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Self-consistent energy levels of electrons in modulation-doped GaAs/Ga1−xAl xAs het-
erostructures are presented and their dependence on various device parameters are exam-
ined. The results of the calculation of the electric field effects on the shape of the confinement
potential, the electron concentration and the shape of the wavefunction are presented.
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1. Introduction

The two-dimensional electron gas (2DEG) of a modulation-doped GaAs/Ga1−xAl xAs heterostructure is
now widely used in high-speed electronic devices such as high electron mobility transistors. The basic idea of
modulation doping is to introduce impurities in barrier material so that the electron mobility will be improved
as a result of spatial separation of electrons and their parent ionized impurities. The most important parameters
that determine the 2DEG properties (mobility and electron concentration) are: the spacer-layer thickness, the
donor doping concentration inn-GaAlAs, the Al mole fraction in Ga1−xAl xAs, and the background impurity
concentration in the GaAs region. These parameters are optimized to obtain highest possible 2DEG mobilities
and electron concentrations in the channel.

The great interest in the properties of 2DEG has led to a number of calculations of their energy levels and
other electronic properties [1–4]. The methods employed for the calculation include self-consistent numerical
solutions of the Schrödinger and Poisson equations [1–3], and variational calculations [4–8]. The earlier
variational calculations involved various approximations such as the Hartree approximations [4], the neglect
of tunnelling to the barrier region [5, 6] and the use of the finite or infinite triangular potential well [7].
The reader is referred to excellent reviews by Weisbuch [9], Hiyamizu [10], and Morkoc [11] for detailed
discussions of electronic and transport properties of modulation-doped heterostructures. In this work, we
present our self-consistent calculations of energy levels with and without the external electric field. The next
section gives a description of the calculation. The results and conclusions are summarized in Section 3.
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2. Theory

To determine the energy levels and charge transfer in single heterojunctions we have to solve the coupled
Poisson and Schrödinger equations self-consistently,
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where

Vsc(z) = VH (z)+ Vxc(z), (3)

andVxc(z) is the exchange-correlation potential,Vb(z) is the barrier potential,ni is the areal concentration of
electrons in thei th subband,N+D andN−A are the donor and acceptor concentrations,κ is the static dielectric
constant andm(z) is the position-dependent effective mass.

At finite temperatureT , the chemical potentialµ is given by,
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At T = 0 K, this equation reduces to

ni = mi

π h̄2 (µ− Ei )2(µ− Ei ), (5)

where2 is the step function. We need to supplement the above equations with the boundary conditions
χi → 0 asz→ ±∞ and 1

m(z)
∂χi

∂z should be continuous everywhere. We further require the heterojunction to
be in electrical equilibrium, ∑

i

ni +
∫ +∞
−∞

dz(N−A − N+D ) = 0. (6)

At T = 0 K, the sharpness of the Fermi–Dirac distribution function introduces further simplifications and the
acceptor and donor contributions toVsc(z) becomes

VA(z) = 2πe

κ
N−A z(z− l A) (7)

VD(z) = −2πe

κ
(ND − Nb,A)(z+ l D + w)2+ V0, (8)

wherel A andl D are acceptor and donor depletion lengths, respectively,w is the spacer thickness andNb,A is the
concentration of acceptors in the barrier region andV0 is the integration constant needed for the continuation
of the potential atw. In the depletion length approximation the charge balance equation can be written as

NDl D =
∑

i

ni + Ndep+ Nb,A(w + l D), (9)

whereNdep= NAl A. The transferred charge is
∑

i ni = Ns.
We follow a self-consistent variational procedure to solve the coupled Poisson and Schrödinger equations

[5]. We choose a modified Fang–Howard [8, 12] trial wavefunction which allows wavefunction penetration
into the barrier region. We use an expression parametrized by Hedin and Lundquist [13] for the local exchange-
correlation potential.

The electric field effects are included in the calculation by modifying the wavefunctions with exponentially
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Table 1: Parameters used in self-consistent calculations.

Al content x = 0.3
Acceptor concentration in GaAs Ndep= 0.5× 1011 cm−2

Donor concentration in AlGaAs ND = 2.0× 1018 cm−3

Spacer layer thickness w = 60 Å
Donor binding energy ED = 60 meV
Effective masses m(GaAs)= 0.070m0

m(AlGaAs)= 0.088m0

Dielectric constants κ(GaAs)= 13.1
κ(AlGaAs)= 12.2

Barrier height Vb = 225 meV

decaying parts as discussed by Bastard [8]. We define a quantityP, which corresponds to the electron
polarization in case where only the wavefunction distorts under an electric field, as

P = 〈ez〉F=0− 〈ez〉F , (10)

whereF denotes the strength of the applied electric field [14, 15].
The calculation of the expectation values is performed by using a modified Fang–Howard [8] trial wave-

function,

χi (z) =
{

M exp(κbz/2) z≤ 0
N(z+ z0) exp(−bz/2), z≥ 0,

(11)

in the case of no external electric field. The self-consistent potential profile with subband energies andEF

are determined through a simultaneous solution of eqns (1) and (2).
The external electric field is considered to modify the trial wavefunction into the form

Fi (z) = χi (z) exp(−βz), (12)

and the termγ Fz is added to the Hamiltonian. The self-consistent calculation is repeated as in the zero-field
case with the new wavefunction and Hamiltonian.

3. Results and conclusions

The parameters required for the self-consistent solution of the coupled Poisson and Schrödinger equations
are listed in Table 1. These parameters are chosen to correspond to the experimental work of Hiyamizuet al.
[16]. The donor binding energies are determined by considering the experimental results of Ishibashiet al.
[17] and Ishikawaet al. [18]. We use a value ofED = 60 meV corresponding to the case of AlAs mole
fractionx = 0.3. We have tested the sensitivity of the energy levels to all the parameters in the calculation.

The calculated self-consistent potentialVsc, the ground subband and Fermi energy are shown in Fig. 1. It
is known that the exchange and correlation are not as important in the present system as in the Si inversion or
accumulation layers, but they affect the results quantitatively. Exchange and correlation pushes the subband
energyE0 and EF down, and results in a higherNs value. This also means that the inclusion of exchange
and correlation increases the carrier concentration at which the Fermi level crosses into the second subband.
From the penetration of the wavefunction we deduce that the average position of electrons is shifted in the
negativez-direciton by about 17̊A from the case of infinite barrier height. This shift seems to be insensitive
to the amount of charge transferredNs, in the electric quantum limit we are considering.

Figure 2 shows the 2DEG concentrationNs as a function of spacer layer thicknessw. The experimental
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Fig. 1. The calculated self-consistent potential, the ground subbandE0, and Fermi energyEF with parameters shown in the inset.
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Fig. 2. The calculated 2DEG concentrationNs as a function of the spacer layer thicknessw. The experimental results are from
Hiyamizuet al. [16] obtained at 5 K without illumination.

results are taken from Hiyamizuet al. [16]. The agreement between our calculated values and experiment is
rather good.

Figure 3 shows the 2DEG concentrationNs as a function of donor doping concentrationND. Although the
overall agreement with the experimental results of Hiyamizuet al. [16] is good, the discrepancies become
larger for large donor concentrations. This depends rather sensitively on the spacer layer thicknessw.

Figure 4 shows the dependence of self-consistently calculatedNs on the barrier heightVb. IncreasingVb

means increasing energy separation between the donor level in GaAlAs and the ground subband level in GaAs
thus more electrons are transferred to the GaAs region. This is also why the delta-doping increasesNs as a
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Fig. 3. The calculated 2DEG concentrationNs as a function of the donor concentrationND . The experimental results are from
Hiyamizuet al. [16] obtained at 77 K.

30

20

10

0
100 200 300 400 500

Vb  (meV)

ω = 60 Å

N
s (

10
11

 c
m

–2
)

Fig. 4. The dependence ofNs on the barrier heightVb.

result of the confinement effect which pushes theδ-subband energy level up in GaAlAs, resulting in larger
effective barrier height.

We calculated also theP values defined by eqn (10) by repeating the whole self-consistent calculation for
each value of the applied electric fieldF . Figure 5 showsP values as a function of applied electric fieldF ,
for the calculated values ofND = 2× 1018 cm−3 andND = 1.3× 1018 cm−3 corresponding approximately
to the experimental case of Harriset al. [19]. The behaviour of ground subband electrons under the applied
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Fig. 5. The calculatedP values as a function of applied electric field for donor concentrationsND = 1.3× 1018 cm−3 andND =
2× 1018 cm−3.

electric field is as expected. The lower value ofND produces lowerNs which also means that the subband
energy level is pushed up corresponding to decreased confinement. This is why we observe higherP values
for lower ND.

The nonparabolicity of the conduction band of GaAs is not taken into account in this work, except that we
take an effective mass(m = 0.07m0) slightly larger than the value at the conduction band minimum of bulk
GaAs. This affects the kinetic energy which has only a small contribution to the subband energy. We have
also neglected the image term in the Hamiltonian. The effect of this term is apparently extremely small and
is discussed in detail by Stern and Das Sarma [3].
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