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Abstract The two-dimensional solution of the spinless Klein–Gordon (KG) equation for scalar–

vector harmonic oscillator potentials with and without the presence of constant perpendicular mag-

netic and Aharonov–Bohm (AB) flux fields is studied within the asymptotic function analysis and

Nikiforov–Uvarov (NU) method. The exact energy eigenvalues and normalized wave functions are

analytically obtained in terms of potential parameters, magnetic field strength, AB flux field and

magnetic quantum number. The results obtained by using different Larmor frequencies are com-

pared with the results in the absence of both magnetic field (xL = 0) and AB flux field (n = 0) case.

Effects of external fields on the non-relativistic energy eigenvalues and wave functions solutions are

also precisely presented.
ª 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.
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1. Introduction

It is well known that the exact solution of the Schrödinger
equation (SE) and relativistic wave equations for some physi-
cal potentials are very important in many fields of physics

and chemistry since they contain all the necessary information
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for the quantum system under investigation. The hydrogen

atom and the harmonic oscillator are usually given in text-
books as two of several exactly solvable problems in both clas-
sical and quantum physics (Greiner and Müller, 1994). The

exact l-state solutions of the SE are possible only for a few
potentials and hence approximation methods are used to ob-
tain their solutions. According to the Schrödinger formulation
of quantum mechanics, a total wave function provides implic-

itly all relevant information about the behavior of a physical
system. Hence, if it is exactly solvable for a given potential,
the wave function can describe such a system completely. Until

now, many efforts have been made to solve the stationary SE
with anharmonic potentials in two-dimensions (2D), three-
dimensions (3D) and D-dimensional space (Ikhdair and Sever,

2008a; Dong, 2001a,b; Dong and Ma, 1998; Child et al., 2000;
niversity of Bahrain.
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Dong, 2000) with many applications to molecular and chemi-
cal physics. The study of the SE with these potentials provides
us with insight into the physical problem under consideration.

However, the study of SE with some of these potentials in the
arbitrary dimensions D is presented in (cf. (Dong, 2002) and
the references therein). Furthermore, the study of the bound

state processes is also fundamental to understanding of molec-
ular spectrum of a diatomic molecule in quantum mechanics
(Flügge, 1994). Recently, some authors have studied the bound

state solutions of the l-wave Schrö dinger, Klein–Gordon
(KG) and Dirac equations with some typical potentials in
the presence of an equal scalar potential S(r) and a vector
potential V(r). These potentials include the harmonic oscillator

potential (Akcay and Tezcan, 2009; Ikhdair, 2012), ring-
shaped Kratzer-type potential (Qiang, 2004), pseudo-harmonic
oscillator potential (Ikhdair and Sever, 2007), double

ring-shaped harmonic oscillator potential (Lu et al., 2005),
ring-shaped pseudo-harmonic oscillator potential (Ikhdair
and Sever, 2008b; Ikhdair and Sever, 2008c; Ikhdair and Sever,

2009), ring-shaped potential(Falaye, 2012a), spherically asym-
metrical singular oscillator (Falaye, 2012b), Eckart potential
(Falaye, 2012c), etc.

It is well known that non-relativistic quantum mechanics
is an approximate theory of the relativistic one. When a par-
ticle moves in a strong potential field, the relativistic effect
must be considered, which gives the corrections for non-rela-

tivistic quantum mechanics (Wang and Wong, 1988). So the
motion of spin-0 and spin-1/2 particles satisfies the KG and
the Dirac equations, respectively.

We shall discuss the spin-0 KG solution for the harmonic
oscillator in 2D space in external magnetic field and Ahara-
nov–Bohm (AB) flux field (Khordad, 2010; Khordad, 2011;

Çetin, 2008) since the conserved quantities of the 2D harmonic
oscillator generate the Lie group SU(2) (Wybourne, 1974). In
the KG and the Dirac systems, Hamiltonians with equal scalar

and vector harmonic oscillator potential has the same dynam-
ical symmetries as their non-relativistic counterparts
(Ginocchio, 2005; Lisboa et al., 2004; Zhang et al., 2009; Zhang
and Chen, 2009). Hence, these discussions suggest that there

should be a coordinate transformation connecting relativistic
systems with SU(3) dynamical symmetries.

Recently, the spectral properties in a 2D charged particle

(electron or hole) confined by a harmonic oscillator in the pres-
ence of an external strong uniform magnetic field B

!
along the

z direction and Aharonov–Bohm (AB) flux field created by a

solenoid have been studied. The Schrödinger equation is
solved exactly for its bound states (energy spectrum and wave
functions) (Khordad, 2010; Khordad, 2011; Çetin, 2008). So, it
is natural that the relativistic effects for a charged particle un-

der the action of this potential could become important, espe-
cially for a strong coupling.

Recently, the 2D solution of Schrödinger equation for the

Kratzer potential with and without the presence of a constant
magnetic field has been investigated (Aygun et al., 2012)
within the framework of the asymptotic iteration method.

The energy eigenvalues are obtained analytically (numeri-
cally) for the absence (presence) of magnetic field case. The
results obtained by using different Larmor frequencies

(xL „ 0) and potential parameters are compared with the re-
sults in the absence of magnetic field case (xL = 0). The spec-
tral properties of an electron confined by 2D harmonic and
pseudoharmonic oscillators have been studied in the presence
Please cite this article in press as: Ikhdair, S.M., Falaye, B.J. A charged spinless parti
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of external fields (Ikhdair et al., 2012; Ikhdair and Hamzavi,
2012a) in the framework of the Nikiforov–Uvarov (NU)
method. Very recently, we have studied the scalar charged

particle exposed to relativistic scalar–vector Killingbeck
potentials, i.e., harmonic oscillator potential plus Cornell
potential, in the presence of magnetic and Aharonov–Bohm

flux fields and obtained its energy eigenvalues and wave func-
tions using the analytical exact iteration method (Ikhdair,
2013; Rajabi and Hamzavi, 2013).

The aim of the present work is to investigate the KG equa-
tion in 2D for an equal mixture of scalar–vector harmonic oscil-
lator potentials in the presence and absence of constant
uniform magnetic and AB flux fields that point in the z-direc-

tion. The exact bound state energy eigenvalues and normalized
wave functions are calculated in the framework of the NU
method (Nikiforov and Uvarov, 1988; Tezcan and Sever,

2009; Ikhdair, 2009). The non-relativistic energy eigenvalues
and wave functions of our solution are presented by making
an appropriate mapping of parameters. Further, special cases

of KG for equal mixture of scalar–vector harmonic oscillator
potentials are also presented in the presence (xL „ 0, n „ 0)
and absence (xL = 0,n = 0) uniform fields.

The structure of this paper is as follows. We study the
effect of external uniform magnetic and AB flux fields on a
relativistic spinless particle (anti-particle) under equal mixture
of scalar and vector harmonic oscillator potentials in Section

2. We discuss some special cases in Section 3. Finally, we give
our concluding remarks in Section 4.

2. Relativistic bound states of the HO in constant external fields

The KG equation of a charged particle moving in constant
magnetic and AB flux fields can be written as (Greiner,

2000; Alhaidari et al., 2006)

c2 p!þ e

c
A
!� �2

�ðE�VðrÞÞ2þðMc2þSðrÞÞ2
� �

wðr;/Þ¼ 0; ð1Þ

where the vector potential in the symmetric guage is defined by

A
!¼ A

!
1 þ A
!

2 such that ~r� A
!

1 ¼ B
!

and ~r� A
!

2 ¼ 0, where
B
!¼ Bẑ is the applied magnetic field and A

!
2 describes the

additional Aharonov–Bohm (AB) flux field UAB created by a
solenoid in cylindrical coordinates (Bogachek and Landman,

1995; Ferkous and Bounames, 2004). The vector potential have
the following azimuthal components (Çetin, 2008)

A
!

1 ¼
1

2
B
!�~r; A

!
2 ¼

UAB

2pr
/̂; A

!¼ Br

2
þ UAB

2pr

� �
/̂: ð2Þ

We use the following wave function

wðr;/Þ ¼ 1ffiffiffiffiffiffi
2p
p eim/gðrÞ; m ¼ 0;�1;�2; . . . ; ð3Þ

where m is the eigenvalue of angular momentum. The rela-

tionship between the attractive scalar and repulsive vector
potentials is given by S(r) = bV(r), where �1 6 b 6 1 is the
arbitrary constant and the KG equation could be reduced

to a Schrödinger-type second order differential equation as

c2 p!þ e

c
A
!� �2

þ2ðEVðrÞþMc2SðrÞÞþS2ðrÞ�V2ðrÞþM2c4�E2

� �
wðr;/Þ

¼ 0; ð4Þ

where V(r) is taken as the harmonic oscillator in the form

(Qiang, 2004; Lu et al., 2005):
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Table 1 Specific values of the constants in the solution of Eq.

(20).

Constants (a3 = 0 case)

n1 = c2/4 n2 = m2/4
n3 = m

02/4 a1 = 1

a2 = a3 = a4 = a5 = 0 a6 = n 1 = c2/4
a7 = �n2 = �m2/4 a8 = n3 = m

02/4

a9 = a6 = c2/4 a10 = m0 + 1

a11 = c a12 = m0/2
a13 = �c/2

Q3
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VðrÞ ¼ VHOðrÞ ¼
1

2
kr2; ð5Þ

where k =Mx2 is the elastic coefficient (Qiang, 2004; Lu

et al., 2005). Now we will treat the bound-state solutions of
the two cases in Eq. (4) as follows.

2.1. The positive energy case

The positive energy states corresponding to S(r) = + V(r)
(i.e., b = 1 case) in the non-relativistic limit are solutions of

the wave equation:

1

2l
~pþ e

c

Br

2
þ UAB

2pr

� �
/̂

� �2
þ 2VðrÞ � E

( )
wðr;/Þ ¼ 0; ð6Þ

where w(r,/) stands for non-relativistic wave function. This is
the Schrödinger equation for potential 2V(r). Thus, the
choice S(r) = + V(r) produces a non-relativistic limit with

potential function 2V(r) and not V(r). Accordingly, it would
be natural to scale the potential term in Eq. (4) and Eq. (6)
so that in the non-relativistic limit the interaction potential

becomes V(r) not 2V(r). Thus, we need to recast Eq. (4) for
the S(r) = V(r) as (Greiner, 2000; Xu et al., 2010; Ikhdaie
and Sever, 2012b)

c2 �i�h ~rþ e

c
A
!� �2

þ 2ðEþMc2ÞVðrÞ
� �

wðr;/Þ

¼ ðE2 �M2c4Þwðr;/Þ; ð7Þ
and in order to simplify Eq. (7) we introduce new parameters
k1 = E +Mc2 and k2 = E �Mc2 so that it can be reduced to
the form

c2 �i�h ~rþ e

c
A
!� �2

� k1ðk2 � VðrÞÞ
� �

wðr;/Þ ¼ 0: ð8Þ

Now, letting gðrÞ ¼ 1ffiffi
r
p RðrÞ and inserting Eqs. (2), (3) and (5)

into the KG Eq. (8), we obtain

d2RðrÞ
dr2

þ k1

�h2c2
½k2 �Ueffðr;xL; nÞ�RðrÞ ¼ 0; ð9Þ

with

Ueffðr;xL;nÞ¼VHOðrÞþ
M2c2

k1

x2
Lr

2þ�h2c2

k1

ðm02�1=4Þ
r2

þ2�hxLMc2m0

k1

; ð10aÞ

xL¼
X
2
; X¼ jejB

Mc
;m0 ¼mþn; n¼UAB

U0

; m0 ¼ 1;2; . . . ; ð10bÞ

where the effective potential depending on the magnitudes of
two fields strength with xL and m0 are the Larmor frequency
and a new eigenvalue of angular momentum (magnetic

quantum number), respectively. It is worthy to mention that
the frequency X is called the cyclotron frequency. This is the
frequency of rotation corresponding to the classical motion

of a charged particle in a uniform magnetic field and X/2
is the Larmor frequency in units of Hz (s�1) (Liboff,
2003). Moreover, we take n as integer with the flux quantum

U0 = hc/e. Here VHO(r) is a pure harmonic oscillator, the
second term is the harmonic oscillator-type potential and
other terms are the rotational potential creating the rota-
tional energy levels. Eq. (9) can be alternatively expressed as

g00ðrÞ þ 1

r
g0ðrÞ þ m2 � c2r2 �m02

r2

� �
gðrÞ ¼ 0; ð11Þ

with
Please cite this article in press as: Ikhdair, S.M., Falaye, B.J. A charged spinless parti
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m2¼ 1

�h2c2
k1k2�2�hMc2xLm

0	 

; c2¼ 1

�h2c2
kk1

2
þM2c2x2

L

� �
; ð12Þ

where the asymptotic behaviors g(r= 0) = 0 and g(r fi 1)
being finite. Moreover, introducing a change of variable

s= r2, that maps r 2 (0,1) to s 2 (0,1), we obtain second-
order differential equation satisfying the radial wave function
g(s),

g00ðsÞ þ 1

s
g0ðsÞ þ 1

4s2
ð�c2s2 þ m2s�m02ÞgðsÞ ¼ 0; ð13Þ

Now using the basic ideas of the NU method (Nikiforov and
Uvarov, 1988; Tezcan and Sever, 2009; Ikhdair, 2009), we thus
obtain the energy equation:

m2 ¼ 2ð1þ 2nþm0Þc; n ¼ 0; 1; 2; . . . : ð14Þ

with the constant parameters used in our calculations are dis-
played in Table 1. Inserting the values of m2 and cgiven in Eq.

(12) into Eq. (14), we arrive at the following transcendental en-
ergy formula,

2ð2nþm0 þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MxL

�h

� �2

þ kðEþMc2Þ
2�h2c2

s

¼ 1

�h2c2
½E2 �M2c4 � 2�hMc2xLm

0�: ð15Þ

We may find a solution to the above transcendental equation
as E ¼ E

ðþÞ
KG . In the non-relativistic limit when inserting

k1 ! 2l; k2 ! Enm0 and c = 1 gives the desired result

Enm0 ðxL; nÞ ¼ �hX0ð2nþm0 þ 1Þ þ �hm0xL; n ¼ 0; 1; 2; . . . ;

X0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

L þ x2

q
; x ¼

ffiffiffiffiffiffiffiffi
k=l

p
; ð16Þ

where the second term is the rotational energy levels. Using the
NU method (Nikiforov and Uvarov, 1988; Tezcan and Sever,

2009; Ikhdair, 2009) and Table 1, we can find the radial part of
the wave function (3) as

gðrÞ ¼ Cn;mr
jm0 je�cr2=2Fð�n; jm0j þ 1; cr2Þ; ð17Þ

where the normalization constant has been calculated in
Appendix A (cf. Eq. (54)). Hence, the total KG wave function

(3) is obtained as follows

wðþÞn;mðr;/Þ ¼
1ffiffiffiffiffiffi
2p
p eim/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cjm0 jþ1n!

ðnþ jm0jÞ!

s
rjm

0 je�cr2=2Lðm
0Þ

n ðcr2Þ; ð18Þ

where LðbÞa ðxÞ ¼
ðaþbÞ!
a!b!

Fð�a; bþ 1; xÞ is the associated Laguerre
polynomial and F(�a,b;x) is the confluent hypergeometric

function. Notice that the wave function (18) is finite and satis-
fying the standard asymptotic analysis (cf. Appendix A) for the
limiting cases r = 0 and r fi1.
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As shown in Fig. 1a and Eq.(10a), the effective potential
function changes in shape when the magnetic field strength
increases, say; xL = 8 and in absence of AB flux field. The

energy levels are raised when the strength of the magnetic field
increases and in the absence of the AB flux field n = 0. We see
that the effective potential changes gradually from the pure

pseudo-harmonic oscillator potential, when xL = 0, to a pure
harmonic oscillator type behavior in short potential range
when xL = 8. In Fig. 1b, the effective potential (10a) which

is pseudoharmonic oscillator when xL = 0.becomes sensitive
to the increasing AB flux field n = 8 in the short range region,
i.e., 0 < r < 4 a.u.

We see from Fig. 1a, the large influence of the magnetic

field on the shape of the effective potential energy (10a). It fol-
lows that when the strength of magnetic field increases, the
potential becomes purely harmonic oscillator in its shape,

i.e., the contribution of the centrifugal term appears for small
interaction distances, r fi 0,

Ueffðr;xLÞ !
1

2
k0r2 þ d1

r2
þ d2; k0 ¼ kþ 2M2c2

k1

x2
L;

d1 ¼
�h2c2

k1

ðm2 � 1=4Þ; d2 ¼
2�hxLMc2m

k1

:

In Fig. 1b, the AB flux field has not much effect on the effec-
tive potential energy (10a) which is of pseudoharmonic oscilla-
tor shape.

2.2. The bound states for negative energy

When S(r) = �V(r), we need to follow same procedure of the
solution in the previous subsection and consider the solution

given by Eq. (12) with the changes

c2 ! s2 ¼ MxL

�h

� �2

þ 1

�h2c2
kk2

2
: ð19Þ
0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

20

r/a.u.

U
ef

f(r,
ω

L,ξ
)

ωL=0

ωL=1

ωL=5

ωL=8

a

Fig. 1 (color online) The KG effective potential function for (
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Hence, the negative energy solution for antiparticle can be

readily found as

2ð1þ 2nþm0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MxL

�h

� �2

þ 1

�h2c2
kk2

2

s

¼ 1

�h2c2
k2k1 � 2�hMc2xLm

0� �
; m0 ¼ 1; 2; . . . ; ð20Þ

and the wave function is

wð�Þn;mðr;/Þ ¼
1ffiffiffiffiffiffi
2p
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sjm0 jþ1n!

nþ jm0jð Þ!

s
eim/rjm

0 je�sr2=2Lðm
0Þ

n ðsr2Þ: ð21Þ

The negative energy states are free fields since under these
conditions Eq. (6) can be rewritten as

� 1

2l
~pþ e

c
A
!� �2

þ E

� �
wn;mðr;/Þ ¼ 0; ð22Þ

which is a simple free-interaction mode. Further, the parame-
ters given in Eqs. (12) and (19) become

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M

�h2
ðE� �hxLm0Þ

r
; s ¼MxL

�h
: ð23Þ

Thus, Eq. (16) with k= 0, gives the following energy formula

E
ð�Þ
nm0 ¼ ð2nþm0 þ jm0j þ 1Þ�hxL; ð24Þ

and hence the wave function reads

wð�Þnm0 ðr;/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 MxL

�h

	 
m0þ1
n!

ðnþm0Þ!

s
rm
0
e�

MxL
2�hc

r2Lðm
0 Þ

n

MxL

�h
r2

� �
1ffiffiffiffiffiffi
2p
p eim/:

ð25Þ
3. Discussions

In this section we briefly study some special cases and relation-
ship between our results and some other authors’:
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a) xL–0, n = 0 and (b) xL ¼ 0; n–0. Here M= c = k = 1.
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3.1. Schrödinger-harmonic oscillator under external fields

In the non-relativistic limit, the Schrödinger equation in 2D is

d2RðrÞ
dr2

þ2l

�h2
½E�Ueffðr;xL;nÞ�RðrÞ¼ 0; ð26aÞ

Ueffðr;xL;nÞ¼VHOðrÞþ
1

2
x2

Lr
2þ�h2

2l
ðm02�1=4Þ

r2
þ�hxLm

0; ð26bÞ

and hence the energy spectrum (16) can be rewritten simply as

Enm0 ðn;xLÞ ¼ �hX0ð2nþm0 þ 1Þ þ �hxLm
0; ð27Þ

and the wave function becomes

wðþÞn;m0 ðr;/Þ¼
1ffiffiffiffiffiffi
2p
p eim/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bm

0þ1n!

ðnþm0Þ!

s
rm
0
e�br

2=2Lðm
0Þ

n ðbr
2Þ; b¼ l

�h
X0: ð28Þ

In the absence of two fields (i.e., xL = 0, n = 0), the 2D en-

ergy spectrum being

Enm ¼ �hxð2nþmþ 1Þ;

and the wave function

wðþÞn;mðr;/Þ¼
1ffiffiffiffiffiffi
2p
p eim/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bmþ1n!

ðnþmÞ!

s
rme�br

2=2LðmÞn ðbr
2Þ; b¼ l

�h
x: ð29Þ

In Fig. 2a, we plot the effective potential for the case of low

vibrational (n= 0, 1, 2, 3) and rotational (m= 1) levels for
various Larmor frequencies xL = 0,1,5,8 and n = 0 case. As
shown in Fig. 2a, and Eq. (26b), the effective potential func-

tion changes in shape as well as the bound state energy eigen-
values increase when xL = 8. It is shown that the energy levels
are raised when the strength of the magnetic field increases and
in the absence of AB flux field. It is also obvious that the effec-

tive potential changes gradually from the pure pseudo-har-
monic oscillator potential, which is a no-magnetic (xL = 0)
and the AB flux (n = 0) fields case, to a pure harmonic oscil-

lator type behavior in a short potential range when the
strength of the applied magnetic field is increased to xL = 8.
If we consider a strong magnetic field case xL = 8 which has

the shape of pure harmonic oscillator potential function, the
energy difference between adjacent energy levels are nearly
equal which is a known characteristics of the pure harmonic

oscillator potential. In Fig. 2b, the effective potential (26b) is
the pseudoharmonic oscillator in the absence of magnetic field
xL = 0 becomes sensitive to the increasing AB flux field n = 8
in the short range region for small r, i.e., 0 < r < 4 a.u.

We see from Fig. 2a that if B strength increases, then
effective potential energy (26b) is a harmonic oscillator in
its shape, the centrifugal term 1/r2 is dominant for small r

values:

Ueffðr;xLÞ !
1

2
k00r2 þ c1

r2
þ c2; k00 ¼ kþ x2

L; c1

¼ �h2

2l
ðm2 � 1=4Þ; c2 ¼ �hxLm:

However, in Fig. 2b, the AB flux field has not much effect on
the effective potential energy (26b) which is purely pseudohar-
monic oscillator.

On the other hand, we give some numerical values to the
energy states with and without external fields. In Tables 2
and 3, we show the effect of the magnetic field and AB flux
field, respectively, on the low vibrational n and rotational m
Please cite this article in press as: Ikhdair, S.M., Falaye, B.J. A charged spinless parti
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relativistic energy states of the harmonic oscillator potential.
As shown in Table 2, when the magnetic field is not applied
and without the AB flux field (xL = 0,n = 0), the spacing be-

tween the energy levels of the effective potential is narrow and
decreases with increasing n. But when the magnetic field
strength increases, the energy levels of the effective potential

increase and spacings between states also increase. In Table
3, when the AB flux field is applied and without magnetic field,
the energy states become degenerate for various values of n

and m and for various AB flux field strength values. In Tables
4 and 5, we show the effect of the magnetic field and AB flux
field, respectively, on the low vibrational n and rotational m
nonrelativistic energy states of the harmonic oscillator poten-

tial. As shown in Table 4, when the magnetic field is not ap-
plied and without the AB flux field (xL = 0, n = 0), the
energy states are equally spaced (the pure harmonic oscillator

case). But when the magnetic field strength is raised, the energy
levels of the effective potential increase and spacings between
states also increase. In Table 5, when the AB flux field is ap-

plied and without the magnetic field, the energy states become
degenerate and equally spaced for various values of n and m
and for various AB flux field strength values.

A first look at Tables 2 and 4 shows that in the absence of
the uniform magnetic field B = 0 (xL = 0), the energy spacing
is constant value, i.e., DE = 2 = constant, for any quantum
number m value in the nonrelativistic case. However, in the rel-

ativistic case, the energy spacing DE decreases with the increas-
ing of n states for m= 0, i.e., DE = 1.25696, 1.02758,
0.90721,. . ., and when m= 1, DE = 1.11943, 0.95997,

0.86438. It is obvious that the increasing of the quantum num-
ber leads to a decrease in the energy spacing which is becoming
continuous for large value of m. On the other hand, when

B > 0, the nonrelativistic energy spacing shows increment
DE = 2.82843 = constant when xL = 1 Hz and
DE = 16.12454 = constant when xL = 8 Hz. Thus, we see

that the energy spacing increases with increasing larmor fre-
quency but remains constant for all n and m states. Overmore,
considering the relativistic solution, we notice that when
xL = 1 Hz, DE = 1.38537, 1.08598, 0.94318,. . ., for m = 0

and DE = 1.10665, 0.95623, 0.86331,. . ., for m= 1 due to the
corrections in eigenenergies. This demonstrates that energy
spacing decreases with increasing m quantum number. It fol-

lows that for large m, the states become continuous. Further,
when applied magnetic field increases for which xL = 8 Hz,
DE = 2.94449, 2.06549, 1.69472,. . ., for m= 0 and

DE = 2.06647, 1.69523, 1.4758,. . ., for m= 1. It is obvious
that increasing magnetic field leads to an increase in the energy
spacing. We conclude that increasing the quantum number
m leads to a decrease in the energy spacing. From Tables 3

and 5, we can make a similar analysis for the AB flux field n.
3.2. KG-harmonic oscillator problem

The energy spectrum of relativistic spinless particle in the ab-
sence of magnetic and AB flux fields has the form:ffiffiffiffiffi
2k
p
ð1þ 2nþmÞ�h ¼ k2

ffiffiffiffiffi
k1

p
; ð30Þ

which is identical to Eq. (41) of (Lu et al., 2005) with
l0 = m0 � 1/2. The above energy formula can be reduced to

its non-relativistic limit:
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Fig. 2 The Schrödinger effective potential function and corresponding bound state energy levels (Enm) in low vibrational (n= 0, 1, 2, 3)

and rotational (m= 1) levels for (a) xL–0, n = 0 and (b) xL ¼ 0; n–0. Here l = k = 1.
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Enm ¼ ð1þ 2nþmÞ�hxD; xD ¼
ffiffiffiffiffiffiffiffiffiffi
k=M

p
: ð31Þ

The wave function can be expressed as

wðþÞn;mðr;/Þ ¼
1ffiffiffiffiffiffi
2p
p eim/

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 MxD

�h

	 
mþ1
n!

ðnþmÞ!

s
rme�MxDr

2=2�hLðmÞn

MxD

�h
r2

� �
;

ð32Þ

Following (Nikiforov and Uvarov, 1988; Tezcan and Sever,
2009; Ikhdair, 2009), the energy equation of the relativistic
spinless particle subject to the harmonic oscillator field is

n0�hc
ffiffiffiffiffiffi
2k
p

�
ffiffiffiffiffi
k1

p
k2 ¼ 0; n0 ¼ 1; 2; . . . ; ð33Þ

where n0 = 1 + ŒmŒ + 2n,n= 0,1,2, . . . , which is completely
identical to Eq. (11) and Eq. (26) in (Qiang, 2004) when one

uses the notation k ¼ 2V0=r
2
0 ¼Mx2

D. Following (Qiang,
2004), Eq. (33) has three solutions, the only real solution giving
energy is

Enm ¼
1

3
ðMc2 þM2c4T�1=3 þ T1=3Þ; ð34Þ

with

T¼27kn02�h2c2�8M3c6þ3n0�hc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kð27kn02�h2c2�16M3c6Þ

q
: ð35Þ

The wave function takes the form

wðþÞn;mðr;/Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Djmjþ1n!

pðnþjmjÞ!

s
rjmje�Dr2=2LðjmjÞn ðDr2Þeim/; D¼MxD

�h
:ð36Þ

If one expands Eq. (33) as a series of k2, it becomes
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n0�h ¼
ffiffiffiffiffi
M

k

r
k2 þ

1

4Mc2
k2
2 �

1

32M2c4
k3
2 þO k4

2

	 
� �
; ð37Þ

and taking the first order of k2 by neglecting the higher order
relativistic corrections, we finally arrive at the non-relativistic
solution:

E0nm ¼ Enm �Mc2 ¼ �h

ffiffiffiffiffi
k

M

r
ð1þ 2nþ jmjÞ

¼ ð1þ jmj þ 2nÞ�hxD; n ¼ 0; 1; 2; . . . ; ð38Þ

and wave function resembles the one given in Eq. (36).
Here, we explain in detail the physical behaviors of the en-

ergy eigenvalues due to increasing strength of the external uni-
form magnetic field and AB flux field. We try to discuss the
nonrelativistic case for clarity and simplicity. The energy levels

in Eq. (16) are commonly referred to as Landau levels. We see
that when B = 0 and n = 0, the spacing between Landau lev-
els is the constant value

DE ¼ 2�hx0; ð39Þ

for any m. The behaviors of energy levels of the simple har-
monic oscillator are equally spaced (lowest energy of harmonic
oscillator is ⁄x). Notice that in the classical limit ⁄ fi 0, the
spacing between levels DE goes to zero (nearly continuous).

However, as B > 0, the spacing between levels becomes

DE ¼ 2�hX0 ¼ 2�h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

L þ x2
0

q
: ð40Þ

Note that there is an increment in the energy spacing. In

particular, the equally spaced Landau levels corresponding
to Larmor frequencies xL = x0, 3x0, 5x0, 8x0,. . ., become
2
ffiffiffi
2
p

�hx0; 2
ffiffiffiffiffi
10
p

�hx0; 2
ffiffiffiffiffi
26
p

�hx0; 2
ffiffiffiffiffi
65
p

�hx0,. . ., respectively. Thus,
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Table 4 For various Larmor frequencies xL and without AB flux field (n = 0), the nonrelativistic energy eigenvalues (Enm in atomic

units) of a particle under the harmonic oscillator potential field with ⁄ = M= k= 1.

m n Enm

xL = 0 xL = 1 xL = 2 xL = 3 xL = 4 xL = 5 xL = 6 xL = 7 xL = 8

0 0 1.0 1.41421 2.23607 3.16228 4.12311 5.09902 6.08276 7.07107 8.06226

1 3.0 4.24264 6.7082 9.48683 12.3693 15.2971 18.2483 21.2132 24.1868

2 5.0 7.07107 11.1803 15.8114 20.6155 25.4951 30.4138 35.3553 40.3113

3 7.0 9.89949 15.6525 22.1359 28.8617 35.6931 42.5793 49.4972 56.4358

1 0 2.0 3.82843 6.47214 9.32456 12.2462 15.198 18.1655 21.1421 24.1245

1 4.0 6.65685 10.9443 15.6491 20.4924 25.3961 30.3311 35.2843 40.249

2 6.0 9.48528 15.4164 21.9737 28.7386 35.5941 42.4966 49.4264 56.3735

3 8.0 12.3137 19.8885 28.2982 36.9848 45.7922 54.6621 63.5685 72.4981

Table 5 For various AB flux field n and without magnetic field (xL = 0), the nonrelativistic energy eigenvalues (Enm in atomic units)

of a particle under the harmonic oscillator potential field.

m n Enm

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

1 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

2 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0

3 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

1 0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

1 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

2 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

3 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0

Table 2 For various Larmor frequencies xL and without AB flux field (n = 0), the spinless relativistic energy eigenvalues (Enm in

atomic units) of a particle under the harmonic oscillator potential field with ⁄ = c= M= k = 1.

m n Enm

xL = 0 xL = 1 xL = 2 xL = 3 xL = 4 xL = 5 xL = 6 xL = 7 xL = 8

0 0 1.83929 2.04353 2.40325 2.75615 3.08137 3.38066 3.65815 3.91752 4.16166

1 3.09625 3.4289 4.03986 4.65113 5.21808 5.74094 6.22602 6.67941 7.10609

2 4.12383 4.51488 5.26359 6.03138 6.75146 7.4193 8.04087 8.62301 9.17158

3 5.03104 5.45806 6.30283 7.18744 8.02542 8.80667 9.53605 10.2205 10.8663

1 0 2.50976 3.16597 3.89307 4.55265 5.14478 5.68284 6.17802 6.63858 7.0706

1 3.62919 4.27262 5.12444 5.93706 6.68087 7.36315 7.99437 8.58337 9.13707

2 4.58916 5.22885 6.16824 7.09549 7.95634 8.7516 9.49036 10.1815 10.8323

3 5.45354 6.09216 7.09891 8.11893 9.0768 9.96689 10.7966 11.5745 12.3081

Table 3 For various AB flux field nand without magnetic field (xL = 0), the spinless relativistic energy eigenvalues (Enm in atomic

units) of a particle under the harmonic oscillator potential field.

m n Enm

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

0 0 1.83929 2.50976 3.09625 3.62919 4.12383 4.58916 5.03104 5.45354 5.85966

1 3.09625 3.62919 4.12383 4.58916 5.03104 5.45354 5.85966 6.25166 6.6313

2 4.12383 4.58916 5.03104 5.45354 5.85966 6.25166 6.63137.0 7.0 7.35892

3 5.03104 5.45354 5.85966 6.25166 6.6313 7.0 7.35892 7.70901 8.05108

1 0 2.50976 3.09625 3.62919 4.12383 4.58916 5.03104 5.45354 5.85966 6.25166

1 3.62919 4.12383 4.58916 5.03104 5.45354 5.85966 6.25166 6.6313 7.0

2 4.58916 5.03104 5.45354 5.85966 6.25166 6.6313 7.0 7.35892 7.70901

3 5.45354 5.85966 6.25166 6.6313 7.0 7.35892 7.70901 8.05108 8.38582
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we find that the energy spectrum of a confined electron

changes from a nearly continuous one for B = 0 (xL = 0) to
a discrete spectrum for B> 0(xL „ 0). On the other hand,
when B = 0 and n „ 0, the spacing between Landau levels is

the constant value as in Eq. (37). It follows that the AB flux
field has no influence on the energy spacings between different
states. the behavior of the relativistic harmonic oscillator in the
presence of magnetic field will increase the energy spacing due

to the relativistic effects as we can expect correction terms to
the nonrelativistic term.

Here, we explain in detail physical behaviors of why the

eigenenergies increase or decrease with the Larmor fre-
quency. We define the quantity e⁄/2Mc as a Bohr magne-
ton. It has the value

lb ¼
jej�h
2Mc

¼ 0:927� 10�20 erg=gauss; ð41Þ

and the relationship between Bohr magneton, magnetic field
and Larmor frequency is given by

�hxL ¼ lbB: ð42Þ

For an electron, one finds the magnetic moment is directly pro-

portional to its spin angular momentum. It is given by

~l ¼ � e

Mc
S
!¼ � e�h

2Mc
~r ¼ �lb~r: ð43Þ

We now consider the problem of calculating the eigenstates

and eigenenergies of the present model, i.e., a spinning but
otherwise fixed electron in a constant uniform magnetic field
that points in the z direction. To solve this problem we use
the Schrödinger equation. For the case at hand, it appears as

bH¼�~l � B!¼lb~r � B
!¼lbBrz¼�hxLr̂z; rz¼

1 0

0 �1

� �
; ~l¼�lb~r: ð44Þ

Setting jwi ¼ f
g

� �
gives

bHjwi ¼ Ejwi ! �hxL

1 0

0 �1

� �
f

g

� �
¼ E

f

g

� �
; ð45Þ

or, equivalently,

�hxLf ¼ Ef;��hxLg ¼ Eg: ð46Þ

If f „ 0, g= 0, then E = + ⁄xL = + lbB. If g „ 0, f= 0, then
E = �⁄xL = �lbB. Thus we obtain the normalized eigen-

states and eigenenergies

a ¼
1

0

� �
; E ¼ þ�hxL ¼ þlbB; ð47aÞ

b ¼
0

1

� �
; E ¼ ��hxL ¼ �lbB: ð47bÞ

In the state of higher energy, the spin of the electron is par-

allel to B
!
, so the magnetic moment is antiparallel to B

!
and

the interaction energy �~l � B! is maximum. In the state of
lower energy, the spin of the electron is antiparallel to B

!
,

so the magnetic moment is parallel to B
!

and the interac-
tion energy �~l � B! is minimum. Notice that the energy for-
mulas (15) and (16) are mainly dependent on the magnetic

quantum numbers m= 0, ± 1, ± 2, . . . , which are influ-
enced by the magnetic field pointing along z-axis which is
splitting energy to maximum and minimum levels. For fur-
ther details on the physical properties of similar potential

models under the influence of uniform electric, magnetic
Please cite this article in press as: Ikhdair, S.M., Falaye, B.J. A charged spinless parti

Bohm flux fields. Journal of the Association of Arab Universities for Basic and App
and AB flux fields, one is advised to refer to other works

(Ikhdair, 2012; Ikhdair et al., 2012; Ikhdair and Hamzavi,
2012b; Ikhdair and Hamzavi, 2012c).
4. Concluding remarks

To sum up, in this paper, we have studied the solutions of
the KG and Schrödinger equations in two-dimensional space

with the harmonic oscillator interaction for low vibrational
and rotational energy levels without and with a constant
magnetic field having the arbitrary Larmor frequency and
AB flux field. We have used the NU method for xL „ 0

(with magnetic field) and n „ 0 (with AB flux field) and ob-
tained analytical expressions for bound state energies and
wave functions of the relativistic spinless particle subject to

a harmonic oscillator interaction in terms of external uni-
form magnetic and AB flux fields in any vibrational n and
rotational m states. The above results show that the prob-

lems of relativistic quantum mechanics can be also solved
exactly as in the non-relativistic ones. We considered the
solution of both positive (particle) and negative (anti-parti-

cle) KG energy states. The Schrö dinger bound state solu-
tion is found as a non-relativistic limit of the present
model. It is noticed that the solution with an equal mixture
of scalar–vector potentials can be easily reduced into the

well-known Schrö dinger solution for a particle with an
interaction potential field and a free field, respectively. We
have also studied the bound-state solutions for some special

cases including the non-relativistic limits (Schrödinger equa-
tion for harmonic oscillator under external magnetic and AB
flux fields) and the KG equation for harmonic oscillator

interactions. The results show that the splitting is not con-
stant and dependent mainly on the strength of the external
magnetic field and AB flux field. In order to show the effect
of constant magnetic and AB flux fields on the vibrational

and rotational energy levels of the harmonic oscillator we
plot the effective potential and corresponding energy levels
with the increasing Larmor frequency and flux field for spe-

cial potential parameters. We have seen that the effective
potential function and corresponding energy levels are raised
in energy when magnetic and AB flux field strengths in-

crease. The effective potential function behavior gradually
changes from the pure pseudo-harmonic oscillator to a pure
harmonic oscillator shape in short potential range as the

magnetic and AB flux field strengths increase.
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Appendix A. Asymptotic analysis

We consider here a more shorter solution to Eq. (11). The 2D
Schrö dinger-type equation satisfying the radial wave function
R(r),
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� d2RðrÞ
dr2

þ c2r2 þ ðm
02 � 1=4Þ
r2

� �
RðrÞ ¼ m2RðrÞ; ð48Þ

where g(r) = r�1/2R(r). We can solve Eq. (48) by using Eq. (17)
in (Ikhdair and Sever, 2007) with the replacements:

2lE0nL=�h2 ! m2, 2l B2/⁄2 fi c2 and 2L + 1 fi 2m0 in Eq. (19)
of (Ikhdair and Sever, 2007) to obtain our Eqs. (15) and (17).
A first inspection on the asymptotic analysis of Eq. (48), we find
out that if r approaches 0, the radial wave function R(r) � rp,

p = m0 + 1/2 > 0 and if r fi1, R(r) � exp(�cr2/2), hence
both solutions are satisfying the boundary conditions of the
radial wave function g(r= 0) = 0 and g(r fi1) fi 0. In the

entire range r 2 (0,1), we consider the general solution
gðrÞ ¼ rm

0
exp �cr2=2ð ÞLðrÞ, m0 > 0, where L(r) is the associ-

ated Laguerre polynomials. Letting

RðrÞ ¼ rm
0þ1=2 expð�cr2=2ÞLðrÞ; ð49Þ

and substituting Eq. (49) into Eq. (48) gives

d2LðrÞ
dr2

þ 2 �crþm0 þ 1=2

r

� �
dLðrÞ
dr
þ 4cnLðrÞ ¼ 0: ð50Þ

Introducing a new variable z = cr2, Eq. (50) can be rewritten
as

z
d2LðzÞ
dz2

þ ðm0 þ 1� zÞ dLðzÞ
dz
þ nLðzÞ ¼ 0; ð51Þ

which is the well known differential equation whose solution

is the associated Laguerre polynomials, Lðm
0 Þ

n ðzÞ. The radial
wave function can be expressed as

gðrÞ ¼ An;mr
jm0 j expð�cr2=2ÞLðm0Þn ðcr2Þ; ð52Þ

where An,m is the normalization constant. The relation for
the orthogonality of Laguerre polynomials is (Abramowitz
and Stegun, 1964)Z 1

0

zce�zLðcÞn ðzÞL
ðcÞ
n0 ðzÞdz ¼

Cðnþ cþ 1Þ
n!

dn;n: ð53Þ

from which one can obtain

An;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cm0þ1n!

Cðnþm0 þ 1Þ

s
: ð54Þ

which is the normalization constant.
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