
Introducing Groups to an Annotation System

Amjad W. Hawash

Sapienza University, Rome, Via Salaria 113, Italy,
hawash@di.uniroma1.it

Abstract. Annotation of online documents has become an important
practice, allowing the addition of valuable information to existing re-
sources without corrupting them, thus introducing a novel way of user
collaboration. The MADCOW annotation system provides services for
annotating multimedia contents in HTML pages. Introducing groups
with their related services to the MADCOW system enhances the se-
curity and privacy of annotations for group members as well as their col-
laboration. Usability problems arose with respect to the identification of
significant matches between users’ interests and group topics, to support
the process of admitting users to groups. Therefore, the use of matching
methods based on ontologies and URL comparison enhances the joining
process with respect to time, effort and relevance. This research illus-
trates our current work for introducing groups to the MADCOW system
and inspecting the Groups-Users relevance problem by analyzing and
implementing relevance measurements.

Keywords: Annotation; Groups; Collaboration; Ontology.

1 Introduction

The MADCOW1 system is a tool enabling its users to annotate contents (texts,
images and video clips) of Web pages with textual annotations [1]. The 3-tier
architecture of the system in Figure 1 guarantees security in the processing of
handling users requests and in returning results.

Annotations published to MADCOW are saved in a dedicated server and can
be of three types:

1. Public: viewable by any user.
2. Private: viewable by their submitters only.
3. Group-related : viewable by any member of the group to which they are

posted, and nobody else.

Collaboration among users is enhanced by public annotations while privacy
and security are enhanced by private ones [2, 3]. Groups were introduced in [4]
as a solution to the collaboration-privacy and security conflict so that sets of
users sharing interest in some domain will be able to conduct a collaborative

1 Multimedia Annotation of Digital Content Over the Web

Fig. 1. MADCOW 3-tier Architecture.

discussions within one group, while keeping it protected and confidential with
respect to users outside the group.

The MADCOW system supplies group owners with capabilities to manage
their groups and to extend some of these capabilities to group moderators (Group
owner and moderators are collectively called authorisers). They are able to cre-
ate, update and delete their groups, and to select one of three different policies
to allow users to join their groups, i.e. to become members:

1. Public: any user can join the group.

2. Invite: users can join the groups only if invited by some group member with
authoriser status.

3. Apply : users apply for joining the group, and admission is subject to approval
by an authoriser.

A user invited to a group is given reader or writer privileges. A reader can
only read annotations. A writer can both read and submit annotations.

Further operations allow a finer management of group composition. Atomic
operations for management of group members and of their annotations have been
formalized and used to describe more complex ones. In particular, group owners
may execute the Extraction, Union, Intersection and Subsumption operations.

Originally, only a manual process was available to allow users to join a group:
a group authoriser had to select from the list of all MADCOW users the set of
users to be invited, while a user had to search for groups to send join requests
to their authorisers.

Eight undergraduate classes from different disciplines, for a total of 152 stu-
dents, have been involved in a supervised test which lasted for 15 days. Different
Human Computer Interaction metrics (such as understandability of individual
steps and interface ease of use) have been tested, while the time needed to

complete each operation was collected in the background. Table 1 presents in-
formation about the number of times the different operations on groups were
used and on the average time needed to complete an operation.

Table 1. Number of execution and average duration (secs) for operations.

Create Update Invite Join

of times 72 51 719 125

Average 37.3 15.9 99.25 5.6

Two problems emerged with respect to this manual group joining process:

1. Time-Effort : The manual process is a tedious operation that consumes a
lot of time (99.25 sec. as average invitation time from Table 1) and effort,
especially with a huge number of users.

2. Irrelevance: Group authorisers have no idea about ”who are the inter-
ested users to invite”, and users have little indications about ”which
groups to join”.

An automatic groups-users suggestion process has therefore been introduced.
Authorisers are presented with the set of those users whose public annotations
are mostly related to the group topics and could likely be interested in becoming
writers. The same technique is used to suggest groups for users, so that they are
presented with those groups that could interest them. Ontology-based and URL-
based matching processes have been used to implement a group-user matching
after defining ontological domains in the system, so that each domain is referred
to some ontology and is the possible core topic for a set of groups.

Class Match Measure (CMM) presented in [5] is used to measure the group-
user relevance in the ontology-based matching. Authorisers for a group may
request a ranked list of probable writers. Also users can request a ranked list
of domains, for each of which the set of groups referring to it is given. A pilot
test on the use of CMM has shown a decrease in the average invitation time
from 99.25 to 10.6 seconds, offering a promising solution to the time, effort and
irrelevance problems.

This research represents a Ph.D. work supervised by Prof. Paolo Bottoni
at the Department of Computer Science at Sapienza University of Rome, Italy.

2 Related Work

Several tools allow creation of annotations and collaboration between annotators
in various domains, but few of them deal with groups, mostly supplying public
annotations only. Among those which do offer groups, little support is given for
group management, making the transfer of annotations among groups difficult.

Diigo Toolbar2 lets users create their own groups and invite other members,
and provides some services for groups archiving and dissemination. A.nnotate3

takes a snapshot of a document, Web page or image, to produce a read-only
copy, which can be annotated and shared with other users, depicting a kind
of grouping. In Bounce4, users produce notes for snapshots of Web pages and
collaborate on them with other users.

Considering group operations, some work has been done in the context of
classifying documents according to user annotations [6]. The work in [7] considers
the annotation of data inside databases and the propagation and merging of such
annotations through queries.

Ontologies as representatives of knowledge were used in several domains.
Paralic and Kostjal [8] enhanced the retrieval process by considering ontologies as
representational schemes for domain knowledge. An efficiency comparison with
the vector and the latent semantic indexing models obtained promising results.
Patel et al. explored the use of ontologies in order to automate common clinical
tasks, e.g. selection of a patient cohort for clinical trials, by considering the
matching of patient records to clinical trials as a problem of semantic retrieval [9].

Several works deal with measuring the relevance of an ontology to a collection
of terms. In [10], a similarity is defined between sets of concepts belonging to
a common ontology. They define a similarity between a single concept and a
set of concepts and between two sets of concepts establishing some criteria that
should be met. An implementation of the relevant algorithms within the Jena
framework5 was also developed.

MADCOW enhances the annotation process by both introducing groups and
its related services as well as solving the problem of group-user matching by
combining ontology- [11] and URL-based matches.

3 Applied Methodology

My Ph.D. project is concerned with analyzing and implementing all MADCOW
group-related services in order to enhance the group joining process, ensure
security and privacy, and support collaboration for group members. Currently,
our work is focused on enhancing the process of joining groups by automating
the suggestion of users to groups’ authorisers and of groups to users.

3.1 Groups Services

The work on groups in MADCOW began by implementing their preliminary
services (Adding, Updating and Deleting Groups) as well as:

2 http://www.diigo.com/
3 http://a.nnotate.com/
4 http://www.bounceapp.com/
5 http://jena.sourceforge.net

– Group Management: management of invitations and applications to groups,
appointment/removal of moderators, blacklists of group writers, which pre-
vent them from adding new annotations until their removal from the black-
list, definition of restrictions on display of annotations in a group, listing all
public groups in the system, and ordinary search for groups by their titles.

– Atomic Groups Operations: creation of new groups could be done man-
ually by any user, or could be the result of atomic operations (except for
subsumption). Considering groups with their contained members as sets of
elements, the MADCOW system provides the following collection of set-
based operations6 (depicted in Figure 2):

1. Extraction: creation of a new group from an existing one, while keeping
the original one unchanged.

2. Union: creation of a new group with all members from two existing ones,
with the option to delete or keep the original ones.

3. Intersection: creation of a new group with members in common between
two existing ones.

4. Subsumption: deleting a group whose members are all members of an-
other one, absorbing their annotations in the latter.

A detailed description for all related groups management is given in a paper
recently submitted to the ”Journal of Visual Languages and Computing”
and currently under review. The article contains a full description (textual and
mathematical formalisation) of all related services, the system architecture, de-
picting the system static structure and dynamic behavior, a comprehensive test
that measures several HCI metrics, as well as two detailed scenarios illustrating
the mechanisms for system services.

3.2 Current Work

Our efforts now are directed to solve the problems (time, effort and irrelevance)
of the group joining process. An ontology- and a URL-based matching processes
are proposed to automate groups-users suggestions.

Simply, the idea relies on using ontologies (as a universal source of knowl-
edge) to represent sets of related groups, and executing a match between users’
annotations (public and private) and concepts in ontologies available in a repos-
itory to better match groups and users. We introduced the notion of MADCOW
domain, representatives for ontologies inside the system. Each domain has to be
associated with an ontology before it is used to represent groups in the system.
Associating ontologies with domains minimizes the time needed in the matching
algorithm since each domain represents a set of groups. Referring a group to a
domain could be done on a manual or automated basis. Groups’ owners could
manually refer their groups to the most relevant domains (by checking their
associated ontologies concepts), or, if they are not satisfied with the available

6 Special considerations are implemented to manage members’ privileges and annota-
tions before and after each operation.

(a) Extraction (b) Union

(c) Intersection (d) Subsumption

Fig. 2. A schematic view of operations on groups.

domains, they can provide the system with a set of terms that best describe the
intention of their groups. The system performs a matching to present the most
appropriate ontologies (ranked according to their group relevance) to let owners
choose one of them. The selected ontology concepts become the group’s terms.

The following pseudocode illustrates the process of associating a group with
a domain. The code starts by executing the function selectGroup() that saves
the selected group in the variable selectedGroup. The names of all the avail-
able domains in the system are loaded via loadDomains() that saves them
in domains variable. A loop is entered which first enables the owner to se-
lect one of the domains with selectDomain(domains) function, then the ex-
ecution of checkDomain(selectedDomain.getTerms()) enables the owner to
check whether the domain terms represent the intention of the selected group
or not. The loop keeps going till either the owner is satisfied with the se-
lected domain, as indicated by the function checkdomain() returning true,
or all the domains have been considered. In the first case the execution of
associate(selectedGroup,selectedDomain) creates an association between
the selected group and domain. In the second case, the owner can use the au-

tomatic support for group-domain association. This process starts by declaring
an empty list matchedOntologies; then the function askForTerms() asks the
owner to provide a set of terms which he or she deems representative of the
group and saves them in the collection terms. A matching between these terms
and the terms in all ontologies available in the Ontology Repository then takes
place by executing the function CMM(). Each ontology that satisfies the matching
condition is added to matchedOntologies. Finally, a call to rank() generates a
ranking of all the contents of matchedOntologies according to their relevance
values. The function selectOntology() enables the group owner to select the
most appropriate ontology from the list of matched ontologies. The system then
checks whether or not the selected ontology is associated with a domain by ex-
ecuting the function isAssociated(). If it is not associated, then the function
associateWithDomain() is executed to associate it with a domain related to
its title. In the final step, associate() generates an association between the
selected group and the domain linked with the selected ontology.

se lectedGroup = se lectGroup () ;
domains = loadDomains () ;
r epeat {

selectedDomain = selectDomain (domains) ;
i f (checkDomain (selectedDomain . getTerms ())) {

a s s o c i a t e (se lectedGroup , selectedDomain) ;
break ;

}
} un t i l (a l lDomainsConsidered ()) ;

i f (! group . checkAssoc ia t i on ()) {
matchedOntologies = new L i s t () ;
terms = askForTerms () ;
foreach (onto logy in MADCOW. Onto log i e s)

i f (CMM(terms , onto logy . getTerms ())>0)
matchedOntologies . add (onto logy) ;

matchedOntologies . rank () ;
s e l e c tedOnto logy = se l e c tOnto logy () ;
i f (! s e l e c tedOnto logy . i sA s s o c i a t ed ())

s e l e c tedOnto logy . associateWithDomain (se l e c tedOnto logy . T i t l e) ;
a s s o c i a t e (se lectedGroup , se l ec tedOnto logy . getDomain ()) ;

}

Group owners then could ask the system to suggest users to their groups. As
a consequence, the system executes a textual comparison between all ontology
concepts and all the tags employed by users to adorn their public annotations.
The same comparison takes place when users ask the system to propose some
groups to send request joins. Comparison here includes both public and private
annotations of users. Figures 3(a) and 3(b) depict the matching between a group
and an ontology and between a domain and a user, respectively.

The CMM (exact and partial) is meant to evaluate the coverage of an on-
tology for a given set of search terms. By assuming that a given group is char-
acterised by a set of terms, this measure is used to calculate to which extent
an ontology covers the terms provided by the group. Hence, we measure the
relevance of an ontology to a group in terms of matches between group terms
and ontology lexemes. We use the same measure to calculate the relevance of
groups for users depending on the terms associated with a group and the set of
tags employed by users to adorn their annotations.

(a) Group-Ontology Matching (b) Domain-User Matching

Fig. 3. A visual depiction of Group-Ontology and Domain-User matches.

Current work (with its related terms, concepts, methodology) is described in
an IEEE conference accepted research [11] as well as the full mathematical rep-
resentations, algorithmic approach, pseudocodes and illustrating scenario. We
extended this paper in another one submitted to ”2013 International Work-
shop on Visual Languages and Computing”. In this research, we also
discussed another way for automating the groups-users suggestion by matching
URLs that are annotated by both group members and non-grouped users, as-
suming them as indicators of common interests related to the group intent. From
this point of view, group authorisers could be interested in those users sharing
those interests. The same process could be applied by users who are searching
for interesting groups to join. URL-based matching is illustrated in Figure 4.

3.3 Involved Methodology

We built a repository from 6 different ontologies: Animals (with 899 concepts),
Plants (709), Finance (2037), Artificial Intelligence (2386), Vehicles

(168) and Viruses (296) gathered from [12]. The ontologies are composed of set
of concepts (classes) that have only IS A relationship between them, with a text
describing each class. Ontologies are represented via MySQL tables for faster
access [13] and fast calculation of exact and partial matches. A fragment of the
Entity-Relationship diagram for the ontology repository is shown in Figure 5.

We conducted a pilot test on the matching process. 17 participants were di-
vided into 3 disjoint sets (6, 6, 5). Users from the first set created 16 various

Fig. 4. URL Matching.

MADCOW groups and assigned domains for them, then manually invited par-
ticipants from the second set to join the groups (20 invitations were created).
These accepted the invitations and submitted annotations to the joined groups
(26 annotations). Participants in the third set submitted private and public an-
notations (31 annotations) and all combined with suitable tags. We asked users
to annotate a set of similar websites to check URL matching (for this we used 10
different websites). Group owners requested the system to suggest members and
invitations were sent (9 invitations). Participants of the third set required the
system to suggest proper groups and sent membership requests (12 requests). By
comparing the joint duration for group owners of the processes of obtaining user
suggestions / selecting users / sending invitations with that of the manual invi-

Fig. 5. A fragment of the Ontology Repository Scheme.

tation process (in the first work), we note that the average invitation duration
decreased from 99.25 (in Table 1) to 10.6 seconds.

4 Conclusion and Future Works

Introducing groups to MADCOW system solved the tension between users’ secu-
rity and privacy and improved collaboration. Proper groups-users matching en-
hanced the groups-users suggestions, minimizing time and effort for both groups
authorisers and users, and solved the irrelevance problem. The reduction in av-
erage time for user invitation between the two tests encourages us to investigate
other relevance measures that could provide further refinements in groups-users
matching as far as relevance is concerned.

References

1. Bottoni, P., Civica, R., Levialdi, S., Orso, L., Panizzi, E., Trinchese, R.: Madcow:
a multimedia digital annotation system. In: Proc. AVI’04, ACM (2004) 55–62

2. Heck, R., Luebke, S., Obermark, C.: A Survey of Web Annotation Systems (2008)
3. Wolfe, J.L.N., M., C.: From the margins to the center: The future of annotation.

J. of Business & Technical Communication 15(3) (2011) 333–371
4. Avola, D., Bottoni, P., Laureti, M., Levialdi, S., Panizzi, E.: Managing groups and

group annotations in madcow. In: Proc. DNIS 2010. Volume 5999 of LNCS. (2010)
194–209

5. Alani, H., Brewster, C., Shadbolt, N.: Ranking ontologies with aktiverank. In:
Proc. ISWC’06, Springer (2006) 5–9

6. Denoue, L., Vignollet, L.: Personal information organization using web annota-
tions. In: Proc. WebNet 2001. (2001) 279–283

7. Kostylev, E., Buneman, P.: Combining dependent annotations for relational alge-
bra. In: Proc. ICDT 2012. (2012)

8. Paralic, J., Kostial, I.: Ontology-based information retrieval. In: Proc. IIS 2003.
(2003) 23–28

9. Patel, C., Cimino, J., Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Ma,
L., Schonberg, E., Srinivas, K.: Matching patient records to clinical trials using
ontologies. In: Proc. ISWC’07/ASWC’07, Springer (2007) 816–829

10. Cord̀ı, V., Lombardi, P., Martelli, M., Mascardi, V.: An ontology-based similarity
between sets of concepts. In: Proc. WOA 2005, Pitagora Editrice (2005) 16–21

11. Avola, D., Bottoni, P., Hawash, A.: Using ontologies for users-groups matching in
an annotation system. In: Proc. CSIT 2013 5th International Conference on CSIT.
(2013) 38–44

12. Velardi, P., Faralli, S., Navigli, R.: OntoLearn reloaded: A graph-based algorithm
for taxonomy induction. Computational Linguistics 39(3) (2013)

13. Atzeni, P., Paolozzi, S., Nostro, P.D.: Ontologies and databases: Going back and
forth. In: Proc. ODBIS 2008. (2008) 9–16

