$$

and

(ii)
$$\forall \varepsilon > 0 \exists n_o = n_o(\varepsilon, E) \in \mathbb{N}$$
 such that

$$\sum_{n=n_{n}+1}^{\infty} \left(1-\left|\lambda_{n}\right|^{2}\right) \phi\left(\left|c_{n}(u)\right|\right) < \varepsilon, \ \forall \ u=\left(c_{n}(u)\right) \in E.$$

Proof: Assume that E is a topologically bounded subset of $\ell_{\Lambda}(\phi)$. Therefore, $\forall \eta > 0$, $\exists \alpha = \alpha(\eta) > 0$, $0 < \alpha \le 1$, such that $\beta E \subseteq V(\eta) = \left\{ u \in \ell_{\Lambda}(\phi) : \|u\|_{\phi} < \eta \right\}$ whenever $0 < \beta \le \alpha$. Let $\eta = 1$. Then $\exists \alpha = \alpha(1)$, $0 < \alpha \le 1$, such that $\beta E \subseteq V(1)$ whenever $0 < \beta \le \alpha$. Let $M = 1 + \left[\frac{1}{\alpha}\right]$. Then for all $U = (c_n(u)) \in E$, we have

$$\|u\|_{\phi} = \left\|\frac{1}{\alpha} \cdot \alpha u\right\|_{\phi} \le \left(\left[\frac{1}{\alpha}\right] + 1\right) \|\alpha u\|_{\phi} < \left(\left[\frac{1}{\alpha}\right] + 1\right) = M.$$

Thus, (i) holds.

Next, let $\varepsilon > 0$ be given. Choose η such that $0 < \eta < \frac{\varepsilon}{2}$ and $\alpha = \alpha(\eta)$ as above. Since $\sum_{n=1}^{\infty} \left(1 - \left| \lambda_n \right|^2 \right) < \infty$, there exists $n_o \in \mathbb{N}$ such that $\sum_{n=n+1}^{\infty} \left(1 - \left| \lambda_n \right|^2 \right) < \left(\frac{\varepsilon}{2} / 2 \phi(\alpha^{-1}) \right)$.

Then, (ii) holds, since for all $u = (c_n(u)) \in E$ we have

$$\sum_{n=n_{o}+1}^{\infty}\left(1-\left|\lambda_{n}\right|^{2}\right)\phi\left(\left|c_{n}\left(u\right)\right|\right)\leq\sum_{n=n_{o}+1}^{\infty}\left(1-\left|\lambda_{n}\right|^{2}\right)\phi\left(\frac{1}{\alpha}\right)+\sum_{n=n_{o}+1}^{\infty}\left(1-\left|\lambda_{n}\right|^{2}\right)\phi\left(\left|\alpha c_{n}\left(u\right)\right|\right)$$

$$<\frac{\varepsilon}{2}+\|\alpha u\|_{\phi}<\frac{\varepsilon}{2}+\eta<\varepsilon$$
.

Conversely, assume that (i) and (ii) hold. Let $V(\eta)$ be any neighborhood of zero. Continuity of ϕ at zero from the right implies that there exists $\varepsilon > 0$ such $\varepsilon < \eta/2$ and $\phi(x) < \eta/2K$ whenever $0 \le x < \varepsilon$ where $K = \sum_{n=0}^{\infty} \left(1 - \left|\lambda_n\right|^2\right) < \infty$.

Therefore, there exists $n_o \in \mathbb{N}$ as in (ii). For each $u = (c_n(u)) \in E$, let $\delta = \min_{1 \le n \le n_o} \left(1 - \left| \lambda_n \right|^2 \right) > 0 \text{ and } A_u = \{ n \in \mathbb{N} : \phi(|c_n(u)|) < \frac{M}{\delta} \} \text{ . Thus,}$ $M > \|u\|_{\phi} \ge \sum_{n \le n} \left(1 - \left| \lambda_n \right|^2 \right) \phi\left(|c_n(u)| \right) \ge \frac{M}{\delta} \sum_{n \le n} \left(1 - \left| \lambda_n \right|^2 \right).$

Hence, $\sum_{n \notin A_u} (1 - |\lambda_n|^2) < \delta$. This implies that $\{1, 2, ..., n_o\} \subseteq A_u$. Letting $0 < \alpha < \min \{1, \frac{\varepsilon}{2\phi^{-1}(M/\delta)}\}$, we have

$$\|\alpha u\|_{\phi} \leq \sum_{n=1}^{n_o} (1 - |\lambda_n|^2) \phi(\alpha c_n(u)) + \sum_{n=n_o+1}^{\infty} (1 - |\lambda_n|^2) \phi(c_n(u))$$

$$<\phi\left(\frac{\varepsilon}{2}\right)\sum_{n=1}^{n_o}\left(1-\left|\lambda_n\right|^2\right)+\varepsilon<\phi\left(\frac{\varepsilon}{2}\right)K+\frac{\eta}{2}<\eta$$
.

Therefore, $\alpha E \subseteq V(\eta)$, which shows that E is topologically bounded.

Corollary 3.3 Let $\phi(ab) \le \phi(a) + \phi(b)$, $a,b \ge 0$ and E be a topologically bounded subset of $\ell_{\Lambda}(\phi)$. Then there exists a positive sequence (ω_n) , $\omega_n \downarrow 0$ as $n \to \infty$ and

$$|c_n(u)| \le \phi^{-1} \left(\frac{\omega_n}{1-|\lambda_n|^2}\right), \ \forall \ u = (c_n(u)) \in E \ and \ \forall n \in \mathbb{N}.$$

Proof: From the proof of theorem 3.2 it follows that, for all $\eta > 0$, there exists $\delta = \delta(\eta) > 0$ such that

$$(1-|\lambda_n|)\phi(|c_n(u)|) \le (1-|\lambda_n|)\frac{M}{\delta} + \frac{\eta}{2}$$

for all $u = (c_n(u)) \in E$ and for all $n \in \mathbb{N}$.

Let (η_k) be a positive sequence with $\eta_k \downarrow 0$ as $k \to \infty$. Hence, for each $k \in \mathbb{N}$ there exists $\delta_k = \delta(\eta_k) > 0$ such that

$$(1 - |\lambda_n|)\phi(|c_n(u)|) \le (1 - |\lambda_n|)\frac{M}{\delta_k} + \frac{\eta_k}{2}$$

for all $u = (c_n(u)) \in E$ and for all $n \in \mathbb{N}$.

Choose a strictly increasing sequence (n_k) in **N** such that $n_k \uparrow \infty$ as $k \to \infty$ and

$$(1-|\lambda_n|)\phi(|c_n(u)|) \le (1-|\lambda_n|)\frac{M}{\delta_k} + \frac{\eta_k}{2} < \frac{\eta_k}{2} + \frac{\eta_k}{2} = \eta_k$$

for all $n \ge n_k$ and for all $u = (c_n(u)) \in E$.

Define the positive sequence (ω_n) by:

$$\omega_n = \begin{cases} \frac{M}{\delta_1} + \eta_1, 1 \le n < n_1 \\ \eta_k, n_k \le n < n_{k+1}, k = 1, 2, 3, \dots \end{cases}.$$

Then, (ω_n) satisfies the required properties.

We mention that although the spaces H_{ϕ}^{+} and $\ell_{\Lambda}(\phi)$ look similar, a topologically bounded subset of $\ell_{\Lambda}(\phi)$ could be relatively compact while a topologically bounded subset of H_{ϕ}^{+} need not be relatively compact. This is the case when $\phi(x) = \log(1+x)$ as in [16].

Interpolation in H_{ϕ} and H_{ϕ}^{+}

The first result of this section is a generalization from N^+ [17, Theorem 1(second part)] to H_{ϕ}^+ while the second is a generalization from N [17, Theorem 4] to H_{ϕ} .

Theorem 4.1 If
$$\ell_{\Lambda}(\phi) \subseteq T(H_{\phi}^{+})$$
, then $\lim_{n\to\infty} (1-|\lambda_{n}|^{2})\phi\left(\frac{1}{|B_{n}(\lambda_{n})|}\right) = 0$

where

$$B_n(z) = \prod_{m=1 \atop m \neq n} \frac{|\lambda_m|}{\lambda_m} \frac{\lambda_m - z}{1 - \overline{\lambda}_m z} , \quad z \in D.$$

Proof: Let $K = \ker T = \{f \in H_{\phi}^+ : f(\lambda_n) = 0, \forall n \in \mathbb{N}\}$. Then K is a closed subspace of H_{ϕ}^+ since the convergence of a sequence in H_{ϕ}^+ implies its convergence on compact subsets of D. Thus, by [13, Theorem 1.41] the quotient space $H_{\phi}^+/K = \{f + K : f \in H_{\phi}^+\}$ is an F-space. Let ρ be the metric on H_{ϕ}^+/K and $\pi : H_{\phi}^+ \to H_{\phi}^+/K$ be the quotient map where $\pi(f) = f + K$ for all $f \in H_{\phi}^+$. For each $u = (c_n(u)) \in \ell_{\Lambda}(\phi)$ there exists $f \in H_{\phi}^+$ such that $T = (f(\lambda_n)) = u$.

Let $\widetilde{T}u = \pi(f)$. Then it is easy to see that $\widetilde{T}: \ell_{\Lambda}(\phi) \to H_{\phi}^+/K$ is a well defined linear operator. Using the closed graph theorem we prove that it is continuous and hence bounded (See [13]).

Let $u_k \to 0$ in $\ell_{\Lambda}(\phi)$ as $k \to \infty$ and $\widetilde{T}u_k = \pi(f_k) \to \pi(f^*)$ in H_{ϕ}^+/K as $k \to \infty$.

We show that $f^* \in K$ i.e. $\pi(f^*) = K$.

Let $Tf^* = (f^*(\lambda_n)) = (c_n)$, $Tf_k = (f_k(\lambda_n)) = (c_n(u_k)) = u_k$ and $n_0 \in \mathbb{N}$ be fixed. Then $\forall \varepsilon > 0, \exists k_o$, $k_1 \in \mathbb{N}$ such that if $k \ge k_o$, then

$$\left\|u_{k}\right\|_{\phi} = \sum_{n=1}^{\infty} \left(1-\left|\lambda_{n}\right|^{2}\right) \phi\left(\left|c_{n}\left(u_{k}\right)\right|\right) < \left(1-\left|\lambda_{n_{o}}\right|^{2}\right) \phi\left(\varepsilon\right).$$

Thus, if $k \ge k_o$, then $\left| f_k \left(\lambda_{n_o} \right) \right| = \left| c_{n_o} \left(u_k \right) \right| < \varepsilon$. Therefore, $f_k \left(\lambda_n \right) \to 0$ as $k \to \infty$ for all $n \in \mathbb{N}$. Also, if $k \ge k_1$, then $\rho \left(\pi(f_k), \pi(f^*) \right) = \rho \left(\pi(f_k - f^*), \pi(0) \right) < \frac{\varepsilon}{4}$.

For each $k \ge k_1$, choose $g_k \in H_\phi^+$ such that $\pi(g_k) = \pi(f_k - f^*)$ and $\|g_k\|_\phi < \frac{\varepsilon}{4}$.

(See [13, p. 30]). Thus, for each $k \ge k_1$ and $\forall n \in \mathbb{N}$ we have

$$(1 - |\lambda_n|^2) \phi(|c_n(u_k) - c_n|) = (1 - |\lambda_n|^2) \phi(|f_k(\lambda_n) - f^*(\lambda_n)|)$$

$$= (1 - |\lambda_n|^2) \phi(|g_k(\lambda_n)| \le 4||g_k||_{\phi} < \varepsilon.$$

Let $k \to \infty$ and then $\varepsilon \to 0$ we get $f^*(\lambda_n) = c_n = 0 \ \forall n \in \mathbb{N}$, i.e., $f^* \in K$.

Next, let $e_k = (c_n(e_k))$, where $c_n(e_k) = 1$ if n = k and $c_n(e_k) = 0$ if $n \neq k$. Then $\|e_k\|_{\phi} = (1 - |\lambda_k|^2)\phi(1) \to 0$ as $k \to \infty$. Therefore, the continuity of \widetilde{T} implies that $\rho(\pi(f_k), \pi(0)) \to 0$ as $k \to \infty$, where $\widetilde{T}e_k = \pi(f_k)$ and $Tf_k = e_k$.

Thus, $\forall \varepsilon > 0$, $\exists k_2 \in \mathbb{N}$ such that if $k \ge k_2$, then $\rho(\pi(f_k), \pi(0)) < \varepsilon$. For each $k \ge k_2$, choose $h_k \in H_\phi^+$ such that $\pi(h_k) = \pi(f_k)$ and $\|h_k\|_\phi < \varepsilon$. Therefore, there exists a sequence (h_k) in H_ϕ^+ which converges to zero and $(h_k(\lambda_n)) = (f_k(\lambda_n))$ for all $k, n \in \mathbb{N}$. For k > n, let

$$B_{n,k}(z) = \prod_{\substack{m=1\\m\neq n}}^k \frac{|\lambda_m|}{\lambda_m} \frac{\lambda_m - z}{1 - \overline{\lambda}_m z} \text{ and } H_{n,k} = h_n / B_{n,k}.$$

Then,
$$H_{n,k} \in H_{\phi}^{+}$$
 and $\left\|H_{n,k}\right\|_{\phi} = \left\|h_{n}\right\|_{\phi}$. Hence,
$$\left(1 - \left|\lambda_{n}\right|^{2}\right) \phi \left(\frac{1}{\left|B_{n,k}(\lambda_{n})\right|}\right) = \left(1 - \left|\lambda_{n}\right|^{2}\right) \phi \left(\left|\frac{f_{n}(\lambda_{n})}{B_{n,k}(\lambda_{n})}\right|\right)$$
$$= \left(1 - \left|\lambda_{n}\right|^{2}\right) \phi \left(\left|H_{n,k}(\lambda_{n})\right|\right) \le 4 \left\|h_{n}\right\|_{\phi}.$$

Mahmud Masri — ______ 19

Letting $k \to \infty$ and then $n \to \infty$ we get

$$\lim_{n\to\infty} \left(1-\left|\lambda_n\right|^2\right) \phi\left(\frac{1}{\left|B_n\left(\lambda_n\right)\right|}\right) = 0.$$

Theorem 4.2 Let (λ_n) be uniformly separated. Then $T(H_{\phi}) \subseteq \ell_{\Lambda}(\psi)$, where $\psi(x) = (\phi(x))^p$, $x \ge 0$ and 0 . Moreover, the above inclusion could be proper.

Proof: Let $f \in H_{\phi}$. Then f = Bg where B is the Blaschke product of the zeros of f in D and $g \in H_{\phi}$ with no zeros in D. Let $h = u_g + iv_g$ where v_g is a harmonic conjugate of u_g the least harmonic majorant of $\phi(|g|)$. Since the analytic function h has a positive real part, then by [3, Theorem 3.2] $h \in H^p$, $0 . Then, <math>Th \in \ell_{\Lambda}^p$, 0 (See [17, p. 429]). Therefore,

$$||T f||_{\psi} = \sum_{n=1}^{\infty} \left(1 - \left|\lambda_{n}\right|^{2}\right) \left(\phi\left(\left|f\left(\lambda_{n}\right)\right|\right)\right)^{p} \leq \sum_{n=1}^{\infty} \left(1 - \left|\lambda_{n}\right|^{2}\right) \left(\phi\left(\left|g\left(\lambda_{n}\right)\right|\right)\right)^{p}$$

$$\leq \sum_{n=1}^{\infty} \left(1 - \left|\lambda_{n}\right|^{2}\right) \left(u_{g}\left(\lambda_{n}\right)\right)^{p} \leq \sum_{n=1}^{\infty} \left(1 - \left|\lambda_{n}\right|^{2}\right) \left|h\left(\lambda_{n}\right)\right|^{p} < \infty$$

Next, let $\lambda_n = 1 - b^n$ where 0 < b < 1 and $(c_n) = \left(\phi^{-1}\left(n/b^n\right)\right)$. Then, by [3, Theorem 9.2, p. 155] (λ_n) is uniformly separated and $\|(c_n)\|_{\psi} \le 2\sum_{n=1}^{\infty} b^n \left(\frac{n}{b^n}\right)^p = 2\sum_{n=1}^{\infty} n^p b^{n(1-p)} < \infty$, i.e., $(c_n) \in \ell_{\Lambda}(\psi)$. Also, $\lim_{n \to \infty} (1 - |\lambda_n|) \phi(|c_n|) = \infty$. Thus, there is no $f \in H_{\phi}$ such that $Tf = (c_n)$ since $(1 - |z|) \phi(|f(z)|) \le 2\|f\|_{\phi}$, $\forall f \in H_{\phi}$ and $\forall z \in D$.

We note that $l^p \subseteq l^\infty \subseteq l_\Lambda(\phi), 0 . Moreover, for each <math>f \in H_\phi^+$ we have [9, Theorem 2.1, p. 14] $\lim_{r \to l^-} (1-r)\phi(M(r,f)) = 0$. Hence, it follows that $T_\phi(H_\phi^+) \subseteq l^\infty$. Also, when $\phi(x) = x^p$, 0 , it is easy to see that

$$T_{\phi}(H_{\phi}^+) = l^p \text{ iff } T(H_{\phi}^+) = l_{\Lambda}(\phi).$$

Thus, in this case, theorem 9.1 in [3] can be restated as $T(H_{\phi}^{+}) = l_{\Lambda}(\phi)$ iff (λ_{n}) is uniformly separated. So, it is natural to ask for what other kinds of ϕ this is true. When $\phi(x) = \log(1+x)$, it is shown [17, Theorem 3] that there exists a uniformly separated sequence (λ_{n}) and $f \in H_{\phi}^{+}$ such that $T(f) \notin l_{\Lambda}(\phi)$. Furthermore, if (λ_{n}) is uniformly separated, then $l_{\Lambda}(\phi) \subseteq T(H_{\phi}^{+})$

(See [17, Theorem 1]). This motivated the following theorem whose converse is still open.

Theorem 4.3 If $T_{\phi}(H_{\phi}^{+}) = \ell^{p}$, $0 , <math>\phi(ab) \le \phi(a) + \phi(b)$, $a, b \ge 0$, then (λ_{n}) is uniformly separated.

Proof: The closed graph theorem implies that $T_{\phi}: H_{\phi}^{+} \to \ell^{p}$ for $0 is continuous since <math>T_{\phi}(H_{\phi}^{+}) \subseteq \ell^{p}$. Then $K_{\phi} = \text{kernel of } T_{\phi}$ is a closed subspace of H_{ϕ}^{+} and the quotient space H_{ϕ}^{+}/K_{ϕ} is an F-space. Since $T_{\phi}(H_{\phi}^{+}) = \ell^{p}$, T_{ϕ} induces a bijective bounded linear operator $\widetilde{T}_{\phi}: H_{\phi}^{+}/K_{\phi} \to \ell^{p}$ such that $T_{\phi} = \widetilde{T}_{\phi} \circ \pi$ where $\pi: H_{\phi}^{+} \to H_{\phi}^{+}/K_{\phi}$ is the quotient map (see [13, p. 37]). The open mapping theorem [13] implies that $\widetilde{T}_{\phi}^{-1}: \ell^{p} \to H_{\phi}^{+}/K_{\phi}$, the inverse of \widetilde{T}_{ϕ} , is bounded, i.e., continuous. Let $e_{k} = (c_{n}(e_{k}))$ be as before and $E = \{e_{k}: k = 1, 2, ...\}$. For each $k \in \mathbb{N}$ there exists $f_{k} \in H_{\phi}^{+}$ such that

 $T_{\phi}f_{k}=e_{k}$. Let $E_{1}=\left\{f_{k}\in H_{\phi}^{+}:T_{\phi}f_{k}=e_{k}\right\}$. We prove that E_{1} is a bounded subset of H_{ϕ}^{+} . Let $V=V(\eta)=\left\{f\in H_{\phi}^{+}:\left\|f\right\|_{\phi}<\eta\right\},\ \eta>0$, be a neighborhood of zero in H_{ϕ}^{+} . Since π and \widetilde{T}_{ϕ} are open there exists $\alpha_{1}>0$ such that $W=\left\{u\in\ell^{p}:\left\|u\right\|_{p}<\alpha_{1}\right\}\subseteq\left(\widetilde{T}_{\phi}\circ\pi\right)(V)$

(See [13]). Let $0 < \alpha < \min\{1, \alpha_1\}$. Then $0 < \alpha \le 1$ and $\beta E \subseteq W$ whenever $0 < \beta \le \alpha$. Thus, $\beta E \subseteq \left(\widetilde{T}_{\phi} \circ \pi\right)(V) = T_{\phi}(V)$. Hence, $E \subseteq T_{\phi}\left(\frac{1}{\beta}V\right)$. Therefore,

$$eta E_1 \subseteq eta T_{\phi}^{-1}(E) \subseteq eta T_{\phi}^{-1}\left(T_{\phi}\left(\frac{1}{eta}V\right)\right) \subseteq V$$

whenever $0 < \beta \le \alpha$. Thus E_1 is a topologically bounded subset of H_{ϕ}^+ .

Clearly, $E_2 = \{f_n / B_{n,k} : n, k = 1, 2, ..., k > n\}$ is bounded since $f_n / B_{n,k} \in H_{\phi}^+$ and $\|f_n / B_{n,k}\|_{\phi} = \|f_n\|_{\phi}$. Therefore, by [9, Corollary 3.2, p. 18], there exists a positive continuous function $\omega(r) \downarrow 0$ as $r \to 1^-$ and

$$M(r, f_n/B_{n,k}) \leq \phi^{-1}\left(\frac{2\omega(r)}{1-r^2}\right)$$

 $\forall r \in (0,1)$ and $\forall k, n \in \mathbb{N}$ where k > n. Since $r_n = |\lambda_n| \to 1$ as $n \to \infty$, there exists $n_o \in \mathbb{N}$ such that

$$\left| \frac{f_n(\lambda_n)}{B_{n,k}(\lambda_n)} \right| \le M(r_n, f_n/B_{n,k}) \le \phi^{-1} \left(\frac{1}{1 - r_n^2} \right)$$

for all $n \ge n_o$. Thus,

$$\frac{1}{\left|B_{n,k}(\lambda_n)\right|} = \left|\frac{f_n(\lambda_n)}{\phi^{-1}\left(\frac{1}{1-r_n^2}\right)B_{n,k}(\lambda_n)}\right| \le 1$$

for all $n \ge n_o$. If $|z| \le r < 1$, then

$$\left| \sum_{m=1}^{\infty} \left| 1 - \left| \frac{z - \lambda_m}{1 - \overline{\lambda}_m z} \right| \right| \le \sum_{m=1}^{\infty} \left| 1 - \frac{|\lambda_m|}{\lambda_m} \left(\frac{\lambda_m - z}{1 - \overline{\lambda}_m z} \right) \right| \le \frac{2}{1 - r} \sum_{m=1}^{\infty} (1 - |\lambda_m|) < \infty.$$

Therefore, by [14, Theorem 15.5], $|B_n(\lambda_n)| > 0$ for $n = 1, 2, ..., n_o - 1$. Let $\delta = \min_{1 \le n \le n_o - 1} \{1, |B_n(\lambda_n)|\}$. Then (λ_n) is uniformly separated since $|B_n(\lambda_n)| \ge \delta > 0$ for all $n \in \mathbb{N}$.

Next we consider the relation between free interpolation and harmonic functions. Let Har(D) denote the space of harmonic functions in D and $Har_{+}(D)$ the subspace of its positive functions.

When $\Lambda = (\lambda_n)$ is a sequence in D such that $\sum_{n=1}^{\infty} (1-|\lambda_n|) < \infty$, we define

$$\ell_{\phi} = \{ (c_n) : \exists h \in Har_+(D) \text{ such that } \phi(|c_n|) \le h(\lambda_n), n = 1, 2, 3, ... \}$$

and

$$\ell_{\phi}^{+} = \{(c_n) : \exists \text{a quaqsi-bounded} n \in Har_+(D) \text{ such that } \phi(|c_n|) \le h(\lambda_n), n = 1, 2, 3, ... \}$$

The main results of A. Hartmann [5] is giving equivalent conditions for free interpolation in N and N^+ depending on the canonical factorization of functions in them in terms of Blaschke products, singular inner functions and outer functions which is not available in H_{ϕ} and H_{ϕ}^+ in general. Also, in [6] he defined big Hardy-Orlicz spaces and characterized free interpolation in them. Here we prove the following

results noting that, according to his results, when $\phi(x) = \log(1+x)$, equivalence holds in theorem 4.4(i) and (iii) below.

Theorem 4.4 Let $\phi(ab) \le \phi(a) + \phi(b)$, $a, b \ge 0$.

- (i) If $\ell_{\phi} = (H_{\phi} \mid \Lambda)$, then $\Lambda \in Int(H_{\phi})$
- (ii) If $\Lambda \in Int(H_{\phi})$, then $(H_{\phi} \mid \Lambda) \subseteq l_{\phi}$
- (iii) If $\ell_{\phi}^+ = (H_{\phi}^+ \mid \Lambda)$, then $\Lambda \in Int(H_{\phi}^+)$
- (iv) If $\Lambda \in Int(H_{\phi}^+)$), then $(H_{\phi}^+ | \Lambda) \subseteq l_{\phi}^+$
- (v) Let $\phi(x) = \psi(\log(1+x)), x \ge 0$, where ψ is a modulus function.

If $\Lambda \in Int(N)$, then $\Lambda \in Int(H_{\phi})$. Moreover, If $\Lambda \in Int(N^+)$, then $\Lambda \in Int(H_{\phi}^+)$.

Proof: (i) Assume that $\ell_{\phi} = (H_{\phi} \mid \Lambda)$ and $(c_n) \in l^{\infty}$. Then there exists a positive constant c such that $\phi(\mid c_n \mid) \leq \phi(c) < \infty, n = 1,2,3,...$ Therefore, $(c_n) \in \ell_{\phi} = (H_{\phi} \mid \Lambda)$.

This implies that $\Lambda \in Int(H_{\phi})$ since $\ell^{\infty} \subseteq (H_{\phi} \mid \Lambda)$.

(ii) Assume that $\Lambda \in Int(H_{\phi})$ and $(c_n) \in (H_{\phi} \mid \Lambda)$. Then there exists $f \in H_{\phi}$ such that $(c_n) = (f(\lambda_n))$. Let $h = u_f$. Then $\phi(|c_n|) = \phi(|f(\lambda_n)|) \le h(\lambda_n), n = 1, 2, 3, \dots$

Therefore, $(H_{\phi} \mid \Lambda) \subseteq l_{\phi}$.

The proof of (iii) and (iv) is similar to (i) and (ii).

For (v) the inequalities $x \le 1 + [x] \le 1 + x, x \ge 0$ imply that $\psi(x) \le \psi(1)(1+x), x \ge 0$.

Hence,
$$\phi(x) = \psi(\log(1+x)) \le \psi(1)(1+\log(1+x)), x \ge 0$$
. Thus, $N \subseteq H_{\phi}$ and $N^+ \subseteq H_{\phi}^+$

which implies (v).

Finally under certain constraints on ϕ we get the following results.

Theorem 4.5 Let
$$\phi(ab) \le \phi(a) + \phi(b)$$
, $a, b \ge 0$ and $\lim_{x \to \infty} \frac{\phi(x)}{\log x} = \alpha$.

- (i) If $\alpha \in (0, \infty)$, then $\Lambda \in Int(H_{\phi})$ iff $\Lambda \in Int(N)$ and $\Lambda \in Int(H_{\phi}^+)$ iff $\Lambda \in Int(N^+)$
- (ii) If $\alpha = \infty$, then $\Lambda \in Int(H_{\phi}) \Rightarrow \Lambda \in Int(N)$ and $\Lambda \in Int(H_{\phi}^+) \Rightarrow \Lambda \in Int(N^+)$.
- (iii) If $\alpha = 0$, then $\Lambda \in Int(N) \Rightarrow \Lambda \in Int(H_{\phi})$ and $\Lambda \in Int(N^+) \Rightarrow \Lambda \in Int(H_{\phi}^+)$.

Proof: (i) Let $\alpha \in (0, \infty)$. Then there exists $x_0 > 1$ such that

$$\frac{\alpha}{2}\log x < \phi(x) < \frac{3\alpha}{2}\log x$$
, for all $x \ge x_0$.

Hence,

$$\log(1+x) \le 1 + \log^+ x = 1 + \log x \le 1 + \frac{2}{\alpha} \phi(x)$$
, for all $x \ge x_0$.

Thus,

$$\log(1+x) \le 1 + \log(1+x_0) + \frac{2}{\alpha}\phi(x)$$
, for all $x \ge 0$,

implies that $H_{\phi} \subseteq N$ and $H_{\phi}^+ \subseteq N^+$. Also, we have

$$\phi(x) \le \frac{3\alpha}{2} \log(1+x) + \phi(x_0)$$
, for all $x \ge 0$

implies that $N \subseteq H_{\phi}$ and $N^+ \subseteq H_{\phi}^+$. Therefore, (i) holds since $N = H_{\phi}$ and $N^+ = H_{\phi}^+$.

(ii) Let $\alpha = \infty$. Then there exists $x_0 > 1$ such that $\log x < \phi(x)$, for all $x \ge x_0$.

Hence,

$$\log(1+x) \le 1 + \log(1+x_0) + \phi(x)$$
, for all $x \ge 0$.

Thus, $H_{\phi} \subseteq N$ and $H_{\phi}^+ \subseteq N^+$ which implies (ii).

(iii) Let $\alpha = 0$. Then there exists $x_0 > 1$ such that $\phi(x) < \log x$, for all $x \ge x_0$.

Hence,

$$\phi(x) < \log x < \log(1+x) < \log(1+x_0) + \log(1+x)$$
, for all $x \ge 0$.

Thus, $N \subseteq H_{\phi}$ and $N^+ \subseteq H_{\phi}^+$ which implies (iii).

References

- [1] Deeb, W. Khalil, R. & Marzuq, M. (1986). "Isometric Multiplication of Hardy- Orlicz spaces". <u>Bull. Austral. Math. Soc. (34)</u>. 177-189.
- [2] Deeb, W. & Marzuq, M. (1986). " $H(\phi)$ spaces". Canad. Math. Bull. 29(3). 295-301.
- [3] Duren, P. L. (1970). "Theory of H^p -Spaces". Academic Press. New York.
- [4] Fisher, S. D. (1983). <u>Function Theory on Planar Domains</u>. John Wiley and Sons. Inc.
- [5] Hartmann, A. Massenda, X. Nicolau, A. & Thomas, P. (2004). "Interpolation in the Nevanlinna and Smirnov classes and harmonic majorants". J. Funct. Anal. (217). 1-37.

- [6] Hartmann, A. (2006). "Interpolation and harmonic majorants in big Hardy- Orlicz space". arXiv: math. CV/0603624 v2. 1-19.
- [7] Masri, M. (1985). "Compact Composition Operators on the Nevanlinna and Smirnov Classes". Dissertation. Univer. of North Carolina at Chapel Hill.
- [8] M. Masri. $H_{\phi}(\Omega)$ and $H_{\phi}^{+}(\Omega)$ Spaces. An- Najah Univ. J. Res. (N. Sc.). Vol. **16** (1). (2002). 1-21.
- [9] Masri, M. (2002). "The Space H_{ϕ}^{+} and its Containing Frechet Space F_{ϕ}^{+} ". Mu'tah Lil- Buhuth Wad Dirasat. Natural and Applied Sciences Series. 17(3). 11-26.
- [10] Masri, M. (2003). "Compact Composition Operators on $H_{\phi}(\Omega)$ and $H_{\phi}^{+}(\Omega)$ Spaces". Abhath Al-Yarmouk. Basic Sc. and Engin. 12(1). 155-167.
- [11] Roberts, J. W. & Stoll, M. (1976). "Prime and Principal Ideals in the Algebra *N*⁺". Arich der Mathematik (27). 387-393.
- [12] Royden, H. L. (1968). <u>Real Analysis</u>. <u>2nd ed</u>. Macmillan Company. New York.
- [13] Rudin, W. (1973). Functional Analysis. McGraw-Hill.
- [14] Rudin, W. (1974). <u>Real and Complex Analysis.</u> 2nd ed. McGraw-Hill.
- [15] Shapiro, H. S. & Shields, A. L. (1961). "On some interpolation problems for analytic functions". <u>Amer. J. Math. (83)</u>. 513-532.
- [16] Yanagihara, N. (1973). "Bounded Subsets of Some Spaces of Holomorphic Functions". Sci. Papers College Gen. Ed. Univ. Tokyo. (23). 19-28.
- [17] Yanagihara, N. (1974). "Interpolation Theorems for the Class N^+ ". Illinois Journal of Math. (18). 427-435.