



Abstract: We present the results of application of Evolutionary

Algorithms to the problem of synthesizing quantum circuits

which belong to the class of reversible circuits, represented as an

input/output mapping vectors. The paper specifically focuses on

large quantum circuits where many valid solutions exist in an

exponentially inflating search space. Valid solutions represent

the set of all input vector permutations (arrangements) which

satisfy the circuit specification. The search space for circuits with

large number of variables grows exponentially making it

impossible to discover the set of optimal solutions. The paper

compares three methods for selecting valid solutions of input

vector sequences: 1) randomly, 2) genetic algorithm, 3) Tabu

search. The objective function calculates the number of

elementary quantum gates needed to represent the solution such

that lower number of gates represents better solutions. In

addition to the choice of selection algorithm, we illustrate the

impact of using different partition depths for the Covered Set

Partitions algorithm used to construct valid input vector

sequences.

Keywords: Genetic algorithm, Tabu, random, Covering Set

Partition (CSP), reversible, quantum circuits, synthesis, Hasse,

covering graphs, partially ordered sets, MMD.

I. INTRODUCTION

n 1975, Gorden Moore, the cofounder of Intel, issued his

famous prediction that the number of transistors on a

microchip doubles every 18 months. Surprisingly

enough, Moore’s prophecy has held true for the past fourty-

some years; however, as the dimensions of the transistor are

reaching the low tens of nanometers, the dreadful quantum

effects are exhibiting their influence on the behavior of the

chip. Moore’s law is nearing its end! In addition to

fabrication woes, heat has been one of the greatest enemies

of nono-scale miniaturization pushing the thermal

conductivity of the very thin copper interconnects to their

limits.

In the realm of classical technology, the irreversibility of

digital logic gates results in loss of information which

manifests as heat dissipation. Landauer proved that using

irreversible logic gates yields a rate of energy loss

proportional to kT [1]. Essentially, information equals

energy. Computations which preserve information are

considered reversible and gates which perform reversible

computation are designated as reversible gates. Bennett [2]

showed that near-zero energy dissipation is possible when a

computer can operate near its thermodynamic equilibrium

and displayed that such a stasis state can be achieved through

reversible components. Nielsen and Chuang [3] showed that

quantum logic gates are inherently reversible and

demonstrated a set of universal quantum primitive capable of

implementing any logic circuit - namely, NCT library (Not,

Controlled-Not and Taffoli gates). The qubit came to

represent the quantum analogy of the classical symbol of

information carrier: the bit. Possibly years before the

feasibility of mass production of quantum computers,

researchers have been laying the foundation for

manufacturing such a computing device by exploring

automated synthesis algorithms of quantum logic circuits:

this is the focus of this paper.

Mathematically, the problem of automated quantum

logic synthesis can be realized through the decomposition of

circuit’s specification to a number of small permutations of

reversible gates. Currently there are various methods and

assumptions which satisfy different objectives, where each

algorithm builds a cascade of quantum gate primitives such

that each minterm of the input vector maps to a specified

minterm of the output vector. Some approach the problem as

a fully specified bijective function where exists a one-to-one

and onto correspondence between the input and output

vectors while other researchers focus on partially specified

functions such as n-bit adders [4]. Another body of research

considers the physical constraints of interaction between

qubits (Ion Trap or NMR) by assuming Linear Near

Neighbor Model (LNNM) [5, 4] while others assume that

interaction amongst any set of qubits is feasible [6, 7, 8, 9,

10, 11, 12, 13]. Some algorithms avoided the addition of any

ancillary (a.k.a. garbage) qubits while others required the

addition of such additional bits [5, 10].

The algorithm presented herein avoids the addition of

extraneous output bits and does not give consideration to the

LNNM model. The paper reports our latest milestone in the

chain of algorithms based on Miller, Maslov and Dueck

(MMD) [6] approach to quantum logic synthesis. Stedman

and Perkowski [13] presented an algorithm capable of

producing circuits with lower number of gates by exploring

permutations of input vector ordering other than the natural

ordering used by MMD. Stedman’s method however stalls at

large number of variables as it requires an exorbitant amount

of time to compute. Alhagi, Hawash and Perkwoski [11]

followed up with a synthesis method which explores a subset

Application of Genetic Algorithm for Synthesis of

Large Reversible Circuits using Covered Set Partitions

Maher Hawash*, Baker Abdalhaq
§
, Amjad Hawash

§
, Marek Perkowski*

* Electrical & Computer Engineering, Portland State University, P.O.Box 751, Portland, OR 97027

§ College of Information Technology, An-Najah University, P.O.Box 7, Nablus, Palestine
gmhawash@gmail.com, baker@najah.edu, amjad@najah.edu, mperkows@cecs.pdx.edu

I

of Stedman’s orderings that produce near optimal circuits

within a reasonable amount of time. Hawash, et. al. [12]

explored alternative convergent sets of Stedman’s orderings,

dubbed Covering Set Partitions, which were able to discover

solutions of lower quantum gate cost. This paper explores

the impact of partition depth on quantum cost.

Agrawal and Jha’s algorithm [7, 10] uses the number of

terms in the Positive Polarity Reed-Muller (PPRM)

expansion of synthesized functions as its cost function. As

PPRM can be stored by an expression that is shorter than 2
n
,

their algorithm could, in theory, minimize larger functions.

On the other hand this algorithm has to store many PPRM

equations as it represents a tree-search algorithm. Non-

factorized PPRMs may be, in many cases, of similar

complexity to truth tables which quickly consumes resources

and makes its application limited to few number of bits.

Additionally, some variants of the algorithm [7, 8, 10] have

trouble with convergence where a trade-off is stipulated

between provable convergence and size of circuits that can be

minimized.

Our main contributions of this paper are:

 The impact on quantum gate cost of using Genetic

Algorithm and Tabu search compared to random

selection of valid CSP sequences,

 Comparison of the performance (with respect to

quantum gate cost) of various variants of the genetic

algorithm (single and double cross over) and Tabu

search,

 The Impact on quantum cost of varying the depth of

the CSP partition used to generate valid sequences.

I. MMD STYLE ALGORITHMS

In their paper, A Transformation Based Algorithm for

Reversible Logic Synthesis, Miller, et al.[6] outlined a

simple, yet powerful, synthesis method of reversible circuits.

This algorithm observes a simple, yet essential, guiding

principle stating that: A completely mapped pair can never be

altered by succeeding mapping calculations. This important

rule, along with inherent attribute of natural binary ordering

of the input vector, allows MMD to always converge which

is an essential principle for synthesizing arbitrary reversible

circuits. The issue of convergence has been treated fully by

[11, 12, 13] and, for the sake of setting context for

convergence as it relates to CSP, the reader is encouraged to

review [12]. Some definitions are in order before we

illustrate the algorithm with an example.

Definition 1: An n-variable mapping specification is a set of

n variable input/output pairs (minterms), typically

represented as a table, indicating the required functionality

of a logic circuit (a function).

Definition 2: An n-variable input/output pair describes the

expected output bit pattern for its corresponding input

pattern.

Definition 3: A completely mapped pair is a pair of

input/output minterms, where, at some point in the logic

synthesis process, a set of quantum logic gates have been

specified to map its n-variable input pattern to its

corresponding n-variable output pattern.

II. A SYNTHESIS EXAMPLE
1

Figure 1 shows a mapping

specification of a two-variable

function where the inputs are

designated with (ab) and the

outputs with (AB). The

algorithm synthesizes the

function as follows:

1. Considering the inherent

reverisbility of the

function, the algorithm starts synthesis from the

output column (AB) towards the input column (ab).

2. Starting with the first pair (00  10), the algorithm

realizes that an inverter on line (a) would correctly

map the 00 input to the 10 output. Essentially, any

value presented on the (A) line will be inverted, as

shown in the bolded text of the third column. At this

stage, the first input/output pair is completely

mapped, and according to the guiding principle

mentioned above, such a pair should never be

modified by later transformations.

3. In order to observe such a rule, the algorithm uses

control lines for all subsequent synthesis as shown in

the last two columns. Row two of the third column

shows the pair (01  11) which requires an inverter

on the (A) line with line (B) as a control line –

shaded. As a result, only the bolded digits of second

and third rows are affected.

4. Similarly, the third pair (10  11) is sythesized with

an inverter on line (B) which is controlled by a value

of one (1) on line (A).

5. At this stage, the algorithm realizes that the mapping

circuit is complete as the first and last columns are

both identical.

III. ANATOMY OF COVERED SET PARTITION ALGORITHM

A. Structure

We hinted earlier that MMD [6] uses the natural binary

order to arrange the minterms of the input vector and that

such an arrangement ensures convergence. Stedman [13],

Alhagi [11] and the current authors [12] documented the

advantage of exploring alternative sequencing of input

vector. Stedman outlined an algorithm for detecting

1 Refer to [14] for description of quantum gates.

Figure 1 Synthesis of two-

variable function

convergent input orderings and Alhagi devised a systematic

algorithm, based on the Hasse diagram, for constructing valid

input orderings for any number of bits and demonstrated the

ability to produce circuits at lower quantum cost within a

reasonable period of time. In our attempt to improve on

Alhagi’s work, we construct a different set of sequences

based on the mathematical concept of partially orderd sets

described below. The reader is encouraged to refer to

[11, 12] for the process of constructing a valid sequence

using the Hasse diagram.

Definition 4: a Hasse diagram is a type of mathematical

diagram used to represent a finite partially ordered set, in

the form of a graph where, for the relation {(x,y) | x ≤ y | x,y

 S}, each element of S is a vertex in the plane and draws a

line segment or curve that goes upward from x to y whenever

y covers x (that is, whenever x < y and there is no z such that

x < z < y).

Figure 2 displays graphical illustrations of two variants

of the covering set partitions method for a function of four

variables. The table to the left of the graph sets a partition

depth of 1 bit which is depicted graphically by the upper and

lower regions labeled (b3:0 and b3:1). The lower half of the

graph represents the partition where the highest bit 3 = 1, and

the upper half is for the partition where bit3 = 0. For the

remaining three bits (b2-b0), the algorithm uses the Hasse

structure to create the sequence for each of the two halves.

Notice the Hasse diagram levels are represented by the

diagonal lines of the top half – see [11, 12] for more

information about creating the Hasse sequence. The

following ordered set represents the order of the minterms in

the sequence for a partition depth of one (underlined).

{{0000}, {0001, 0010, 0100}, {0011, 0101, 0110},{0111},

 {1000}, {1001, 1010, 1100}, {1011, 1101, 1110},{1111}}

Alternatively, a valid sequence could be constructed

using a partition depth of 2 which is represented graphically

by the four planes of the upper and lower surfaces of the

cube and shown in the table on the right. In this case, terms

with b3b2=00 are placed at the beginning of the sequence

followed by b3b2=01, b3b2=10 and finally b3b2=11. The

remaining two bits could still be taken according to the

Hasse sequence. The following ordered set is a valid

sequence for a partition depth of two:

{{0000}, {0001, 0010}, {0011}, {0100}, {0110, 0101}, {0111},

 {1000}, {1001, 1010}, {1011}, {1100}, {1110, 1101}, {1111} }

B. Steps for creating valid sequences

Definition 5: For a binary function of n variables, a band

within a Hasse diagram is the set of minterms (bn-1….b1b0)

which have the same number of ones; i.e., {

 | ∑

 .

Corollary 1: An n-variable binary function has a total of

n+1 bands.

The following process outlines the steps for creating CSP

sequences for an n- variable function using the p upper bits

for partition:

6. Create k=2
p
 partitions where p is the partition depth

represented by the number of upper bits resulting in

the number of partitions N=0..k-1.

7. To construct an input sequence, place all the terms

sequenctially according to their partition number

N=0..k-1.

8. Within each partition, use the Hasse diagram to

arrange the minterms within a partition as follows:

9. Start from the base level of the Hasse diagram

consisting of all zeros,

10. Randomy permute, i.e., shuffle, terms of the next

band consisting of single ones and place them at the

end of the ordering,

11. Repeat step (b) for each band that follows in

consecutive order, where each band has an additional

one compared to the band before it, (two ones, three

ones, …),

12. Place the last term consisting of all ones (k-1 ones) at

the end of the sequence.

IV. ALGORITHMIC CONTEST

In section III.B above, we outlined the steps for creating

a single valid sequence using the CSP algorithm. We

stipulated then that there exists a number of solutions in an

exponentially expanding search space. In [12] we employed

a random process in constructing the sequences and

maintained the ones with the best cost up to that point. It was

shown then, that, for a small number of variables, the CSP

performed well compared to earlier attempts by [6, 11]; yet

as the number of variables increased, the ability to find better

solutions became dismal at best. We concluded then that the

Figure 2 Covering Set Partitions using bit 3 to create two

partitions of 3 bits each (upper and lower), or using bits 3-2

to create 4 partitions of 2 bits each

http://en.wikipedia.org/wiki/Mathematical_diagram
http://en.wikipedia.org/wiki/Mathematical_diagram
http://en.wikipedia.org/wiki/Partially_ordered_set
http://en.wikipedia.org/wiki/Graph_drawing
http://en.wikipedia.org/wiki/Vertex_%28graph_theory%29
http://en.wikipedia.org/wiki/Line_segment
http://en.wikipedia.org/wiki/Covering_relation

vastness of search space hindered our ability to discover the

proverbial needle in the haystack. In this effort, we present

the results of exploring two additional alternative selection

methods of the input vector sequence and compare the

performance of the three methods: Random, Genetic

Algorithm and Tabu search. It is noteworthy that we were

careful to provide a fare comparison by stipulating that each

method selects and synthesizes the same number of

sequences and only varied the method of constructing valid

sequences.

A. Objective function using Quantum Cost

The quality of a solution is measured by quantum cost

which represents the number of elementary quantum gates

used to implement the specification. For an arbitrary

quantum circuit C with k quantum NCT gates, the quantum

cost Q is calculated as follows:

 ∑

where: Gqc is the quantum cost of each gate in the

cascade and can be calculated according to Table 1 below.

TABLE 1

QUANTUM COST OF ELEMENTARY GATES

Gate Type Quantum Cost

NOT, C
1
NOT 1 [3]

C
2
NOT (Toffoli) 5 [14]

C
m
NOT (3 |

|) 12m – 22 [15]

C
m
NOT (|

|) 24m – 64 [15]

C
n-1

NOT 2
n
– 3 [14]

B. Method 1: A Random Skip and Hop

In order to discover a solution with the lowest quantum

cost, a set of k valid solutions are created randomly according

to the steps outlined above. Notice that because each band is

shuffled in a random manner, step 10 above, potential

solutions are selected for examination in a blind manner; i.e.,

past solutions has no influence on the structure of new

solutions. A new solution is saved only if its quantum cost is

lower than the current lowest cost; otherwise, the solution is

purged, and a new solution is randomly constructed.

01:
02:
03:
04: // randomly
05: // save best solution
06:
07:
08:

Although the search space grows exponentially, (2
n
)!,

there exists a very small possibility that a solution would be

visited more than once. More dramatically, however, is that

the odds of finding solutions with low quantum cost are

equivalent to the odds of hitting the jackpot of the grand

lottery.

C. Method 2: Genetic Algorithm

Rather than bouncing randomly around the search space,

a genetic algorithm follows a set of directed probabilistic

steps where new solutions are the offspring of existing good

solutions. The following block exhibits the standard

structure of a genetic algorithm:

01: g ;
02: initialize(P(g));
03: do
04: evaluate(P(g));
05: P1(g), P2(g) select(P(g)); // Set of parent pair
06: g g - 1;
07: P(g) recombine(P1(g), P2(g)); // crossover  children
08: P(g) mutate(P(g)); // Mutate children
09: while (g > 0);

The initialization and evaluation steps (02: , 04:) are

exactly the same steps used in the random algorithm of

step IV.B above. Roulette wheel selection process was used

to randomly select two parents of the current generation for

recombination (step 07:). Single and double crossover

operators were used to create the offspring with certain

limitations on the position of the crossover, discussed below.

Finally, mutation is probabilistically applied to each offspring

in order to continuously maintain population diversity and

avoid premature convergence to local minima.

C-1. Genotype and Valid Operators

As discussed earlier and shown in [11, 12], the band

structure of definition 6, above, must be maintained to ensure

algorithmic convergence. Consequently, recombination

operators are limited to the band boundary and mutation

operators are limited to intra-band alterations.

Figure 3 illustrates the structure of a chromosome for a

three variable binary function with CSP partition depth of

one (1). In order to ensure that a child is a valid CSP

sequence, the crossover point(s) must happen at the band

boundary position. Had the invalid crossover point been

taken in Figure 3, the resultant child would have been invalid

as it would have included the term 001 twice and lacked the

Figure 3 Genetic Algorithm genotype and valid operators

term 010. Of course a repair process could have detected and

corrected such a defect which would surely yield different

result and could be the subject of future exploration. The

reader might correctly surmise that the choice of limiting

crossover to band boundary could potentially result in stale

members within each band, leading to premature

convergence to local minima. Such an anomaly is treated

with random mutation within a band at a level higher than

mutation probability suggested by standard genetic

algorithms. A high level of mutation probability, we

theorized, would inject diversity within children allowing

them to escape such hasty local minima.

D. Method 3: Tabu Search

We also implemented the Tabu
2
 search [16, 17, 18] to

examine whether it would discover solutions with lower

quantum cost than either the genetic algorithm or random

methods. Tabu is a meta-heuristic search algorithm which,

during the selection process, forbids search moves to

solutions already visited in the past m steps. As a result, the

algorithm is amenable to accept, temporarily, solutions with

inferior quantum cost, in order to skip, possibly better,

solutions which were just investigated. Such an approach,

we assumed, should provide protection against the trap of

falling into local minima early. The following list describes

the Tabu search:

01: C ← {15, 20, 25, 30}; // constant for different runs

02: θ ← initialize();

03: τ ← bands /2 + C(runs);
04: do
05: evaluate(θ);
06: N(θ) ← sort(neighborhood θ); // neighborhood set

07: λ ← select N θ { λ ∉ T θ OR T θ > τ };

08: T ← {θ // add to top of taboo set

09: while (not termination-condition);

Unlike the genetic algorithm where an initial population

of m solutions is created followed by generations of solutions

through intra breeding and mutation, the Tabu search starts

with a randomly begotten single solution, θ. At each step of

the process, a n mutations are serially performed to create a

neighborhood of n solutions, step 06: above using the same

probabilistic intra-band swap operator of the genetic

algorithm above. The selection criteria of new solutions is:

1) When a solution is selected for synthesis, it is added to

the Tabu list, T, used to reject future encounters of the

same solution (step 08:).

2) When a solution λ with a better cost than θ is found:

a) Select λ only if it is not in the Tabu list T or it has not

been visited for τ iterations (step 07:).

2 Tabu or taboo.

b) Otherwise, select the next best solution in the

neighborhood N(θ) according to the same criteria in I

above 2)a) above.

3) If all neighbor solutions are in the Tabu list, a new set of

neighbors is generated.

Rather than generating a fixed number of neighbors, the

algorithm determines the size of the neighborhood based on

the size of the band selected for mutation:

Neighborhood Size =β × length(band); // β ∈ {

}

The factor β is inversely proportional to the number of

variables and was introduced as a trade-off to speed up

computation by reducing the neighborhood size as the

number of variables increases. For the sake of reducing

memory usage and increasing speed of comparison, we chose

to store the checksum of the input vector rather than saving

the entire vector in the list.

I. EXPERIMENTAL RESULTS

For the purposes of this paper we limited our experiment

to the completely unstructured urf4 (11 variables) benchmark

function [19] and compared the performance of three

methods of selecting input vector sequences using the

Covered Set Partition algorithm for generating valid input

vectors. In order to keep a balanced comparison, the

following steps were observed:

1. The same synthesis algorithm was used,

2. All algorithms processed the same number of input

sequences (30,000 sequences), nerveless the chance,

that the same sequence could have been selected

repeatedly,

3. The comparison was performed for different partition

and results for each partition size are reported

separately.

TABLE 2

COMPARISON BETWEEN RANDOM, GA AND TABU SEARCH

FOR URF4 REVERSIBLE FUNCTION.

Partition

Size

Random Genetic Algorithm Tabu search

Single Double

4 3204824 3127213 3074025 3245133

5 3198885 3037825 3105020 3102076

6 3189991 3129114 3121246 2994857

7 3178404 3135759 3058571 3095698

Table 2 shows random selection of input vector

sequences consistently resulted in higher quantum cost of the

synthesized circuit. The genetic algorithm and Tabu search

on the other hand were able to discover input vector

sequences which produced lower quantum cost. Different

recombination and mutation probability thresholds were used

to experiment with the genetic algorithm where a mutation

probability around 0.2 and recombination probability of 0.8

produced the best results up to 9.5% improvement over

random selection. Although the results do not exhibit any

conclusive verdict regarding the CSP partition depth, the

random selection and Tabu search both give slightly better

performance for higher depth of CSP partition.

TABLE 3

RESULTS OF TABU CALIBRATION WHEN CSP PARTITION = 6

 β

τ

30 3143504 3122341 3118063

40 2994857 3120547 3090183

50 3063227 3082519 3173990

60 3150021 3095002 3149779

Table 3 shows the results for various values of the

factors β and τ with the best results underlined for different

values of β. Clearly the Tabu search performed well

compared to both the GA and random search. For a

partitions size of 6, the Tabu search yielded the best overall

results for a β factor of ¼ and τ of 40.

II. CONCLUSION AND FUTURE WORK

By utilizing heuristic based selection of future sequences

based on the quality of already visited solutions, both the

genetic algorithm and Tabu search methods were able to

discover input vector sequences which produce superior

results compared to purely random selection (~ 9.5%). In

our experiments, we limited our search to 30,000 sequences

for the sake of time that it takes to perform the synthesis

(around 3 minutes); however, for an eleven variable function,

there exists around an astounding 1.6 x 10
5,894

 (2
11

!) possible

input vector sequence which is impossible to explore fully.

Obviously, despite our effort to infuse a hint of intelligence in

our selection criteria, we barely visited few small islands in

this massive search space.

In our future research, we plan on study the impact of

using the genetic algorithm and Tabu search described herein

on some of the structured benchmarks such as the n-th prime

and hidden weighted bit functions [19]. We also plan on

implementing the algorithm on expanding the number of

sequences visited by utilizing GPU hardware acceleration

through CUDA and studying the impact of uniform cross

over, elitism, and k-parent crossover.

III. BIBLIOGRAPHY

1. Landauer, R., Irreversibility and heat generation in the

computing process. IBM Journal of Research and Development

5, 183-191 (1961).

2. Bennett, C., Logical reversiblity of computation. IBM Journal

of Research and Development, 525-532 (1973).

3. Nielsen, M. & Chuang, I., Quantum Computation and

QUantum Information (Cambridge University Press, 2009).

4. Caccaro, S. A., Draper, T. G., Kutin, S. A. & Moution, D. P., A

new quantum ripple-carry addition circuit. Quantum Physics

(2004).

5. Perkowski, M., Lukac, M., Shah, D. & Kameyama, M.,

Synthesis of quantum circuits in Linear Nearest Neighbor

model using Positive Davio Lattices. FACTA UNIVERSITATIS

(NIS) 24 (1), 73-89 (2011).

6. Miller, D. M., Maslov, D. & Dueck, G. W., A Transformation

Based Algorithm for Reversible Logic Synthesis, presented at

Design Automation Conference (DAC), Anaheim, June 2003

(unpublished).

7. Agrawal, A. & Jha, N. K., Synthesis of Reversible Logic,

presented at DATE, Paris, France, 2004 (unpublished).

8. Donald, J. & Jha, N. K., Reversible Logic Synthesis with

Fredkin and Peres Gates. ACM Journal on Emerging

Tecnolgies in Computing Systems 4 (1) (2008).

9. Dueck, G. W. & Maslov, D., Reversible Function Synthesis

with Minimum Garbage Output, presented at 6th International

Symposium on Representations and Methodology of Future

Computing Technologies (RM), Trier, Germany, 2003

(unpublished).

10. Gupta, P., Agrawal, A. & Jha, N. K., An Algorithm for

Synthesis of Reversible Logic Circuits, presented at IEEE

Transaction on CAD, 2006 (unpublished).

11. Alhagi, N., Hawash, M. & Perkowski, M., Synthesis of

Reversible Circuits with No Ancilla Bits for Large Reversible

Functions, presented at International Symposium on Multiple-

Valued Logic, Barcelona, Spain, 2010 (unpublished).

12. Hawash, M., Perkowski, M., Bleiler, S., Caughman, J. &

Hawash, A., Reversible Function Synthesis of Large Reversible

Functions With No Ancillary Bits Using Covering Set

Partitions, presented at 8th International Conference on

Information Technology- New Generation, Las Vegas, NV,

2011 (unpublished).

13. Stedman, C., Yen, B. & Perkowski, M., Synthesis of Reversible

Circuits with Small Ancilla Bits for Large Irreversible

Incompletely Specified Multi-Output Boolean Functions,

presented at 14th International Workshop on Post-Binary ULSI

Systems, Calgary, Canada, 2005 (unpublished).

14. A Barenco, e. a., Elementary gates for quantum computation.

Physical Review A 52, 52:3457–3467 (1995).

15. Maslov, D., Young, C., Miller, D. M. & Dueck, G. W.,

Quantum circuit simplification using templates, presented at

Design, Automation and Test in Europe (DATE), Europe, 2005

(unpublished).

16. Glover, F., Future paths for integer programming and links to

artifical intelligence. Computers and Operations Research 13

(5), 533-549 (1986).

17. Glover, F. & Laguna, M., Tabu Search, in modern heuristics

techniques for combinatorial problems (John Wiley & Sons,

Inc., 1993).

18. Abdalhaq, B., P.h.D. Dessertation, Universitat Autònoma de

Barcelona Report No. ISBN: 8468877816, A Methodology to

Enhance the Prediction of Forest Fire Propagation.

19. Saeedi, M., Unstructured Reversible Function 4 (urf4),

Available at http://www.informatik.uni-

bremen.de/rev_lib/function_details.php?id=89.

http://www.informatik.uni-bremen.de/rev_lib/function_details.php?id=89
http://www.informatik.uni-bremen.de/rev_lib/function_details.php?id=89

