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ON COMPOSITION OPERATORS ON A2
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ABSTRACT

If © is an analytic function mapping the open unit disk D mto itself and A?
is the Bergman space of analytic functions on D, the compositon operator Cep, on Al

is defined by C 4§ = foDVieA ™

In this paper we consider the spectral radius, unitary equivalence, subnormality of
Cqp and study the case @(z) =2™ m=2, 3, ... in detail

Ao

DA ad p 18 98 A2 g duki 1D gamial 2 AN (po okl 15 O Lol 1!
Cp I It Aot 8 ron 6 aae JoliG o5 3355 (o019 D gl cbalonalt tHgult 50
AT 1 e f IS =Fo g ler A2 e

dpppdal! dnd ddally (55031 QIS ball? AN i o ;ohi 0k L 3530

Aol ! Jocil gt 5 g2 SO ATy oMl ja et Spadd
QZy=zM m=23, ...



An- Najah J. Res. , Vol. IIL, 9. (1995) Mahoud A. Masri

Hence, the norm of £ is given by

| 2
[£P-<£, £ —om

Of special interest is the function Kg(z)= (1—§z)'2
which serves as the '"reproducing kernel" for AZ,
i.e.,

£(Q)=<f,kp>V f€A* & V(eD.

Furthermore, the functions e,(z) = ¥n+1 zB, n =

0,1,2,... form an orthonormal basis for AZ-
If ¢ is a non-constant analytic function mapping D

into itself, then & induces a composition operator
Cp : A>A? defined by Cgf = fod V £ € A2,

Boyd {1] showed that €3 is bounded and obtained
norm estimats for Cg. He studied normal, unitary,
hermetian and compact composition operators on a2,
Furthermore, he computed the spectrum of Cy for
some special kinds of ¢.

Cowen [6] computed the spectral radius of Cg as an
operator on the Hardy space HZ, Here, we compute
the spectral radius of Cg as an operator on A2,
Also, in recent work Campbell-Wright [2] found a
necessary and sufficient condition for two
composition operators on H2 to be unitarily
equivalent.We show that the same thing holds in the
case of A2, Moreover, we give a necessary condition
for the subnormality of Cg on a2,

1.4
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Finally, as an example we study Cg when &(z)= z™, m

= 2[3,...

2.Spectral raduis. It was found cut that the fixed
points of © are related to some properities of (g
and to its spectral radius in particular. We say
that a point beD, the closure of D, is a fixed
point of & if limit.,q_e(xb) = Db. We write
(1
£

limit,,q_@ (rb) = &' (b). Although it is not apriori
evident that & has fixed points the follcwing is
Known.

Denjoy-Wolff Theorem ({8,9] : let & : D » D be
analytic and non-2lliptic IMobius transformation
onto D. Then 3 a unigue fixed point a of & in D
such that |&' (a)]| < 1.

We call the distinguished fixed point a the Denjoy-
WOolff point of & and we point out that if |a] 1
then 0 < & (a) < 1 and if |a|<1, then 0 <|
1. Now we are ready to prove the spectral radius
theorem which is similar to that of [6] in the H2
case.

Spectral radius theorem : Let @ : D » D be analytic
with Denjoy-Wolff Point a. Then the spectral radius
r(Cgs) of Cs is 1 when |a] < 1 and (&' (a))~! when
la] = 1.

Il

limity,. | €% 1/n

Proof : r(Cs)
1imity e, “C@n“1/n

Ve
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Where ¢, = 0%, 9, n=1,2,... ®1 = ® and ®3(z) = z V
z € D (see e.g., [4,p.142]).
Boyd [1] showed that

. Loy o 1+[¢(0) |
(1-1¢(0) 12)slC,ls 1-T$(0)

Hence,

lim,_,

sup (1+1¢,(0) |2)"¥2 <r(C,) <

1+1¢,(0) |

)1/n
1-1¢,(0) |

lim__Iinf (

11—+ 00

Since,

s . 1+!¢n(0)[ 1/n o
lim,_ inf (1_ ¢n(0>‘)

lim,_, inf (1+)¢,(0) [)¥/”(1-1¢ (0) |2) /"

- lim,_.inf (1-|¢,(0) |2)-Y/n

I1=>=
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We have
r(Cy) =limit,..(1-]d (0) %) /"

-limit . (1-]¢,(0) ) V/n (2.1)

Since (see [5]) limitp,, ®,(0) = a, r (Cg) = 1 if
la] < 1 by (2.1). when |a|] = 1 and & (a) < 1 we
have [3,p.32]

1-1¢,(0)

=& )
=TT 01T ¢ @

limit

Therefore, (2.1) implies
r(Cb)-limitm@(l-E¢n(O)i)‘”"

Hn—l l—](t’k(o)‘ )1/n

=limit (I

imi a kol_‘d’k‘,l(o)T

. 1_}4):*-1(0) i / -1
- Tn _— - (a
limit,., 1-76 (0] (¢'(a))

Y
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Next, suppose that |a|] = 1 and &' (a) = 1 . If {zp}
is a sequence in D converging to a such that ®(zp,)
2> a as n » o and

a=limit 1- (2, |

exists then by [3,pp25-32] a 2 & (a) = 1. Hence ,
letting

zp = ®-1(0), n=1,2, ... , we get
lim,_, inf 1-16,(0) | 21.
1- ‘(bn-l(o) I

Therefore, by (2.1)

n-1 1"'4)1:(0)' )1/n
k=0 1—‘¢k+1(0)!

l_ld)n-l(o) !
1_‘¢n(0) |

r(Cy)=limit, (O

<lim_._sup <1

-

1Y
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But (2.1) again implies r(Cg) 2 1 since 1-|@,(0)]<1
¥Vn=1,2,... . Thus r(Cg) = 1 = (& (a))~ .

3. Unitary equivalence. Campbell-Wright [2] proved
a theorem concerning unitéry equivalence of
composition operators on H2. Here we show that the
same thing holds in the A2 case,

Theorem : Let & and ¥ be analytic functions, not
disk automorphisms, that map D into itself. Suppose
that the Denjoy-Wolff point a of @& is in D with
®,(0) # a V positive integers n . Then (g is
unitarily equivalent to Cy on 22 iff w(z) = ei®
@(e~1i® z) for some real number 9.

Proof : Let U be a unitary operator on a2 such that
Cy = U* Cg U. Since |a| < 1 we have 0 <&’ (a)] < 1.
Thus [5]) implies that the non-zero sclutions of the
equation fo® = f are the constant functions. Hence,

the same is true for the equation fo¥ = £ by the
unitary equivalence of C4 and Cy Therefore,
U(1) = vy 1 where |y| = 1. Since Ky = 1 and C*Qka =

Ke(a) where C*Q is the adjoint of (g it follows
that ¥V n

UKg o) =UCE , (ko) =UCy " (ko) =Cy U (KG) =y Cy " (k) =¥ Ky o)

1€
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In particular, when n = 1, we get
(1- y (0) ‘2) _1-"kw(o) “-"Uky(o) H""Yk¢(o)"
""k¢(o)"' (1-1¢(0) |5

Therefore, ¢(0) = e-i6 ¥(0) for some real number ©.
Furthermore,

(1_5(0)47,,(0))-2'1(4,(0) (¢n(0) ) "<k¢(o)lk¢n(o)>
=<YKy 0y YKy (0) > =<Uky (o) s UKy (0

=<Ky (o) Ky 0y > = Koy (W ;(0)

-(1-¥(0) ¢y ,(0)) 2

Thus, ®,(0) = (¥(0)/2(0)) ¥,(0) = e-i® w_(0). It
follows that the analytic functions ¥(z) and elf
@(e'iez) agree on the sequence {el ¢,(0)} which
converges to e1® a in D and hence ¥(z) = elBa(e-1i6
z}).

Conversely, if B(z) = e1® z , z € D , then by
[1] CB is a unitary operator on A2 and Cy =
C*CeCp

4. Subnormality of Cg on a2 . Boyd [1] proved that
Cs is normal on a2 iff @(z) = az for some a with
lal<1 iff €C*p is a composition operator. Here, we
give a necessary condition for the subnormality of
Cs on A2. Let S be an operator on a Hilbert space
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H. S is called subnormal if .there is a Hilbert
space K containing H and a normal operator N on K
such that N leaves H invariant and S is the
restriction of N to H. Also, S is called hyponormal
if 8* 8 2 5 §° where S is the adjoint of S.

Theorem 4.1 : 1If 3 a positive integer n such that

iCse d<iCoe, 1 (4.1)

then C¢ is not subnormal.

Proof : Suppose 3 n as in (4.1). Let f, = Pe, and

£1 = Yen where p and y € R. It follows that

1 Jrk . J+k
Ej,k-o <C¢, fj,C¢ e > -

- 2 2
CEy, £ 4G, Cutf > + <Gy, Cpby> ¥ <Cpfy, CoLy?
=B2+2Bylc,e, P +v’Icie,)

-g(fp.y)

Yy
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Hence, (4.1) implies that the function g(B,y) has a
saddle point at (0,0). Thus 3 non-zero B,y €R such
that

1 k+3j F+k
Y ke $Go ULy GGTEEY < 0.

Therefore, {4,p.117] implies that Cg 1is not
subnormal.

In [7] Cowen and Kriete proved that @®(0) = 0
if C3 is hyponormal on H2. We conjecture that the
same result is true for AZ, Moreover, the next
results are similar to theirs.

Lemma : If 0 < |a] < 1 or if |a] = 1 and & (a) = 1,
then neither Cg nor C*¢ is hyponormal on A2,

Proof : The spectral radius theorem implies r(Cg)=1
but |Cg| > 1. Therefore, [4,p.141] implies that
neither Cg nor C*¢ is hyponormal on AZ.

We note that in the lemma neither Cg nor C*¢
is subnormal on A2 since subnormality implies
hyponormality[4,p. 140].

Theorem 4.2 : If C*; is hyponormal on AZ, then |al
= 1 and @ (a) < 1, or else Cy is normal on AZ.

Proof :
®(0) = 0.
We have S = zKaZ is an invariant subspace of Cg on

By the lemma we need only examine the case

1y
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A% V positive integers k. Hence , SL {g an invariant

”
subspace of €'y  sine St is finite dimensional and
C*@ hyponormal on it, [4,p. 142] implies that C*@

is normal on S+t
Therefore, by [1] &(z)

and consequently Cs is normal.

az for some a with |a| =< 1

5. Example . Let &(z) = zm, m = 2,3,... and Cg be

the induced composition operator on A2, We prove

that

a) o(Cs) = (A € C :|A| =1/4m } U {1} (5.1)
Where o(Cg) is the spectrum of Cg.

b) €& is bounded below by 1/+vm

c) Cs is not subnormal.

Proof : a) Let £(z) = I%.g akzk and g(z) # bz
where b = 0,
Suppose A # 1 and (Cg - AI)(£f) = g . Then

. = + .
) vo 2x2 T =bz ) u0 Aa;z

VA
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Fixing m and equating the corresponding
coefficients we get

a;—% and a,,- i“, k=1,2,3
Hence,
amn-—%,n-l,z 3,
Thus,

-, ey, ey ;
k-0 k+1 =1 mngq n=1 A2n+2(mn+1)

Therefore, the ratio test implies there does not
exist £ e a° such that (Cy - AI)(f) = g if |A] <
1/4m which means

(L eC: [A] <1/ 4m} ¢ o(Cg ) (5.2)
Next let A2; = { £ € A2 : £(0) = 0 }. If c¢|& .

i

the restriction of Cg g AZO and f(z) = =®k= 1akzk
€ A2 then for each n = 1,2, . we have

1€Cy | 42) " (£) 2= £ J2-1 Y5 a,z™ k|

lal®  (k+1)
Ek- (k+1 (m"k+1)

114
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since (k+1)/ (m"k+1) Jecreases to 1/m® as k » o we

get

(1/m®) |£122(Cy | 52) ® (£) 12 (2/ (m2+1)) [ £

Therefore,

(L/VA) SI(Cy] 42) PIM/7s (2/m7e1) /20

letting n » o it follows that

T(Cylp2) =1/Vm (5.3)

Next if Cglg is the restriction of Cs to the
complex numbers then by [5] the only non-zero
solutions of (Cs _ x1)(f) = 0 is A = 1 and f
constant. So if A =1, then the kernel of €5 _ 51

is zero. lMoreover, V constant «

o
1-A

(C‘bi C—A'I) ( )=0¢

AY .
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i.e., Cglg - Al is onto and hence invertible.

Therefore,
o(Cyle) = (1).
Finally , since

0 (Cy) =a(Cy | 2+ Cy| &) =0 (Cy| A J 0 (Cyl o)

(see e.g., [4,p. 43]) and observing that 1 is an
eigenvalue of Cgy (5.2) and (5.3) imply (5.1).

(b) let £(z) = E%.qg ax zk € A2, since (k+1)/(mk+1)
decreases to 1/m as k » » we see that Cg is bounded

below by 1/vm from

IC£1=1 Y5 az™2=Y " o ® kel ), 2y
@ Do Z™ =Y (k+1) mk+1 “m

(c) Theorem 4.1 implies that Cg is not subnormal

2 2 2
“C"ek"-J el el =IC,e, I

because

(AR
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We close this example by pointing out that

1+k
C -l —e , k=0,1,2,...
$Cx™\ Tk Omk

and

Cre, | 1_+]E_Jf_ll<£"l erm  if(k/meN

0 if(k/m)¢N

Where N is the natural numbers.

\YY
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