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Abstract
We approximately solve the Dirac equation for the inversely quadratic Yukawa potential
including a Coulomb-like tensor potential with arbitrary spin–orbit coupling quantum
number κ . In the framework of the spin and pseudospin (pspin) symmetry, we obtain the
energy eigenvalue equation and the corresponding eigenfunctions in closed form by using
the Nikiforov–Uvarov method. The numerical results show that the Coulomb-like tensor
interaction removes degeneracies between spin and pseudospin state doublets.

PACS numbers: 03.65.Ge, 03.65.Fd, 03.65.Pm, 02.30.Gp

1. Introduction

Relativistic symmetries of the Dirac Hamiltonian was
discovered many years ago. However, these symmetries
have recently been recognized empirically in nuclear and
hadronic spectroscopies [1]. Within the framework of the
Dirac equation, the pseudospin (pspin) symmetry is used to
feature deform nuclei and superdeformation to establish an
effective shell-model [2–4]. The spin symmetry is relevant
for mesons [5] and occurs when the difference of the
scalar S(r) and vector V (r) potentials is constant, i.e.
1(r)= Cs , and the pspin symmetry occurs when the sum
of the scalar and vector potentials is constant, i.e. 6(r)=

Cps [6–7]. The pspin symmetry refers to quasi-degeneracy of
single-nucleon doublets with non-relativistic quantum number
(n, l, j = l + 1/2) and (n − 1, l + 2, j = l + 3/2), where n, l
and j denote the single-nucleon radial, orbital and total
angular quantum numbers, respectively [8, 9]. Further,
the total angular momentum is j = l̃ + s̃, where l̃ = l + 1
is the pseudo-angular momentum and s̃ is the pspin
angular momentum [10]. Recently, the tensor potentials were
introduced into the Dirac equation with the substitution Ep →

Ep − imω β · r̂ U (r) and a spin–orbit coupling added to the

Dirac Hamiltonian [11, 12]. Lisboa et al [13] have studied
a generalized relativistic harmonic oscillator for spin-1/2
particles by considering a Dirac Hamiltonian that contains
quadratic vector and scalar potentials together with a linear
tensor potential under conditions of pspin and spin symmetry.
Alberto et al [14] studied the contribution of the isoscalar
tensor coupling to the realization of pspin symmetry in nuclei.
Akçay [15] solved exactly the Dirac equation with scalar
and vector quadratic potentials including a Coulomb-like
tensor potential. He also solved exactly the Dirac equation
for a linear and Coulomb-like term containing the tensor
potential [16]. Also, Aydoğdu and Sever [17] obtained the
exact solution to the Dirac equation for the pseudoharmonic
potential in the presence of linear tensor potential under pspin
symmetry and showed that tensor interactions remove all
degeneracies between members of pspin doublets. Ikhdair
and Sever [10] solved the Dirac equation approximately for
the Hulthén potential including Coulomb-like tensor potential
with an arbitrary spin–orbit coupling number κ under spin and
pspin symmetry limits. Very recently, Hamzavi et al [18, 19]
presented exact solutions to the Dirac equation for Mie-type
potential and approximate solutions to the Dirac equation
for Morse potential with a Coulomb-like tensor potential.
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There are many works on the solutions to the Schrödinger,
Klein–Gordon (KG) and Dirac equations for various types of
potentials by different authors [20–38].

In this work, our aim is to solve the Dirac equation for the
inversely quadratic Yukawa (IQY) potential in the presence of
spin and pspin symmetries and by including a Coulomb-like
tensor potential. The IQY potential takes the following form:

V (r)= −
V0

r2
e−2αr , (1)

where α is the screening parameter and V0 is the depth of
the potential. A form of Yukawa potential has been used
earlier by Taseli [39] in obtaining modified Laguerre basis for
hydrogen-like systems. Also, Kermode et al [40] have used
different forms of the Yukawa potential to obtain the effective
range functions. But not much has been done in solving the
IQY potential.

This paper is organized as follows. In section 2, we
briefly introduce the Dirac equation with scalar and vector
potentials with arbitrary spin–orbit coupling quantum number
κ including tensor interaction under spin and pspin symmetry
limits. The Nikiforov–Uvarov (NU) method is presented in
section 3. The energy eigenvalue equations and corresponding
eigenfunctions are obtained in section 4. In this section, some
remarks and numerical results are also presented. Finally, our
conclusion is given in section 5.

2. The Dirac equation with tensor coupling potential

The Dirac equation for fermionic massive spin-1/2 particles
moving in the field of an attractive scalar potential S(r), a
repulsive vector potential V (r) and a tensor potential U (r) (in
units h̄ = c = 1) is[
Eα · Ep +β (M + S(r))−iβ Eα · r̂U (r)

]
ψ (Er)= [E−V (r)]ψ (Er) ,

(2)

where E is the relativistic binding energy of the system,
Ep = −i E∇ is the three-dimensional momentum operator and M
is the mass of the fermionic particle. Eα and β are the 4 × 4
usual Dirac matrices given by

Eα =

(
0 Eσ

Eσ 0

)
, β =

(
I 0
0 −I

)
, (3)

where I is the 2 × 2 unitary matrix and Eσ are three-vector spin
matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (4)

The eigenvalues of the spin–orbit coupling operator
are κ = ( j + 1

2 ) > 0 and κ = −( j + 1
2 ) < 0 for unaligned

spin j = l −
1
2 and the aligned spin j = l + 1

2 , respectively.
The set (H 2, K , J 2, Jz) can be taken as the complete set
of conservative quantities with EJ being the total angular
momentum operator and K = (Eσ · EL + 1) is the spin–orbit
where EL is the orbital angular momentum of the spherical
nucleons that commutes with the Dirac Hamiltonian. Thus,
the spinor wave functions can be classified according to their
angular momentum j , the spin–orbit quantum number κ and

the radial quantum number n. Hence, they can be written as
follows:

ψnκ (Er)=

(
fnκ (Er)

gnκ (Er)

)
=

1

r

(
Fnκ (r) Y l

jm (θ, ϕ)

iGnκ (r) Y l̃
jm (θ, ϕ)

)
, (5)

where fnκ (Er) is the upper (large) component and gnκ (Er) is
the lower (small) component of the Dirac spinors. Y l

jm (θ, ϕ)

and Y l̃
jm (θ, ϕ) are spin and pspin spherical harmonics,

respectively, and m is the projection of the angular momentum
on the z-axis. Substituting equation (5) into equation (2) and
making use of the following relations:

(Eσ · EA)(Eσ · EB)= EA · EB + iEσ · ( EA × EB), (6a)

(Eσ · EP)= Eσ · r̂

(
r̂ · EP + i

Eσ · EL

r

)
, (6b)

together with the properties

(Eσ · EL)Y l̃
jm (θ, φ)= (κ − 1) Y l̃

jm (θ, φ) ,

(Eσ · EL)Y l
jm (θ, φ)= − (κ − 1) Y l

jm (θ, φ) ,

(Eσ · r̂)Y l̃
jm (θ, φ)= −Y l

jm (θ, φ) ,

(Eσ · r̂)Y l
jm (θ, φ)= −Y l̃

jm (θ, φ) ,

(7)

one obtains two coupled differential equations whose
solutions are the upper and lower radial wave functions
Fnκ (r) and Gnκ (r) as(

d

dr
+
κ

r
− U (r)

)
Fnκ(r)= (M + Enκ −1(r))Gnκ (r) ,

(8a)(
d

dr
−
κ

r
+ U (r)

)
Gnκ(r)= (M − Enκ +6(r)) Fnκ(r),

(8b)
where

1(r)= V (r)− S(r), (9a)

6(r)= V (r)+ S(r). (9b)

After eliminating Fnκ(r) and Gnκ(r) in equations (8),
we obtain the following two Schrödinger-like differential
equations for the upper and lower radial spinor components:[

d2

dr2
−
κ(κ + 1)

r2
+

2κ

r
U (r)−

dU (r)

dr
− U 2(r)

]
Fnκ(r)

+
d1(r)

dr

M + Enκ −1(r)

(
d

dr
+
κ

r
− U (r)

)
Fnκ(r)

= [(M + Enκ −1(r)) (M − Enκ +6(r))] Fnκ(r),
(10)[

d2

dr2
−
κ(κ − 1)

r2
+

2κ

r
U (r)+

dU (r)

d r
− U 2(r)

]
Gnκ(r)

+
d6(r)

dr

M − Enκ +6 (r)

(
d

dr
−
κ

r
+ U (r)

)
Gnκ(r)

= [(M + Enκ −1(r)) (M − Enκ +6(r))] Gnκ(r),
(11)

2
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respectively, where κ(κ−1)= l̃(l̃ + 1) and κ(κ + 1)= l(l + 1).
The quantum number κ is related to the quantum numbers for
spin symmetry l and pspin symmetry l̃ as

κ =



−(l + 1)= −( j + 1/2) (s1/2, p3/2, etc)

j = l + 1
2 , aligned spin (κ < 0),

+l = + ( j + 1/2) (p1/2, d3/2, etc)

j = l −
1
2 , unaligned spin (κ > 0),

(12)

and the quasidegenerate doublet structure can be expressed
in terms of a pspin angular momentum s̃ = 1/2 and
pseudo-orbital angular momentum l̃, which is defined as

κ =



−l̃ = −( j + 1/2) (s1/2, p3/2, etc)

j = l̃ −
1
2 , aligned pspin (κ < 0),

+ (l̃ + 1)= +( j + 1/2) (d3/2, f5/2, etc)

j = l̃ + 1
2 , unaligned spin (κ > 0),

(13)

where κ = ±1,±2, . . . . For example, (1s1/2, 0d3/2) and
(0p3/2, 0f5/2) can be considered as pspin doublets.

2.1. Pseudospin symmetry limit

Ginocchio [7] showed that there is a connection between pspin
symmetry and near equality of the time component of a vector
potential and the scalar potential, V (r)≈ −S(r). After that,
Meng et al [41, 42] derived that if d[V (r)+S(r)]

dr =
d6(r)

dr = 0
or 6(r)= Cps = constant, then pspin symmetry is exact in
the Dirac equation. Here, we are taking 1(r) as the IQY
potential (1) and the tensor potential as the Coulomb-like
potential, i.e.

1(r)= −
V0

r2
e−2αr , (14)

U (r)= −
H

r
, H =

Za Zbe2

4πε0
, r > Rc, (15)

where Rc = 7.78 fm is the Coulomb radius and Za and Zb

denote the charges of the projectile a and the target nuclei b,
respectively [10]. Under this symmetry, equation (11) is recast
in the simple form[

d2

dr2
−
κ(κ − 1)

r2
−

2κH

r2
+

H

r2
−

H 2

r2

]
Gnκ(r)

=

[
γ̃

(
−

V0

r2
e−2αr

)
+ β̃2

]
Gnκ(r),

(16)

where κ = −l̃ and κ = l̃ + 1 for κ < 0 and κ > 0,
respectively. Also, we identified γ̃ = Enκ − M − Cps and
β̃2

= (M + Enκ)(M − Enκ + Cps).

2.2. Spin symmetry limit

In the spin symmetry limit, d1(r)
dr = 0 or 1(r)= Cs =

constant [41, 42], with 6(r) taken as the IQY potential (1)

and the Coulomb-like tensor potential. Thus, equation (10) is
recast in the form[

d2

dr2
−
κ(κ + 1)

r2
−

2κH

r2
−

H

r2
−

H 2

r2

]
Fnκ (r)

=

[
γ

(
−

V0

r2
e−2αr

)
+β2

]
Fnκ (r) ,

(17)

where κ = l and κ = −l − 1 for κ < 0 and κ > 0,
respectively. Also, γ = M + Enκ − Cs and β2

=

(M − Enκ)(M + Enκ − Cs).
Since the Dirac equation with the IQY potential has no

exact solution, we use an approximation for the centrifugal
term as [43–46]

1

r2
≈ 4a2 e−2ar

(1 − e−2ar )2
. (18)

Finally, for the solutions to equations (16) and (17) with
the above approximation, we will employ the NU method,
which is briefly introduced in the following section.

3. The Nikiforov–Uvarov method

This method can be used to solve second-order differential
equations with an appropriate coordinate transformation s =

s(r) [47]:

ψ ′′

n (s)+
τ̃ (s)

σ (s)
ψ ′

n(s)+
σ̃ (s)

σ 2(s)
ψn(s)= 0, (19)

where σ(s) and σ̃ (s) are polynomials, at most of second
degree, and τ̃ (s) is a first-degree polynomial. A solution to
equation (19) is found by a separation of variables, using
the transformation ψn(s)= ϕ(s)yn(s). It reduces (19) into an
equation of hypergeometric type

σ(s)y′′

n (s)+ τ(s)y′

n(s)+ λyn(s)= 0. (20)

yn(s) is the hypergeometric-type function whose polynomial
solutions are given by the Rodrigues relation:

yn(s)=
Bn

ρ(s)

dn

dsn

[
σ n(s)ρ(s)

]
, (21)

where Bn is the normalization constant and the weight
function ρ(s) must satisfy the condition [47]

d

ds
w(s)=

τ(s)

σ (s)
w(s), w(s)= σ(s)ρ(s), (22)

and ϕ(s) is defined by its logarithmic derivative relation

ϕ′(s)

ϕ(s)
=
π(s)

σ (s)
. (23)

The function π(s) and the parameter λ, required for this
method, are defined as follows:

π(s)=
σ ′

− τ̃

2
±

√(
σ ′ − τ̃

2

)2

− σ̃ + kσ , (24a)

λ= k +π ′(s). (24b)

3
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In order to find the value of k, the expression under the
square root must be a square of a polynomial. Thus, a new
eigenvalue equation is

λ= λn = −nτ ′
−

n(n − 1)

2
σ ′′, (25)

where
τ(s)= τ̃ (s)+ 2π(s), (26)

and its derivative must be negative [47]. In this regard, one can
derive the parametric NU method [48, 49] outlined in some
detail in the appendix.

4. Solutions to the Dirac equation

We will now solve the Dirac equation with the IQY potential
and tensor potential by using the NU method.

4.1. The pseudospin symmetric case

To obtain the solution to equation (16), by using the
transformation s = e−2αr , we rewrite it as follows:[

d2

ds2
+

1 − s

s(1 − s)

d

ds
+

1

s2(1 − s)2

×

(
−3κ(3κ − 1)s + γ̃ V0s2

−
β̃

4α2
(1 − s)2

)]
Gnκ = 0,

(27)

where 3κ = κ + H . Comparing equations (27) with (A.1), we
obtain

α1 = 1, ξ1 =
β̃

4α2
− γ̃ V0,

α2 = 1, ξ2 = −3κ(3κ − 1)+
2β̃

4α2
,

α3 = 1, ξ3 =
β̃

4α2

(28)

and from (A.6)–(A.12), we further obtain

α4 = 0, α5 = −
1

2
,

α6 =
1

4
+
β̃

4α2
− γ̃ V0, α7 =3κ(3κ − 1)−

2β̃

4α2
,

α8 =
β̃

4α2
, α9 =

(
3κ −

1

2

)2

− γ̃ V0,

(29)

In addition, the energy eigenvalue equation can be
obtained by using the relation (A.17) as follows:n +

1

2
+

√(
3κ −

1

2

)2

− γ̃ V0 +

√
β̃2

4α2

2

=
β̃2

4α2
− γ̃ V0.

(30)
By substituting the explicit forms of γ̃ and β̃2 after

equation (16) into equation (30), one can readily obtain the
closed form for the energy formula. In the limiting case when

the screening parameter α → 0 (low screening regime), the
potential approximates as

VIQY(r)= −V0 lim
α→0

e−2αr

r2
∼=

A

r2
−

B

r
+ C,

where the potential parameters are defined as A = −V0,

B = −2αV0,C = −2α2V0. This potential is well known as
the Mie-type potential [18, 27]. The energy eigenvalue
equation for this potential has recently been found in [27] as√

(Enκ − M − Cps)C + (M + Enκ)(M − Enκ + Cps)

=

(
Enκ − M − Cps

)
B

1 + 2n + 2
√(
κ −

1
2

)2
+
(
Enκ − M − Cps

)
A
.

(31)

The special case when A = C = 0 and Cps = 0 yields the
energy formula for the Coulomb-like potential, i.e. [27, 50]

Enκ = −M
4 (n + κ)2 − B2

4 (n + κ)2 + B2
. (32)

Furthermore, when n → ∞, one obtains E = −M
(continuum states); that is, it shows that when n goes to
infinity the energy solution to equation (30) becomes finite
(i.e. the exact pspin symmetric case given by equation (38)
of [50]).

On the other hand, to find the corresponding wave
functions, referring to equation (29) and relations (A.18) and
(A.22) of the appendix, we find the functions

ρ(s)= s
β̃

α (1 − s)2
√
(3κ− 1

2 )
2
−γ̃ V0 , (33)

φ (s)= s
β̃

2α (1 − s)
1
2 +
√
(3κ− 1

2 )
2
−γ̃ V0 . (34)

Hence, relation (A.19) gives

yn(s)= P

(
β̃

α
,2
√
(3κ− 1

2 )
2
−γ̃ V0

)
n (1 − 2s) . (35)

By using Gnκ(s)= φ(s)yn(s), we obtain the lower
component of the Dirac spinor from relation (A.24) as

Gnκ(s)= B̃nκs
β̃

2α (1 − s)
1
2 +
√
(3κ− 1

2 )
2
−γ̃ V0

× P

(
β̃

α
,2
√
(3κ−

1
2 )

2−γ̃ V0

)
n (1 − 2s) , (36)

where B̃nκ is the normalization constant. The upper
component of the Dirac spinor can be calculated from
equation (8b) as

Fnκ (r)=
1

M − Enκ + Cps

(
d

dr
−
κ

r
+ U (r)

)
Gnκ(r), (37)

where Enκ 6= M + Cps and with the exact pspin symmetry
when Cps = 0, only a negative energy solution exists. The
finiteness of our solution requires that the two-components
of the wave function be defined over the entire range, r ∈

(0,∈ ∞). However, in the pspin limit, if positive energy is

4
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Table 1. The pspin symmetric bound state energy eigenvalues in units of fm−1 of the IQY potential for several values of n and κ .

En,κ<0 En,κ<0 En−1,κ>0 En−1,κ>0

l̃ n, κ < 0 (l, j) H = 5 H = 0 n − 1, κ > 0 (l + 2, j + 1) H = 5 H = 0

1 1, −1 1s1/2 −0.495 018 −0.491 129 0, 2 0d3/2 −0.487 533 −0.491 129
2 1, −2 1p3/2 −0.491 129 −0.487 533 0, 3 0f5/2 −0.484 054 −0.487 533
3 1, −3 1d5/2 −0.487 533 −0.484 054 0, 4 0g7/2 −0.480 635 −0.484 054
4 1, −4 1f7/2 −0.484 054 −0.480 635 0, 5 0h9/2 −0.477 254 −0.480 635
1 2, −1 2s1/2 −0.491 152 −0.487 539 1, 2 2d3/2 −0.484 057 −0.487 539
2 2, −2 2p3/2 −0.487 539 −0.484 057 1, 3 1d3/2 −0.480 637 −0.484 057
3 2, −3 2d5/2 −0.484 057 −0.480 637 1, 4 1g7/2 −0.477 255 −0.480 637
4 2, −4 2f7/2 −0.480 637 −0.477 255 1, 5 1h9/2 −0.473 898 −0.477 255

Table 2. The spin symmetric bound state energy eigenvalues in units of fm−1 of the IQY potential for several values of n and κ .

En,κ<0 En,κ<0 En,κ>0 En,κ>0

l n, κ < 0 (l, j = l + 1/2) H = 5 H = 0 n, κ > 0 (l, j = l − 1/2) H = 5 H = 0

1 0, −2 0p3/2 1.000 000 0.994 385 0, 1 0p1/2 0.990 029 0.994 385
2 0, −3 0d5/2 0.994 385 0.990 029 0, 2 0d3/2 0.985 992 0.990 029
3 0, −4 0f7/2 0.990 029 0.985 992 0, 3 0f5/2 0.982 086 0.985 992
4 0, −5 0g9/2 0.985 992 0.982 086 0, 4 0g7/2 0.978 249 0.982 086
1 1, −2 1p3/2 0.994 367 0.990 023 1, 1 1p1/2 0.985 988 0.990 023
2 1, −3 1d5/2 0.990 023 0.985 988 1, 2 1f3/2 0.982 084 0.985 988
3 1, −4 1f7/2 0.985 988 0.982 084 1, 3 1f5/2 0.978 247 0.982 084
4 1, −5 1g9/2 0.982 084 0.978 247 1, 4 1g7/2 0.974 455 0.978 247

chosen, the upper-spinor component of the wave function
will be no longer defined as obviously seen in equation (37).
Further, introducing the Coulomb-like tensor does not affect
the negativity of the energy spectrum in the pspin limit, but
the main contribution is just to removing the degeneracy of
the spectrum.

Of course, the energy eigenvalue equation (30) admits
two solutions (negative and positive); however, we choose
the negative energy solution to make the wave function
normalizable in the given range [50–53].

4.2. The spin symmetric case

To avoid repetition in the solution of equation (17), we follow
the same procedures explained in section 4.1 and hence obtain
the following energy eigenvalue equation:n +

1

2
+

√(
ηκ −

1

2

)2

− γ V0 +

√
β2

4α2

2

=
β2

4α2
− γ V0,

(38)
and the corresponding wave functions for the upper Dirac
spinor as

Fnκ = Bnκs
β

2α (1 − s)
1
2 +
√
(ηκ− 1

2 )
2
−γ V0

× P

(
β

α
,2
√
(ηκ− 1

2 )
2
−γ V0

)
n (1 − 2s), (39)

where ηκ = κ + H + 1 and Bnk is the normalization constant.
Finally, the lower-spinor component of the Dirac equation can
be obtained via equation (8a) as

Gnκ(r)=
1

M + Enκ − Cs

(
d

dr
+
κ

r
− U (r)

)
Fnκ(r), (40)

where Enκ 6= −M + Cs.

4.3. Some remarks and numerical results

The tensor potential generates a new spin–orbit centrifugal
term 3(3± 1) where 3=3κ or ηκ . Some numerical
results are given in tables 1 and 2, where we use the
parameter values M = 5.0 fm−1, V0 = 1.0, Cps = −5.5 fm−1

and Cs = 6.0 fm−1. In table 1, we consider the same set
of pspin symmetry doublets: (1s1/2, 0d3/2), (1p3/2, 0f5/2),
(1d5/2, 0g7/2), (1f7/2, 0h9/2), . . . . Also, in table 2, we consider
the same set of spin symmetry doublets: (0p1/2, 0p3/2),
(1d3/2, 1d5/2), (0f5/2, 0f7/2), (0g7/2, 0g9/2), . . . . We see that
the tensor interaction removes the degeneracy between two
states in spin doublets and pspin doublets. When H 6=

0, the energy levels of the spin (pspin) aligned states
and spin (pspin) unaligned states move in the opposite
directions. For example, in the pspin doublet (1s1/2, 0d3/2):
when H = 0, E1,−1 = E1,2 = −0.491 129 fm−1, but when
H = 5.0, E1,−1 = −0.495 018 fm−1 with κ < 0 and E1,2 =

−0.487 533 fm−1 with κ > 0. Also, Aydoğdu and Sever [17]
showed that the tensor interaction does not change the radial
node structure of the upper and lower components of the Dirac
spinor and affects the shape of the radial wave functions.

5. Conclusion

In this paper, under spin and pspin symmetry limits, we have
obtained the approximate solutions to the Dirac equation for
the IQY potential by using the NU method. Also, we extended
the exact spin and pspin symmetric solutions of the IQY
potential by including the Coulomb-like tensor potential in the
form of −H/r . Some numerical results are included in tables
1 and 2. Obviously, the degeneracy between the members of
doublet states in spin and pspin symmetries is removed by
tensor interaction.
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Appendix. Parametric Nikiforov–Uvarov method

The following equation is a general form of the
Schrödinger-like equation written for any potential [47]:[

d2

ds2
+
α1 −α2s

s (1 −α3s)

d

ds
+

−ξ1s2 + ξ2s − ξ3

[s (1 −α3s)]2

]
ψn(s)= 0.

(A.1)
Comparing the above equation with equation (2), we

obtain [48, 49]
τ̃ (s)= α1 −α2s, (A.2)

σ (s)= s (1 −α3s) (A.3)
and

σ̃ (s)= −ξ1s2 + ξ2s − ξ3. (A.4)

Further, substituting relations (2)–(4) into equation (7a),
we find that

π (s)= α4 +α5s ±
[
(α6 − kα3) s2 + (α7 + k) s +α8

]1/2
,

(A.5)
where

α4 =
1
2 (1 −α1) , (A.6)

α5 =
1
2 (α2 − 2α3) , (A.7)

α6 = α2
5 + ξ1, (A.8)

α7 = 2α4α5 − ξ2, (A.9)

α8 = α2
4 + ξ3. (A.10)

We require that the function under the square root of
relation (A.5) be the square of a polynomial according to the
NU method. Thus,

k1,2 = − (α7 + 2α3α8)± 2
√
α8α9, (A.11)

where
α9 = α3α7 +α2

3α8 +α6. (A.12)

For each k, the following πs are obtained:

k = − (α7 + 2α3α8)− 2
√
α8α9 (A.13)

and thus π becomes

π(s)= α4 +α5s −
[(√

α9 +α3
√
α8
)

s −
√
α8
]
. (A.14)

For the same k and from equation (9) and the relations
(A.2) and (A.5), we obtain

τ(s)= α1 + 2α4 − (α2−2α5) s−2
[(√

α9 +α3
√
α8
)

s −
√
α8
]

(A.15)

and

τ ′(s)= − (α2 − 2α5)− 2
(√
α9 +α3

√
α8
)

= −2α3 − 2
(√
α9 +α3

√
α8
)
< 0.

(A.16)

When (2) together with (15) and (16) are used, the following
energy equation is derived:

α2n − (2n + 1) α5 + (2n + 1)
(√
α9 +α3

√
α8
)

+ n (n − 1) α3

+α7 + 2α3α8 + 2
√
α8α9 = 0. (A.17)

This equation gives the energy spectrum of the desired
problem. The wave function can be calculated according to
the following procedures. The weight function is obtained via
equation (6) as

ρ (s)= sα10−1 (1 −α3s)
α11
α3

−α10−1
, (A.18)

and consequently, after substitution into equation (5), we
obtain

yn (s)= P

(
α10−1, α11

α3
−α10−1

)
n (1 − 2α3s) , (A.19)

with
α10 = α1 + 2α4 + 2

√
α8 (A.20)

and
α11 = α2 − 2α5 + 2

(√
α9 +α3

√
α8
)
, (A.21)

where P (α,β)
n are Jacobi polynomials. Further, using equation

(4), we obtain the second part of the wave function as

φ (s)= sα12 (1 −α3s)−α12−
α13
α3 . (A.22)

Hence, the total wave function becomes

ψ(s)= φ(s)yn(s), (A.23)

ψ (s)= sα12 (1 −α3s)−α12−
α13
α3 P

(α10−1, α11
α3

−α10−1)
n (1 − 2α3s) ,

α3 6= 0. (A.24)

Here, the constant parameters are defined by

α12 = α4 +
√
α8 (A.25)

and
α13 = α5 −

(√
α9 +α3

√
α8
)
. (A.26)

In some problems α3 = 0 [48]; hence the wave functions
turn into Laguerre polynomials:

lim
α3→0

P

(
α10−1, α11

α3
−α10−1

)
n (1 −α3) s = Lα10−1

n (α11s) (A.27)

and
lim
α3→0

(1 −α3s)−α12−
α13
α3 = eα13s . (A.28)

Therefore, the solution given in equation (A.24) takes the
form

ψ (s)= sα12 eα13s Lα10−1
n (α11s) . (A.29)
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