On Composition Operators on $N^+(\Omega)$

 $N^+(\Omega)$ عن المؤثرات المركبة على

Mahmud Masri

محمود المصرى

Department of Mathematics, AN-Najah N. University, Nablus-Palestine.

Received: (22/10/1996), Accepted: (27/10/1998)

Abstract

Let $N(\Omega)$ denote the class of analytic functions f in a domain Ω , contained in the complex numbers C, such that $\log(1+|f|)$ has a harmonic majorant. The subclass $N^{\dagger}(\Omega)$ of $N(\Omega)$ consists of all f such that $\log(1+|f|)$ has a quasi-bounded harmonic majorant. Let φ be a non-constant analytic function from Ω into itself. Define the composition operator C_{φ} on $N(\Omega)$ by $C_{\varphi}f=f\circ\varphi$, \forall $f\in N(\Omega)$. Then C_{φ} maps $N^{\dagger}(\Omega)$ into itself. Here we characterize the invertibility of C_{φ} when Ω is finitely connected with boundary Γ consisting of disjoint analytic simple closed curves and we give a necessary condition for the density of the range of C_{φ} in $N^{\dagger}(\Omega)$. Moreover , we consider linear isometries on $N^{\dagger}(\Omega)$ and their relation to C_{φ}

لتكن $N(\Omega)$ ترمز الى فئة الدوال التحليلية f في المجال المفتوح والمسترابط Ω والمحتوى في الأعداد العقدية C وبحيث أن الدالة $\log(1+|f|)$ محدوده من أعلى بدالة توافقية الفئة الجزئية $N^+(\Omega)$ من $N^+(\Omega)$ تتكون من جميع الدوال f حيث أن $N^+(1+|f|)$ تكون محدوده من أعلى بدالة توافقية شبه محدوده. لتكن Φ دالة غير ثابته وقابلة للإشتقاق ومن Ω إلى نفسها إذا عرفنا المؤثر المركب C_0 على C_0 حسب القانون C_0 لكل C_0 منتمية الى C_0 فإنسه ينقل C_0 الى نفسها. هنا سنصف انعكاس C_0 عندما تكون C_0 محدودة السترابط وحدها C_0 يتكون من مندنيات تحليلية مبسطه مغلقة ومنفصلة مثنى مثنى وسنقدم شرط لازم مسن أجل أن

 $N^+(\Omega)$ يكون مدى C_{ϕ} كثيفا قي $N^+(\Omega)$. بالاضافة الى ذلك سندرس التقايسات الخطية على يكون مدى وعلاقتها بالمؤثر المركب C_{ϕ} .

1. Introduction and Preliminaries

Let Ω be an open connected subset of the complex plane which we call a domaim. The Nevanlinna Calss $N(\Omega)$ consists of all functions f analytic in Ω such that $\log (1+|f|)$ has a harmonic majorant. The subclass $N^+(\Omega)$ of $N(\Omega)$ consists of all f such that $\log(1+|f|)$ has a quasi-bounded harmonic majorant which means that $\log(1+|f|)$ is a pointwise increasing limit of a sequence of non-negative bounded harmonic functions.

Let u_f be the least harmonic majorant of log(1+|f|) where $f \in N(\Omega)$ and z_0 be a fixed point of Ω which we call the reference point. Define

$$||f|| = u_f(z_0), \forall f \in N(\Omega).$$

Then $\| \ \|$ is a quasi-norm on $N(\Omega)$ and $N(\Omega)$ is a complete metric space which is an algebra over C. Furthermore, $N^+(\Omega)$ is an algebra over C and a topological vector space with complete translation invariant metric , i.e , an F-space (see[1]).

For p>0, $H^p(\Omega)$ consists of all functions fanalytic in Ω such that $|f|^p$ has a harmonic majorant. Let w_f be the least harmonic majorant of $|f|^p$ where $f \in H^p(\Omega)$ and define

$$||f||_p\!\!=\!\!w_f\!(z_0)$$
 , $\forall f\!\in\!H^p \;0\!\!<\!\!p\!<\!\!\infty_.$

Then $\| \|_p$ is a norm on $H^p(\Omega)$ which makes it a Banach space when $1 \le p < \infty$. We have [1,p.259]

$$\bigcup_{p>0} H^p(\Omega) \subseteq N^+(\Omega) \subseteq N(\Omega)$$

If Ω is finitely connected with boundary Γ consisting of disjoint analytic simple closed curves and $R(\Omega)$ denotes the rational functions with poles off $\Omega \cup \Gamma$, then $R(\Omega)$ is dense in $N^+(\Omega)$ (see [2]). This implies that $H^p(\Omega)$, p>0,

and $H^{\infty}(\Omega)$, the space of all bounded analytic functions in Ω , are also dense in $N^{+}(\Omega)$.

Let ϕ be a non-constant analytic function from the domain Ω into itself. The composition operator C_{ϕ} on $N(\Omega)$ is defined by

$$C_{\phi}f = f \circ \phi, \forall f \in N(\Omega).$$

Its quasi-norm is defined by

$$||C_{\phi}||=\inf\{M:||f\circ\phi||\leq M||f||, f\in N(\Omega)\}$$

We say that C_{ϕ} is bounded if $\|C_{\phi}\|<\infty$. In [3] (Theorem 4.1, p. 265) it is shown that C_{ϕ} is a bounded, hence continuous, linear operator on $N(\Omega)$ and maps $N^{\dagger}(\Omega)$ into itself. Moreover, some results about compactness of C_{ϕ} are given there. We note that C_{ϕ} is always 1-1 on $N^{\dagger}(\Omega)$ for if $C_{\phi}f=C_{\phi}g$, f, $g\in N^{\dagger}(\Omega)$, then f and g agree on $\phi(\Omega)$ which is a non-empty open subset of Ω and hence they are equal on Ω . Moreover, C_{ϕ} maps $H^{p}(\Omega)$, 0, into itself.

For more information on the $H^{P}(\Omega)$ case one can see for example [1] and [5]. Here we characterize the invertibility of C_{ϕ} when Ω is finitely connected with boundary Γ consisting of disjoint analytic simple closed curves and we give a necessary condition for the density of the range of C_{ϕ} in $N^{+}(\Omega)$. Also, we consider linear isomtries on $N^{+}(\Omega)$ and their relations to C_{ϕ}

2. Invertibility of C_{ϕ} and density of its range

In this section we assume that Ω is finitely connected with boundary Γ consisting of disjoint analytic simple closed curves and ϕ is a non-constant analytic function from Ω into itself. We prove the following results.

- Theorem 2.1: C_{ϕ} is invertible on $N^{+}(\Omega)$ if and only if ϕ is a conformal self-equivalence of Ω , in which case $C^{-1}_{\phi}=C_{\psi}$ where $\psi=\phi^{-1}$.
- *Proof:* Let ϕ be a conformal self-equivalence of Ω and $\psi = \phi^{-1}$. Then $(C_{\psi} \circ C_{\phi})(f) = (C_{\phi} \circ C_{\psi})(f) = f$, $\forall f \in N^{+}(\Omega)$, i. e., C_{ϕ} is invertible and $C^{-1}_{\phi} = C_{\psi}$.

Conversely, suppose C_{ϕ} is invertible on $N^{+}(\Omega)$ with inverse $C^{-1}_{\phi}=S$. Let $f \in H^{\infty}(\Omega)$ and Sg=f. Then $C_{\phi}f=g \in H^{\infty}(\Omega)$ which means that S is the inverse of C_{ϕ} when both S and C_{ϕ} are restricted to $H^{\infty}(\Omega)$. Since S restricted to $H^{\infty}(\Omega)$ is the inverse of an algebra automorphism of $H^{\infty}(\Omega)$, S itself must be an algebra automorphism of $H^{\infty}(\Omega)$ (see [5] (p.52)). Then by [4] (Theorem 9, p.335) there exists a conformal self-equivalence ψ of Ω such that

$$Sf = f_0 \psi = C_w f$$
, $\forall f \in H^{\infty}(\Omega)$.

The continuity of C_{ψ} on $N^{+}(\Omega)$ (see [3] (Theorem 4.1, p.265)) and the density of $H^{\infty}(\Omega)$ in $N^{+}(\Omega)$ imply that $S = C_{\psi}$ on $N^{+}(\Omega)$. Finally noting that the function f(z)=z is in $N^{+}(\Omega)$ it follows that $\varphi^{-1}=\psi$.

Theorem 2.2: If $C_{\phi}: N^{+}(\Omega) \to N^{+}(\Omega)$ has dense range, then ϕ is 1-1.

Proof: Let z_1,z_2 be two distinct points of Ω . We show that there exists $f \in H^{\infty}(\Omega)$ such that $f(z_1) \neq f(z_2)$. Since Ω supports non-constant analytic function there exists a non-constant analytic function $f_1 \in H^{\infty}(\Omega)$. Let $f_2(z) = f_1(z) - f_1(z_1)$. If $f_2(z_2) \neq 0$, then there is nothing to prove. So assume $f_2(z_2) = 0$. One can choose a natural number n such that $f(z) = (z-z_1)^{-n} f_2(z)$ is in $H^{\infty}(\Omega)$ with $f(z_1) \neq 0$ and $f(z_2) = 0$.

Since range C_{ϕ} is dense in $N^{+}(\Omega)$ there exists a sequence $\{g_n\}$ in $N^{+}(\Omega)$ such that $\{C_{\phi}g_n\}$ converges to f in $N^{+}(\Omega)$ and hence by [1] (Corollary 2.4, p.261) it converges to f uniformly on compact subsets of Ω . Since $\{z_1,z_2\}$ is a compact subset of Ω , letting $\epsilon=|f(z_1)-f(z_2)|>0$ implies that there exists a natural number k such that

$$n \ge k \Rightarrow |g_n(\phi(z_i)) - f(z_i)| \le \varepsilon/2$$
, $i = 1, 2$.

Therefore, $|g_n(\phi(z_1))-g_n(\phi(z_2))| \ge 0$, $\forall n \ge k$. Thus $\phi(z_1) \ne \phi(z_2)$ which shows that ϕ is 1-1.

3. Linear Isometries on $N^+(\Omega)$

Let Ω be a domain in the complex plane for which $H^p(\Omega)$ is nontrivial and ϕ is a nonconstant analytic mapping of Ω into itself. We start by listing

some results about linear isometries of $H^p(\Omega)$, p>0. A linear isometry A of $H^p(\Omega)$ into $H^p(\Omega)$ is a linear operator satisfying

$$||Af||_p = ||f||_p$$
 , $\forall f \in H^p(\Omega)$

The composition operator C_{φ} is a linear isometry of $H^p(\Omega)$ onto $H^p(\Omega)$ if and only if φ is both 1-1, onto, and $\varphi(z_0)=z_0$ (see [1] (p. 228)). Let Γ be the boundary of Ω . If ω and ω' are the harmonic measures on Γ with respect to z_0 and $\varphi^{-1}(z_0)$ respectively, then by Theorem 1.3 (p.211) and Corollary 1.4 (p. 212) of [1] we have the following results.

Theorem 3.1: Let $0 \le p \le \infty$, $p \ne 2$, and let A be a linear isometry of $H^p(\Omega)$ into $H^p(\Omega)$. Then there is an analytic function ϕ mapping Ω into Ω and a function $F \in H^p(\Omega)$ with

$$Af=FC_{\phi}f,$$
 (3.1)

for each $f \in H^p(\Omega)$. Moreover, ϕ maps Γ into Γ a. e. ω and ϕ and F are related by

$$\omega(E) = \int_{\Phi^{-1}(E)} |F|^p d\omega,$$

for each measurable set E in Γ .

Corollary 3.2: Let Ω be bounded by a finite number of disjoint analytic simple closed curves. Let A be a linear isometry of $H^p(\Omega)$ onto $H^p(\Omega)$, $1 \le p \le \infty$, $p \ne 2$. Then $\forall f \in H^p(\Omega)$

$$Af = \lambda FC_{\phi}f, \tag{3.2}$$

where λ is a complex scalar, and ϕ is a 1-1 analytic mapping of Ω onto Ω and F is an outer function in $H^p(\Omega)$ with

$$|\mathbf{F}|^p = \frac{\mathbf{d}\omega'}{\mathbf{d}\omega}.\tag{3.3}$$

In particular, if A1=1, then $\forall f \in H^p(\Omega)$

$$Af = \lambda C_{\phi} f. \tag{3.4}$$

A linear isometry A of $N^{\dagger}(\Omega)$ into $N^{\dagger}(\Omega)$ is a linear operator satisfying

$$||Af|| = ||f||$$
, $\forall f \in N^{\dagger}(\Omega)$.

Now we prove the following results.

Theorem 3.3: Let Ω be bounded by a finite number of disjoint analytic simple closed curves namely Γ . If A is a linear isometry of $N^+(\Omega)$ into $N^+(\Omega)$, then the restriction of A to $H^1(\Omega)$ is a linear isometry of $H^1(\Omega)$ into $H^1(\Omega)$.

Proof: Let $f \in H^1(\Omega)$ be fixed and $Af=g \in N^+(\Omega)$. By proposition 3.3 of [3] for $f \in N^+(\Omega)$, we have

$$||f|| = \int_{\Gamma} log(1+|f^*|)d\omega ,$$

where f' is the boundary values function of f.

Since A is a linear isometry of $N^+(\Omega)$, for n = 1, 2, 3, ..., we obtain

$$\int_{\Gamma} \log(1 + \left| \frac{f^*}{n} \right|) d\omega = \left\| \frac{f}{n} \right\| = \left\| \frac{g}{n} \right\| = \int_{\Gamma} \log(1 + \left| \frac{g^*}{n} \right|) d\omega$$

Multiplying by n it follows that

$$\int_{\Gamma} log(1 + \left| \frac{f^*}{n} \right|)^n d\omega = \int_{\Gamma} log(1 + \left| \frac{g^*}{n} \right|)^n d\omega.$$

The fact that $(1+\frac{x}{n})^n$ increases monotonically to e^x as $n \to \infty$ for any $x \ge 0$,

the Monotone Convergence Theorem and Corollary 4.5 of [1] (p. 90), namely

$$||f||_1 = \int_{\Gamma} |f^*| d\omega, \ \forall \ \mathbf{f} \in \mathbf{H}^1(\Omega)$$

imply that

$$||f||_{1} = \int_{\Gamma} |f^{*}| d\omega = \lim_{n \to \infty} \int_{\Gamma} \log \left(1 + \left| \frac{f^{*}}{n} \right| \right)^{n} d\omega$$

$$= \lim_{n \to \infty} \int_{\Gamma} \log \left(1 + \left| \frac{g^{*}}{n} \right| \right)^{n} d\omega$$

$$= \int_{\Gamma} |g^{*}| d\omega = ||g||_{1} = ||Af||_{1}$$

Thus the restriction of A to $H^1(\Omega)$ is a linebv/ar isometry of $H^1(\Omega)$ into $H^1(\Omega)$.

As a consequence of Theorem 3.1, Corollary 3.2 and Theorem 3.3 we obtain the following corollaries.

Corollary 3.4: Let Ω be bounded by a finite number of disjoint analytic simple closed curves. Let A be a linear isometry of $N^+(\Omega)$ into $N^+(\Omega)$. Then

- 1. There is an analytic function ϕ mapping Ω into Ω and a function $F \in H^1(\Omega)$ such that (3.1) holds, $\forall f \in N^+(\Omega)$.
- 2. If A is onto, then there is a complex scalar λ , a 1-1 analytic mapping ϕ of Ω onto Ω , and an outer fuction F in $H^1(\Omega)$ such that (3.3) holds and (3.2) holds \forall , $f \in N^+(\Omega)$.

In particular, if A1=1, then (3.4) holds, \forall f \in N⁺(Ω).

Proof: Let A be a linear isometry of $N^{+}(\Omega)$ into $N^{+}(\Omega)$. Then by Theorem 3.3. A is a linear isometry of $H^{1}(\Omega)$ into $H^{1}(\Omega)$. Thus by Theorem 3.1, there is an analytic function φ mapping Ω into Ω and a function $F \in H^{1}(\Omega)$ such that (3.1) holds, $\forall f \in H^{1}(\Omega) \subseteq N^{+}(\Omega)$. We show that (3.1) holds, $\forall f \in N^{+}(\Omega)$ and the rest is clear.

Let $g \in N^+(\Omega)$ and define a multiplication operator M_g on $N^+(\Omega)$ by $M_gf=gf$, $\forall f \in N^+(\Omega)$. Since $N^+(\Omega)$ is an algebra the closed graph theorem implies that M_g is a continuous linear operator from $N^+(\Omega)$ into $N^+(\Omega)$. Therefore,

 $M_F \circ C_{\phi}$ is a continuous linear operator from $N^+(\Omega)$ into $N^+(\Omega)$ since C_{ϕ} is a continuous linear operator from $N^+(\Omega)$ into $N^+(\Omega)$.

Since $H^1(\Omega)$ is dense in $N^+(\Omega)$ and (3.1) holds, $\forall f \in H^1(\Omega)$, it follows that (3.1) holds $\forall f \in N^+(\Omega)$.

Corollary 3.5: Let Ω be bounded by a finite number of disjoint analytic simple closed curves. Then C_{ϕ} is an isometry of $N^{+}(\Omega)$ onto $N^{+}(\Omega)$ iff ϕ is both 1-1, onto , and $\phi(z_{0})=z_{0}$.

Proof: By [1] (p.228), we have, C_{ϕ} is an isometry of $H^{p}(\Omega)$, $1 \le p < \infty$, onto $H^{p}(\Omega)$ iff ϕ is both 1-1, onto , and $\phi(z_{0}) = z_{0}$.

Suppose C_{ϕ} is an isometry of $N^{+}(\Omega)$ onto $N^{+}(\Omega)$. Then by Theorem 3.3, C_{ϕ} is an isometry of $H^{1}(\Omega)$ onto $H^{1}(\Omega)$. Hence, ϕ is both 1-1, onto and $\phi(z_{0})=z_{0}$.

For the converse just note that, $\forall f \in N^{+}(\Omega)$

$$||f||=u_f(z_0)=u_f(\phi(z_0))=(u_f\circ\phi)(z_0)=u_{f\circ\phi}(z_0)=||f\circ\phi||=||C_{\phi}f||.$$

References

- [1] Fisher, S. D., "Function theory on planar domains", John Wily & Sons, Inc., New York (1983).
- [2] Masri, Mahmud I., R (Ω) is dense in N⁺(Ω), *Dirasat*, **24**, (**5**), (1997), 512, 513.
- [3] Masri, Mahmud I., The N(Ω) and N⁺(Ω) classes and composition operators, *Dirasat*, **21B**, **(5)**, (1994), 257-268.
- [4] Rudin, W., Some theorems on bounded analytic functions, *Tran. A. M. S.*, 78 (1955), 333-342.
- [5] Swanton, D. W., "Composition operators on H^p(D), Dissertation Northwestern University", Evanston., Illinions, (1974).