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Abstract: We present the results of application of Evolutionary 

Algorithms to the problem of synthesizing quantum circuits 

which belong to the class of reversible circuits, represented as an 

input/output mapping vectors.  The paper specifically focuses on 

large quantum circuits where many valid solutions exist in an 

exponentially inflating search space.  Valid solutions represent 

the set of all input vector permutations (arrangements) which 

satisfy the circuit specification.  The search space for circuits with 

large number of variables grows exponentially making it 

impossible to discover the set of optimal solutions.  The paper 

compares three methods for selecting valid solutions of input 

vector sequences: 1) randomly, 2) genetic algorithm, 3) Tabu 

search.  The objective function calculates the number of 

elementary quantum gates needed to represent the solution such 

that lower number of gates represents better solutions.  In 

addition to the choice of selection algorithm, we illustrate the 

impact of using different partition depths for the Covered Set 

Partitions algorithm used to construct valid input vector 

sequences. 

 

Keywords:  Genetic algorithm, Tabu, random, Covering Set 

Partition (CSP), reversible, quantum circuits, synthesis, Hasse, 

covering graphs, partially ordered sets, MMD. 

I. INTRODUCTION 

n 1975, Gorden Moore, the cofounder of Intel, issued his 

famous prediction that the number of transistors on a 

microchip doubles every 18 months.   Surprisingly 

enough, Moore’s prophecy has held true for the past fourty-

some years; however, as the dimensions of the transistor are 

reaching the low tens of nanometers, the dreadful quantum 

effects are exhibiting their influence on the behavior of the 

chip.  Moore’s law is nearing its end!  In addition to 

fabrication woes, heat has been one of the greatest enemies 

of nono-scale miniaturization pushing the thermal 

conductivity of the very thin copper interconnects to their 

limits. 

In the realm of classical technology, the irreversibility of 

digital logic gates results in loss of information which 

manifests as heat dissipation.  Landauer proved that using 

irreversible logic gates yields a rate of energy loss 

proportional to kT [ 1].  Essentially, information equals 

energy.  Computations which preserve information are 

considered reversible and gates which perform reversible 

computation are designated as reversible gates.  Bennett [ 2] 

showed that near-zero energy dissipation is possible when a 

 

 
 

computer can operate near its thermodynamic equilibrium 

and displayed that such a stasis state can be achieved through 

reversible components. Nielsen and Chuang [ 3] showed that 

quantum logic gates are inherently reversible and 

demonstrated a set of universal quantum primitive capable of 

implementing any logic circuit - namely, NCT library (Not, 

Controlled-Not and Taffoli gates).  The qubit came to 

represent the quantum analogy of the classical symbol of 

information carrier: the bit. Possibly years before the 

feasibility of mass production of quantum computers, 

researchers have been laying the foundation for 

manufacturing such a computing device by exploring 

automated synthesis algorithms of quantum logic circuits: 

this is the focus of this paper.  

Mathematically, the problem of automated quantum 

logic synthesis can be realized through the decomposition of 

circuit’s specification to a number of small permutations of 

reversible gates.  Currently there are various methods and 

assumptions which satisfy different objectives, where each 

algorithm builds a cascade of quantum gate primitives such 

that each minterm of the input vector maps to a specified 

minterm of the output vector.  Some approach the problem as 

a fully specified bijective function where exists a one-to-one 

and onto correspondence between the input and output 

vectors while other researchers focus on partially specified 

functions such as n-bit adders [ 4].  Another body of research 

considers the physical constraints of interaction between 

qubits (Ion Trap or NMR) by assuming Linear Near 

Neighbor Model (LNNM) [ 5, 4] while others assume that 

interaction amongst any set of qubits is feasible [ 6, 7, 8, 9, 

10, 11, 12, 13].  Some algorithms avoided the addition of any 

ancillary (a.k.a. garbage) qubits while others required the 

addition of such additional bits [ 5, 10].   

The algorithm presented herein avoids the addition of 

extraneous output bits and does not give consideration to the 

LNNM model.  The paper reports our latest milestone in the 

chain of algorithms based on Miller, Maslov and Dueck 

(MMD) [ 6] approach to quantum logic synthesis.  Stedman 

and Perkowski [ 13] presented an algorithm capable of 

producing circuits with lower number of gates by exploring 

permutations of input vector ordering other than the natural 

ordering used by MMD.  Stedman’s method however stalls at 

large number of variables as it requires an exorbitant amount 

of time to compute.  Alhagi, Hawash and Perkwoski [ 11] 

followed up with a synthesis method which explores a subset 
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of Stedman’s orderings that produce near optimal circuits 

within a reasonable amount of time.  Hawash, et. al. [ 12] 

explored alternative convergent sets of Stedman’s orderings, 

dubbed Covering Set Partitions, which were able to discover 

solutions of lower quantum gate cost.  This paper explores 

the impact of partition depth on quantum cost. 

Agrawal and Jha’s algorithm [ 7, 10] uses the number of 

terms in the Positive Polarity Reed-Muller (PPRM) 

expansion of synthesized functions as its cost function.  As 

PPRM can be stored by an expression that is shorter than 2
n
,
 

their algorithm could, in theory, minimize larger functions.  

On the other hand this algorithm has to store many PPRM 

equations as it represents a tree-search algorithm.  Non-

factorized PPRMs may be, in many cases, of similar 

complexity to truth tables which quickly consumes resources 

and makes its application limited to few number of bits.  

Additionally, some variants of the algorithm [ 7, 8, 10] have 

trouble with convergence where a trade-off is stipulated 

between provable convergence and size of circuits that can be 

minimized. 

Our main contributions of this paper are: 

 The impact on quantum gate cost of using Genetic 

Algorithm and Tabu search compared to random 

selection of valid CSP sequences, 

 Comparison of the performance (with respect to 

quantum gate cost) of various variants of the genetic 

algorithm (single and double cross over) and Tabu 

search, 

 The Impact on quantum cost of varying the depth of 

the CSP partition used to generate valid sequences. 

I. MMD STYLE ALGORITHMS 

In their paper, A Transformation Based Algorithm for 

Reversible Logic Synthesis, Miller, et al.[ 6] outlined a 

simple, yet powerful, synthesis method of reversible circuits.  

This algorithm observes a simple, yet essential, guiding 

principle stating that: A completely mapped pair can never be 

altered by succeeding mapping calculations.  This important 

rule, along with inherent attribute of natural binary ordering 

of the input vector, allows MMD to always converge which 

is an essential principle for synthesizing arbitrary reversible 

circuits.  The issue of convergence has been treated fully by  

[ 11, 12, 13] and, for the sake of setting context for 

convergence as it relates to CSP, the reader is encouraged to 

review [ 12].  Some definitions are in order before we 

illustrate the algorithm with an example. 

Definition 1: An n-variable mapping specification is a set of 

n variable input/output pairs (minterms), typically 

represented as a table, indicating the required functionality 

of a logic circuit (a function). 

Definition 2: An n-variable input/output pair describes the 

expected output bit pattern for its corresponding input 

pattern. 

Definition 3: A completely mapped pair is a pair of 

input/output minterms, where, at some point in the logic 

synthesis process, a set of quantum logic gates have been 

specified to map its n-variable input pattern to its 

corresponding n-variable output pattern. 

II. A SYNTHESIS EXAMPLE
1
 

Figure 1 shows a mapping 

specification of a two-variable 

function where the inputs are 

designated with (ab) and the 

outputs with (AB).  The 

algorithm synthesizes the 

function as follows: 

1. Considering the inherent 

reverisbility of the 

function, the algorithm starts synthesis from the 

output column (AB) towards the input column (ab). 

2. Starting with the first pair (00  10), the algorithm 

realizes that an inverter on line (a) would correctly 

map the 00 input to the 10 output.  Essentially, any 

value presented on the (A) line will be inverted, as 

shown in the bolded text of the third column. At this 

stage, the first input/output pair is completely 

mapped, and according to the guiding principle 

mentioned above, such a pair should never be 

modified by later transformations. 

3. In order to observe such a rule, the algorithm uses 

control lines for all subsequent synthesis as shown in 

the last two columns.  Row two of the third column 

shows the pair (01  11) which requires an inverter 

on the (A) line with line (B) as a control line – 

shaded.  As a result, only the bolded digits of second 

and third rows are affected. 

4. Similarly, the third pair (10  11) is sythesized with 

an inverter on line (B) which is controlled by a value 

of one (1) on line (A). 

5. At this stage, the algorithm realizes that the mapping 

circuit is complete as the first and last columns are 

both identical. 

III. ANATOMY OF COVERED SET PARTITION ALGORITHM 

A. Structure 

We hinted earlier that MMD [ 6] uses the natural binary 

order to arrange the minterms of the input vector and that 

such an arrangement ensures convergence.  Stedman [ 13], 

Alhagi [ 11] and the current authors [ 12] documented the 

advantage of exploring alternative sequencing of input 

vector.  Stedman outlined an algorithm for detecting 

 
1 Refer to [14] for description of quantum gates. 

 
Figure 1 Synthesis of two-

variable function 



 

 

 

convergent input orderings and Alhagi devised a systematic 

algorithm, based on the Hasse diagram, for constructing valid 

input orderings for any number of bits and demonstrated the 

ability to produce circuits at lower quantum cost within a 

reasonable period of time.  In our attempt to improve on 

Alhagi’s work, we construct a different set of sequences 

based on the mathematical concept of partially orderd sets 

described below.  The reader is encouraged to refer to  

[ 11, 12] for the process of constructing a valid sequence 

using the Hasse diagram. 

Definition 4: a Hasse diagram is a type of mathematical 

diagram used to represent a finite partially ordered set, in 

the form of a graph where, for the relation {(x,y) | x ≤ y | x,y 

  S}, each element of S is a vertex in the plane and draws a 

line segment or curve that goes upward from x to y whenever 

y covers x (that is, whenever x < y and there is no z such that 

x < z < y). 

Figure 2 displays graphical illustrations of two variants 

of the covering set partitions method for a function of four 

variables.  The table to the left of the graph sets a partition 

depth of 1 bit which is depicted graphically by the upper and 

lower regions labeled (b3:0 and b3:1).  The lower half of the 

graph represents the partition where the highest bit 3 = 1, and 

the upper half is for the partition where bit3 = 0.   For the 

remaining three bits (b2-b0), the algorithm uses the Hasse 

structure to create the sequence for each of the two halves.  

Notice the Hasse diagram levels are represented by the 

diagonal lines of the top half – see [ 11, 12] for more 

information about creating the Hasse sequence.  The 

following ordered set represents the order of the minterms in 

the sequence for a partition depth of one (underlined). 

{{0000}, {0001, 0010, 0100}, {0011, 0101, 0110},{0111},  

  {1000}, {1001, 1010, 1100}, {1011, 1101, 1110},{1111}} 

Alternatively, a valid sequence could be constructed 

using a partition depth of 2 which is represented graphically 

by the four planes of the upper and lower surfaces of the 

cube and shown in the table on the right.  In this case, terms 

with b3b2=00 are placed at the beginning of the sequence 

followed by b3b2=01, b3b2=10 and finally b3b2=11.  The 

remaining two bits could still be taken according to the 

Hasse sequence.  The following ordered set is a valid 

sequence for a partition depth of two: 

{{0000}, {0001, 0010}, {0011}, {0100}, {0110, 0101}, {0111},  

  {1000}, {1001, 1010},  {1011},  {1100},  {1110, 1101}, {1111} } 

B. Steps for creating valid sequences 

Definition 5: For a binary function of n variables, a band 

within a Hasse diagram is the set of minterms (bn-1….b1b0) 

which have the same number of ones; i.e., {  

           |    ∑   
   
                .   

Corollary 1: An n-variable binary function has a total of 

n+1 bands. 

The following process outlines the steps for creating CSP 

sequences for an n- variable function using the p upper bits 

for partition: 

6. Create k=2
p
 partitions where p is the partition depth 

represented by the number of upper bits resulting in 

the number of partitions N=0..k-1. 

7. To construct an input sequence, place all the terms 

sequenctially according to their partition number 

N=0..k-1.   

8. Within each partition, use the Hasse diagram to 

arrange the minterms within a partition as follows: 

9. Start from the base level of the Hasse diagram 

consisting of all zeros, 

10. Randomy permute, i.e., shuffle, terms of the next 

band consisting of single ones and place them at the 

end of the ordering, 

11. Repeat step (b) for each band that follows in 

consecutive order, where each band has an additional 

one compared to the band before it, (two ones, three 

ones, … ), 

12. Place the last term consisting of all ones (k-1 ones) at 

the end of the sequence. 

IV. ALGORITHMIC CONTEST  

In section  III.B above, we outlined the steps for creating 

a single valid sequence using the CSP algorithm.  We 

stipulated then that there exists a number of solutions in an 

exponentially expanding search space.  In [ 12] we employed 

a random process in constructing the sequences and 

maintained the ones with the best cost up to that point.  It was 

shown then, that, for a small number of variables, the CSP 

performed well compared to earlier attempts by [ 6, 11]; yet 

as the number of variables increased, the ability to find better 

solutions became dismal at best.  We concluded then that the 

 
Figure 2 Covering Set Partitions using bit 3 to create two 

partitions of 3 bits each (upper and lower), or using bits 3-2 

to create 4 partitions of 2 bits each 
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vastness of search space hindered our ability to discover the 

proverbial needle in the haystack.  In this effort, we present 

the results of exploring two additional alternative selection 

methods of the input vector sequence and compare the 

performance of the three methods: Random, Genetic 

Algorithm and Tabu search. It is noteworthy that we were 

careful to provide a fare comparison by stipulating that each 

method selects and synthesizes the same number of 

sequences and only varied the method of constructing valid 

sequences. 

A. Objective function using Quantum Cost 

The quality of a solution is measured by quantum cost 

which represents the number of elementary quantum gates 

used to implement the specification.  For an arbitrary 

quantum circuit C with k quantum NCT gates, the quantum 

cost Q  is calculated as follows: 

    ∑       
 
     

where: Gqc is the quantum cost of each gate in the 

cascade and can be calculated according to Table 1 below. 

TABLE 1 

QUANTUM COST OF ELEMENTARY GATES 

Gate Type Quantum Cost 

NOT, C
1
NOT 1 [ 3] 

C
2
NOT (Toffoli) 5 [ 14] 

C
m
NOT (3    |

 

 
|) 12m – 22 [ 15] 

C
m
NOT (|

 

 
|         ) 24m – 64 [ 15] 

C
n-1

NOT 2
n 
– 3 [ 14] 

B. Method 1: A Random Skip and Hop 

In order to discover a solution with the lowest quantum 

cost, a set of k valid solutions are created randomly according 

to the steps outlined above.  Notice that because each band is 

shuffled in a random manner, step  10 above, potential 

solutions are selected for examination in a blind manner; i.e., 

past solutions has no influence on the structure of new 

solutions.  A new solution is saved only if its quantum cost is 

lower than the current lowest cost; otherwise, the solution is 

purged, and a new solution is randomly constructed. 

01:                  
02:                                    
03:                 
04:                              // randomly 
05:                                // save best solution 
06:                   
07:         
08:          

Although the search space grows exponentially, (2
n
)!, 

there exists a very small possibility that a solution would be 

visited more than once.  More dramatically, however, is that 

the odds of finding solutions with low quantum cost are 

equivalent to the odds of hitting the jackpot of the grand 

lottery. 

C. Method 2: Genetic Algorithm 

Rather than bouncing randomly around the search space, 

a genetic algorithm follows a set of directed probabilistic 

steps where new solutions are the offspring of existing good 

solutions.  The following block exhibits the standard 

structure of a genetic algorithm: 

01:  g                       ; 
02:  initialize(P(g)); 
03:  do 
04:  evaluate(P(g)); 
05:  P1(g), P2(g)   select(P(g));  // Set of parent pair 
06:  g   g - 1;         
07:  P(g)   recombine(P1(g), P2(g)); // crossover  children 
08:  P(g)   mutate(P(g));    // Mutate children 
09:  while (g > 0); 

The initialization and evaluation steps ( 02: ,  04: ) are 

exactly the same steps used in the random algorithm of 

step  IV.B above.  Roulette wheel selection process was used 

to randomly select two parents of the current generation for 

recombination (step  07: ).  Single and double crossover 

operators were used to create the offspring with certain 

limitations on the position of the crossover, discussed below.  

Finally, mutation is probabilistically applied to each offspring 

in order to continuously maintain population diversity and 

avoid premature convergence to local minima. 

C-1. Genotype and Valid Operators 

As discussed earlier and shown in [ 11, 12], the band 

structure of definition 6, above, must be maintained to ensure 

algorithmic convergence.  Consequently, recombination 

operators are limited to the band boundary and mutation 

operators are limited to intra-band alterations.   

Figure 3 illustrates the structure of a chromosome for a 

three variable binary function with CSP partition depth of 

one (1).   In order to ensure that a child is a valid CSP 

sequence, the crossover point(s) must happen at the band 

boundary position.  Had the invalid crossover point been 

taken in Figure 3, the resultant child would have been invalid 

as it would have included the term 001 twice and lacked the 

 
Figure 3 Genetic Algorithm genotype and valid operators 

 



 

 

 

term 010.  Of course a repair process could have detected and 

corrected such a defect which would surely yield different 

result and could be the subject of future exploration.  The 

reader might correctly surmise that the choice of limiting 

crossover to band boundary could potentially result in stale 

members within each band, leading to premature 

convergence to local minima.  Such an anomaly is treated 

with random mutation within a band at a level higher than 

mutation probability suggested by standard genetic 

algorithms.  A high level of mutation probability, we 

theorized, would inject diversity within children allowing 

them to escape such hasty local minima. 

D. Method 3: Tabu Search 

We also implemented the Tabu
2
 search [ 16, 17, 18] to 

examine whether it would discover solutions with lower 

quantum cost than either the genetic algorithm or random 

methods.  Tabu is a meta-heuristic search algorithm which, 

during the selection process, forbids search moves to 

solutions already visited in the past m steps.  As a result, the 

algorithm is amenable to accept, temporarily, solutions with 

inferior quantum cost, in order to skip, possibly better, 

solutions which were just investigated.  Such an approach, 

we assumed, should provide protection against the trap of 

falling into local minima early.  The following list describes 

the Tabu search: 

01:  C ← {15, 20, 25, 30};    // constant for different runs 

02:  θ ← initialize(); 

03:  τ ← bands /2 + C(runs); 
04:  do 
05:  evaluate(θ); 
06:  N(θ) ← sort( neighborhood θ  );    // neighborhood set 

07:  λ ← select N θ   { λ ∉ T θ  OR T θ  > τ }; 

08:  T ← {θ            // add to top of taboo set 

09:  while (not termination-condition); 

Unlike the genetic algorithm where an initial population 

of m solutions is created followed by generations of solutions 

through intra breeding and mutation, the Tabu search starts 

with a randomly begotten single solution, θ.  At each step of 

the process, a n mutations are serially performed to create a 

neighborhood of n solutions, step  06:  above using the same 

probabilistic intra-band swap operator of the genetic 

algorithm above.   The selection criteria of new solutions is: 

1) When a solution is selected for synthesis, it is added to 

the Tabu list, T, used to reject future encounters of the 

same solution (step  08: ). 

2) When a solution λ with a better cost than θ is found: 

a) Select λ only if it is not in the Tabu list T or it has not 

been visited for τ iterations (step  07: ).   

 
2 Tabu or taboo. 

b) Otherwise, select the next best solution in the 

neighborhood N(θ) according to the same criteria in  I 

above 2)a) above. 

3) If all neighbor solutions are in the Tabu list, a new set of 

neighbors is generated. 

Rather than generating a fixed number of neighbors, the 

algorithm determines the size of the neighborhood based on 

the size of the band selected for mutation: 

Neighborhood Size =β × length(band); // β ∈ {
 

 
 
 

 
 

 

  
} 

The factor β is inversely proportional to the number of 

variables and was introduced as a trade-off to speed up 

computation by reducing the neighborhood size as the 

number of variables increases.  For the sake of reducing 

memory usage and increasing speed of comparison, we chose 

to store the checksum of the input vector rather than saving 

the entire vector in the list. 

I. EXPERIMENTAL RESULTS 

For the purposes of this paper we limited our experiment 

to the completely unstructured urf4 (11 variables) benchmark 

function [ 19] and compared the performance of three 

methods of selecting input vector sequences using the 

Covered Set Partition algorithm for generating valid input 

vectors.  In order to keep a balanced comparison, the 

following steps were observed: 

1. The same synthesis algorithm was used, 

2. All algorithms processed the same number of input 

sequences (30,000 sequences), nerveless the chance, 

that the same sequence could have been selected 

repeatedly, 

3. The comparison was performed for different partition 

and results for each partition size are reported 

separately. 

TABLE 2  

COMPARISON BETWEEN RANDOM, GA AND TABU SEARCH 

FOR URF4 REVERSIBLE FUNCTION. 

Partition 

Size 

Random Genetic Algorithm Tabu search 

Single Double  

4 3204824 3127213 3074025 3245133 

5 3198885 3037825 3105020 3102076 

6 3189991 3129114 3121246 2994857 

7 3178404 3135759 3058571 3095698 

Table 2 shows random selection of input vector 

sequences consistently resulted in higher quantum cost of the 

synthesized circuit.   The genetic algorithm and Tabu search 

on the other hand were able to discover input vector 

sequences which produced lower quantum cost.  Different 

recombination and mutation probability thresholds were used 

to experiment with the genetic algorithm where a mutation 

probability around 0.2 and recombination probability of 0.8 



 

 

 

produced the best results up to 9.5% improvement over 

random selection.  Although the results do not exhibit any 

conclusive verdict regarding the CSP partition depth, the 

random selection and Tabu search both give slightly better 

performance for higher depth of CSP partition. 

TABLE 3  

RESULTS OF TABU CALIBRATION WHEN CSP PARTITION = 6 

    β  

τ  

 

 
 

 

 
 

 

  
 

30 3143504 3122341 3118063 

40 2994857 3120547 3090183 

50 3063227 3082519 3173990 

60 3150021 3095002 3149779 

 

Table 3 shows the results for various values of the 

factors β and τ with the best results underlined for different 

values of β.  Clearly the Tabu search performed well 

compared to both the GA and random search.  For a 

partitions size of 6, the Tabu search yielded the best overall 

results for a β factor of ¼ and τ of 40. 

II. CONCLUSION AND FUTURE WORK 

By utilizing heuristic based selection of future sequences 

based on the quality of already visited solutions, both the 

genetic algorithm and Tabu search methods were able to 

discover input vector sequences which produce superior 

results compared to purely random selection (~ 9.5%).   In 

our experiments, we limited our search to 30,000 sequences 

for the sake of time that it takes to perform the synthesis 

(around 3 minutes); however, for an eleven variable function, 

there exists around an astounding 1.6 x 10
5,894

 (2
11

!) possible 

input vector sequence which is impossible to explore fully.  

Obviously, despite our effort to infuse a hint of intelligence in 

our selection criteria, we barely visited few small islands in 

this massive search space. 

In our future research, we plan on study the impact of 

using the genetic algorithm and Tabu search described herein 

on some of the structured benchmarks such as the n-th prime 

and hidden weighted bit functions [ 19].  We also plan on 

implementing the algorithm on expanding the number of 

sequences visited by utilizing GPU hardware acceleration 

through CUDA and studying the impact of uniform cross 

over, elitism, and k-parent crossover. 
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