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Abstract

Acinetobacter baumannii causes severe Intensive Care Unit (ICU) infections with high mortality,
yet most prediction tools rely on risk scores or supervised machine learning (ML) and overlook
hidden patient subgroups. This study applied a hybrid machine learning framework combining
unsupervised clustering and supervised prediction to refine ICU mortality estimation and evaluate
whether incorporating phenotype information enhances performance. Patient phenotypes were
identified using clustering, and cluster membership was incorporated as an additional predictive
feature. ML models were trained with and without cluster membership under two feature settings:
full-feature models including all variables and reduced-feature models limited to significant
predictors identified within the clusters. The resulting phenotypes were clinically distinct and
strongly associated with mortality, demonstrating that data-driven patient grouping can provide
complementary prognostic information. Incorporating phenotype membership improved
predictive accuracy in a context-dependent manner, varying by feature regime and the learning
algorithm. This study introduces a novel framework for phenotype-guided critical care modeling
that bridges unsupervised and supervised learning, advancing personalized critical care and
supporting global efforts to reduce preventable ICU mortality.

Keywords: Machine learning in critical care, ICU mortality prediction, Phenotype-guided
modeling, Clinical risk stratification, Acinetobacter baumannii prediction, Unsupervised
clustering.

1 Introduction

Acinetobacter baumannii is a major cause of hospital-acquired infections in intensive care units.
Its ability to survive in the hospital environment and to rapidly acquire antimicrobial resistance
has made it a critical-priority pathogen on the World Health Organization (WHO) list [1,2].



Mortality rates among ICU patients with A. baumannii infections are strikingly high, ranging
from 10% to more than 70% depending on resistance patterns and timeliness of effective treatment
[3.4].

Prognosis is typically assessed using severity scores, such as Sequential Organ Failure Assessment
(SOFA) and Acute Physiologic Assessment and Chronic Health Evaluation (APACHE), or
supervised ML models that use large sets of clinical variables [5,6]. While these approaches can
predict outcomes with moderate accuracy, they generally treat all patients as a single homogeneous
group, and ignore heterogeneity in comorbidities, infection sites, and responses to treatment, which
may mask important subgroups at higher or lower risk of mortality.

In broader ICU research, unsupervised learning methods such as clustering and latent class
analysis have been successfully applied to identify patient phenotypes that differ in outcomes and
even in treatment response. Phenotypes of sepsis and septic shock have been linked to 14-day
mortality and organ failure trajectories [7,8]. Similarly, subgroups in acute respiratory distress
syndrome (ARDS) showed differential mortality and response to therapy [9]. These advances
demonstrate that machine-learned phenotypes can provide clinically meaningful stratification.
However, no studies to date have applied such methods to ICU patients with A. baumannii
infection.

ML is increasingly applied in intensive care medicine, where supervised models have shown
strong performance in predicting sepsis, organ failure, and short-term mortality [5,10].ICU patients
with A. baumannii infection are one such group, typically having multiple comorbidities, severe
organ dysfunction, and intensive use of invasive support and antibiotics, making them a
heterogeneous, high-risk population well suited to ML-based analysis.Yet, most models still
assume patient populations are uniform and rarely account for hidden subgroups that may differ
in risk or response. Similarly, while clustering and other unsupervised methods have been applied
to broader ICU cohorts, little is known about how such phenotype labels interact with supervised
algorithms to improve prediction. This represents an important methodological gap: the role of
unsupervised phenotypes as features in supervised learning has not been systematically tested
across modeling strategies or feature regimes.

To address this gap, we designed a two-stage study with complementary clinical and ML
objectives. Clinically, we aimed to uncover phenotypes of ICU patients with A. baumannii
infection and test their association with mortality. From an ML perspective, we examined whether
incorporating phenotype labels into supervised models improves predictive performance, and
under what conditions such benefits arise. Methodologically, we treat this as a phenotype-guided
modelling framework: a model-agnostic, stepwise pipeline that (i) derives phenotypes using
unsupervised clustering on routine ICU variables, (ii) integrates the phenotype label as an optional
predictor in different algorithms and feature sets, and (iii) compares performance across these
regimes to quantify the incremental value of phenotype information. This study explores when
unsupervised phenotypes add value to supervised prediction, and contributes not only to infection-
specific critical care but also to the broader question of how clustering-derived features can
enhance clinical ML.



Given the high case-fatality of ICU 4. baumannii infection, we focused on in-hospital mortality
as the primary outcome, using predictors available during the index ICU admission to enable early
risk stratification and to inform decisions about monitoring, antimicrobial therapy, and organ
support.

2 Literature Review

Early attempts to predict outcomes in A. baumannii infection relied on conventional severity
scores such as SOFA and APACHE, or regression-based analyses of clinical risk factors. These
studies identified illness severity, comorbidities, and invasive procedures as predictors of poor
prognosis, but their discriminative ability was modest and inconsistent across cohorts [3]. Logistic
regression models, including nomograms, were later developed to refine risk prediction,
incorporating variables such as infection source, mechanical ventilation, albumin, and comorbidity
burden. While these improved calibration, their discriminatory performance remained limited,
with Area Under the Curve (AUCs) generally below 0.80 [12].

With the rise of ML, more flexible models were introduced. Xu et al. applied an interpretable
gradient boosting framework (XGBoost) to predict fulminant sepsis due to A. baumannii
bloodstream infection and demonstrated better performance than conventional severity scores [5].
Neuman et al. developed and externally validated a prediction model for hospital-acquired A.
baumannii using electronic health record data, confirming feasibility but with only modest
discrimination [13]. Other contemporary studies combined regression and ML to address
carbapenem-resistant A. baumannii bloodstream infections [11,4]. These studies illustrate the
transition from traditional regression-based models to supervised ML approaches, though most
continue to treat patients as a homogeneous group and lack strategies to address underlying
heterogeneity.

In parallel, unsupervised methods have been applied more broadly in critical care to uncover latent
clinical subgroups. In ARDS, latent class analysis revealed “hyper-inflammatory” and “hypo-
inflammatory” phenotypes with distinct mortality and treatment responses [9]. Subsequent studies
validated these subphenotypes and showed they can be predicted using routine clinical variables,
enabling practical bedside classification [15,16]. Similar progress was made in sepsis, where
Seymour et al. identified four phenotypes associated with unique host-response patterns and
outcome trajectories [7]. More recent studies extended this approach to sepsis-associated ARDS,
where mortality varied dramatically across subgroups [14]. Unsupervised clustering has revealed
clinically meaningful phenotypes across sepsis, ARDS, and COVID-19, consistently associated
with prognosis and treatment response [17-19].

Supervised ML methods such as Random Forest (RF) and gradient boosting (including XGBoost)
are now well established in ICU prognostic modeling, owing to their ability to capture
nonlinearities, interactions, and high-dimensional data while providing interpretable feature
importance [20-22]. For unsupervised learning, Partitioning Around Medoids (PAM) has been
recommended in clinical contexts because it accommodates mixed variable types and is more
robust to outliers than k-means [23,24]. Prior successes of these approaches in ICU research
therefore provide strong justification for their use in our study: RF and XGBoost for mortality



prediction, and PAM for identifying subgroups of A. baumannii patients with potentially distinct
risk profiles.

Despite these advances, unsupervised clustering has not been applied to ICU patients with A.
baumannii, nor has the integration of phenotype membership into supervised ML models been
systematically studied. Addressing this gap, the present work applies a two-stage design to identify
phenotypes and evaluate their added value for mortality prediction in critically ill patients with A.
baumannii infection.

3. Methods
3.1 Study Design and Population

We worked on a previously conducted retrospective observational study of 231 intensive care unit
(ICU) patients with confirmed A. baumannii infection, admitted to three different tertiary hospitals
from the north, middle, and south of the West Bank, Palestine. Clinical and microbiological data
were collected from hospital records across the three tertiary hospitals. Variables are summarized
in Table A1 in Appendix. The primary endpoint was all-cause in-hospital mortality at discharge.

All methods were carried out in accordance with relevant guidelines and regulations. The use of
anonymized human data in this study was conducted in accordance with both local and
international ethical principles, including the Declaration of Helsinki. The protocol involving the
data source was approved by the Institutional Review Board (IRB) of An-Najah National
University (approval number Mas. Feb. 2023/7, approved on February 5, 2023). The requirement
for informed consent was waived by the IRB.

3.2 Data Preparation and Preprocessing

The initial dataset contained 231 patient records and 49 variables. The structured preprocessing
pipeline, presented in Figure 1, was applied to ensure data quality, reduce redundancy, and retain
clinically meaningful features for analysis.

From the initial cohort of 231 eligible ICU patients, 19 (8.2%) had at least one missing value in
predictors required for clustering or prediction, leaving 212 complete cases for all modeling
analyses. Given the modest fraction of missing data and the limited sample size, we used a
complete-case approach rather than multiple imputation, which allows to build robust and
interpretable models while keeping additional assumptions about the missing-data mechanism to
a minimum. Further, ten variables judged a priori to be unrelated to the study objectives were
excluded, and records with incomplete data were removed, reducing the dataset from 231 to 212
patients. The full list of excluded variables and the rationale for their exclusion is provided in
Appendix Table A2. Additionally, categorical features were label-encoded and continuous
predictors were converted into pre-specified ordinal categories, chosen using standard ICU
practice and the empirical distribution in our cohort to form meaningful categories with adequate
counts. The full set of cut-points for all discretized variables is reported in Appendix Table A3. To
refine the dataset, we applied variance filtering to remove features with minimal variability, as
near-zero variance predictors add complexity without improving discrimination [25]. Binary and
categorical variables were label-encoded, and features with variance less than 0.01 were removed
as near-constant. This conservative cut-off is consistent with recent medical ML work using 0.01



to filter near-zero-variance predictors [26,27], and led to the exclusion of variables such as urinary
catheter, cancer, and effective antibiotic therapy. Accordingly, the dataset was reduced from 49 to
35 variables. Next, correlation filtering was conducted to minimize redundancy. Associations
among variables were quantified using Cramér’s V, which is a normalized measure of association
[28]. Variables with correlation coefficients > 0.60 were considered redundant. For each correlated
pair, the clinically more relevant feature was retained. Because several predictors were originally
continuous, we also examined Spearman correlations between the original continuous variables as
a sensitivity check and it showed a very similar pattern. This confirmed that strongly correlated
pairs had already been removed, and among the remaining predictors the highest correlation was
observed between hospital length of stay and duration of antibiotic therapy (p = 0.65), which we
judged clinically distinct and therefore retained both. After this step, 28 variables remained.
Finally, the variable set was reviewed in consultation with specialists in the domain to ensure
clinical interpretability and relevance. Six additional variables judged redundant or less
informative were excluded: categorize reason, hypertension, neurological disease, infection with
multidrug-resistant strains, white blood cell count, and platelet count.

231 patients admit to ICU, 49
variables recorded for each
patient

local database

excluded records with
incomplete data

excluded variables not
relevant to study objectives

excluded low-variance

variables (< 0.01) feature selection
| - _
excluded correlated variables 1 N=212,p=22

(r 2 0.60, kept most relevant)

grouped continuous
variables; label-encoded
categorical features

excluded less informative
variables (after expert review)

local database

cleaned dataset (212 x
22) ready for analysis

Figure 1: Preprocessing and feature selection workflow for the ICU dataset.

The final dataset comprised 212 patients and 22 clinically relevant variables, detailed in Table A3
in the Appendix, which were subsequently used for clustering and predictive modeling.



3.3 Clustering Analysis

Because ICU patients with A. baumannii infection are highly heterogeneous, we applied
unsupervised clustering to identify subgroups of patients with similar clinical characteristics. This
step aimed to reveal latent phenotypes that may underlie differences in prognosis and provide
additional information to enhance supervised mortality prediction. Before clustering,
dimensionality reduction was performed using Principal Component Analysis (PCA). PCA
transforms correlated clinical variables into a smaller number of uncorrelated components while
retaining most of the variability in the data. This reduces noise, mitigates the effect of collinearity,
and improves the stability of clustering in high-dimensional datasets [29,30].

Clustering was then performed using the Partitioning Around Medoids (PAM) algorithm. Unlike
centroid-based k-means, PAM selects actual patient records as cluster representatives “medoids”
and minimizes the sum of dissimilarities to these medoids, which improves robustness to outliers
and does not assume continuous variables with approximately spherical clusters [23]. We preferred
PAM over agglomerative hierarchical clustering, which is sensitive to irreversible early merges
and requires a subjective choice of dendrogram cut, and over density-based methods such as
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Hierarchical
Density-Based Spatial Clustering of Applications with Noise (HDBSCAN), which require tuning
density parameters and can leave some patients unassigned as noise, whereas our aim was to assign
every ICU patient to a phenotype. Patient-to-medoid dissimilarities were computed using the
Minkowski distance, a flexible metric that generalizes several distance measures and is applicable
to our coded “binary/ordinal” clinical predictors [23].

The optimal number of clusters was evaluated using two complementary methods. The Elbow
Method inspects the reduction in within-cluster variation and identifies the point where adding
further clusters yields diminishing returns [31]. The Calinski—Harabasz Index compares the
separation between clusters with cohesion within clusters, with higher values reflecting better-
defined groupings [32].

To evaluate reproducibility, cluster stability was assessed using bootstrap resampling combined
with the Jaccard similarity index, which quantifies how consistently patients are assigned to the
same cluster across repeated resamples [24]. Finally, the cluster assignments derived from PAM
were retained as an additional feature and incorporated into the supervised prediction models, as
clarified in Section 3.5, to test whether phenotypic information improved mortality prediction.

3.4 Cluster Profiling

Following clustering, we profiled the subgroups to characterize their clinical and demographic
features. For each cluster, mean and median values were computed to summarize age,
comorbidities, infection characteristics, interventions, and outcomes.

To formally test for differences between clusters, non-parametric statistical methods were applied.
Mann—Whitney U tests were used for ordinal variables, while chi-square tests were used for binary
variables. For cluster profiling, nominal p-values were complemented by Benjamini—Hochberg
False Discovery Rate (FDR—adjusted) g-values, where variables with q < 0.05 are highlighted as



the most robust differences, and others are interpreted as exploratory. This approach follows prior
phenotyping work in sepsis and ARDS, where cluster profiles were statistically validated to
confirm their clinical distinctiveness [7,9]. Additionally, this approach provided interpretable
phenotypes and allowed us to assess whether mortality differed significantly between clusters.

3.5 Supervised Prediction Models

To assess whether cluster membership improved prediction, we developed supervised machine-
learning models. Cluster assignments obtained in Section 3.3 were incorporated as an additional
feature alongside demographic, clinical, and infection-related variables. Two algorithms were
selected based on their strong performance in structured clinical prediction tasks, RF and XGBoost
[36].

RF is an ensemble method that constructs multiple decision trees using bootstrapped samples and
aggregates their outputs. This approach reduces overfitting, captures nonlinear relationships, and
produces measures of variable importance, making it valuable in clinical prognostic modeling [33].
XGBoost is a gradient boosting algorithm that builds trees sequentially, with each new tree
correcting the errors of the previous ones. It incorporates regularization to prevent overfitting and
has consistently shown high predictive accuracy in biomedical applications [34].

To examine the role of cluster membership across different clinical data conditions, we adopted a
dual-model design. Each algorithm was trained under two complementary feature regimes: (1) a
full-feature model including all 22 predictors, and (2) a reduced-feature model restricted to
variables that differed significantly between clusters in Section 3.4. This design tested whether the
cluster label contributes as an additional signal in data-rich settings or as a summary interaction
feature in data-limited settings. Accordingly, for each algorithm, this yielded four configurations:
a full-feature baseline model (all predictors, no cluster label), a full-feature cluster-enhanced model
(all predictors plus the binary cluster label), a reduced-feature baseline model (reduced predictor
set without the cluster label), and a reduced-feature cluster-enhanced model (the same reduced set
plus the cluster label).

Model training and validation were conducted using 10-fold cross-validation, in order to provide
stable performance estimates while minimizing overfitting [35]. For Random Forest and XGBoost
models, the predictors were the original clinical variables, with or without the discrete phenotype
label obtained from the PCA—PAM step. In each fold, the model was fitted on the training data
and evaluated on the held-out fold. The mortality outcome in test folds was never used for
phenotyping or model fitting, and the PCA components themselves were not entered into the
supervised models; the cluster labels were treated as fixed baseline covariates.

Figure 2 summarizes the full methodological pipeline, including dimensionality reduction,
clustering, and construction of baseline and enhanced supervised prediction models across the full
feature set. The same process was also applied to reduced-feature models, restricted to variables
that differed significantly between clusters.

This pipeline corresponds to the proposed phenotype-guided modeling framework, defined as a
model-agnostic three-step pipeline that (i) derives data-driven phenotypes, (i1) integrates them as
candidate features in supervised models, and (iii) formally evaluates their incremental predictive



value. Additionally, it can in principle be applied to other ICU cohorts using different learning
algorithms.

evaluate and compare

baseline and enhanced
ML models

I

built ML models (RF,
— XGBoost) with 10-fold CV
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Figure 2: Workflow of clustering and supervised prediction modeling for the full feature set.

3.6 Model Evaluation and Interpretability

To assess the ability of the supervised models to predict mortality, we evaluated their performance
using a set of complementary metrics which capture different aspects of classification performance
and to ensure a fair evaluation of predictive ability in clinical practice.

The area under the receiver operating characteristic curve (AUROC) was used as the primary
measure of discrimination. AUROC quantifies how well the model distinguishes between
survivors and non-survivors across all thresholds, with 0.5 indicating no discrimination and 1.0
representing perfect separation:

AUROC = [ o*TPR(FPR™*(x))dx
Where TPR is sensitivity and FPR is the false positive rate [37].

To complement AUROC, several threshold-dependent metrics were also reported:

e Accuracy: the proportion of correct classifications among all cases:

Accuracy = (TP + TN)/(TP + TN + FP + FN)



While intuitive, accuracy alone can be misleading in imbalanced data [38].
o Sensitivity (Recall): the proportion of deaths correctly identified:
Sensitivity = TP /(TP + FN)

A key measure in clinical settings where missing high-risk patients has serious consequences [40].
e Specificity: the proportion of survivors correctly identified:

Specificity = TN/(TN + FP)

This helps ensure the model avoids excessive false alarms [40].

e Balanced Accuracy: the average of sensitivity and specificity, designed to provide a fairer
estimate of performance under imbalanced outcomes:

BalancedAccuracy = (Sensitivity + Specificity)/2

Recommended for skewed class distributions [41].

e F1-Score: the harmonic mean of precision and sensitivity, balancing the ability to detect
deaths with the risk of false positives:

F1 = 2 x (Precision X Sensitivity)/(Precision + Sensitivity)

where

AUROC= | " TPR(FPR ™ (x))dx

which is particularly informative when positive cases (mortality) are less frequent [38].

Because mortality was less common than survival in our dataset, using this combination of metrics
provided a more balanced and clinically meaningful assessment of predictive performance. For
Random Forest and XGBoost models, predicted probabilities of in-hospital mortality were
converted to class labels using a fixed threshold of 0.5. Accordingly, sensitivity, specificity,
balanced accuracy, and Fl-score were computed from the resulting confusion matrices at this
threshold.

Finally, to enhance interpretability, we used Shapley Additive Explanations (SHAP). SHAP values
assign a contribution of each feature, including conventional clinical predictors and cluster
membership, to individual predictions. This allowed us to both rank variables by their global
influence and explain risk estimation at the patient level [39].

4. Results

4.1 Study Population and Baseline Characteristics

The final analysis was conducted on 212 ICU patients with complete data on all predictors used
for clustering and mortality prediction. The data included both male and female patients with a
wide age distribution. Comorbid conditions were common, with substantial proportions presenting



with diabetes mellitus, heart failure, chronic kidney disease, chronic liver disease, and chronic
respiratory disease. Prior exposure to antibiotics and previous ICU admission within the last 90
days were also frequently observed. The majority of infections were hospital-acquired, and a
notable fraction of patients were colonized with A. baumannii at nasal or rectal sites. Interventions
such as mechanical ventilation and central venous catheter insertion were prevalent, reflecting the
severity of illness in this cohort. The Sequential Organ Failure Assessment (SOFA) score varied
widely, with patients distributed across low, moderate, and high severity categories. Length of stay
in both the ICU and hospital was heterogeneous, with some patients requiring prolonged
admissions.

The primary outcome variable was mortality at hospital discharge, which served as the dependent
endpoint for subsequent analyses. Baseline demographic and clinical characteristics of the study
population are summarized in Table A4 in the Appendix.

4.2 Clustering Outcomes

The study applied unsupervised clustering to identify subgroups of patients with similar clinical
characteristics, and to uncover latent phenotypes that might explain differential outcomes and
provide additional information for enhancing supervised mortality prediction. Because the dataset
included 22 clinically relevant and intercorrelated variables, , we first applied principal component
analysis (PCA) for dimensionality reduction. Following standard recommendations in clinical data
analysis, we retained the first eight principal components, which together explained 82% of the
total variance [29,30]. Inspection of PCA loadings (Appendix Table AS) showed that first
principal component (PC1) was mainly driven by longer hospital stay, longer duration of antibiotic
therapy, older age, and higher SOFA score, while the second principal component (PC2) captured
a related gradient combining age, SOFA, length of stay, antibiotic duration, and comorbidities;
together, these components can be interpreted as latent axes of acute severity, treatment intensity,
and baseline vulnerability.

Clustering was then performed using the PAM algorithm in this eight-dimensional PCA space,
following the procedure described in Section 3.3, and the resulting cluster assignments were used
for subsequent profiling and prediction.
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Figure 3. Distribution of ICU patients by cluster assignment on the first two principal
components.

The optimal number of clusters was determined using complementary criteria applied to candidate
solutions with k=2—-10 (Appendix Fig. Al). The elbow plot of within-cluster sum of squares
showed a marked decrease up to k=4 and only small improvements thereafter, while the Calinski—
Harabasz index was maximal at k=2 and declined for larger k. Considering both criteria and this
agreement between the two metrics, the moderate sample size, and the clinical interpretability of
a simpler structure, we selected a two-cluster solution [29,30]. As a result, two clusters were
identified, Cluster 0 (n = 85, 40%) and Cluster 1 (n =127, 60%). The separation of the two clusters,
projected onto the first two principal components, is illustrated in Figure 3. In this representation,
Cluster 0 occupies the region with higher values on these severity and vulnerability components,
consistent with its high-risk profile, whereas Cluster 1 is concentrated at lower values, matching
the lower-risk phenotype described in Section 4.3. These clusters were then carried forward for
clinical profiling and statistical comparison as presented in the following Section 4.3.

4.3 Cluster Profiling

The clinical and demographic features of the two clusters were characterized to determine whether
they represented clinically meaningful phenotypes. Cluster profiling revealed marked differences
in demographic, comorbidity, and outcome patterns. Cluster 0 represented a high-risk phenotype,
characterized by older age, higher prevalence of heart failure, diabetes mellitus, chronic kidney
and liver disease, higher SOFA scores, longer hospital stays, prolonged antibiotic therapy, and a
mortality rate of 51%. In contrast, Cluster 1 represented a lower-risk phenotype, comprising
younger patients with fewer comorbidities, lower SOFA scores, shorter hospital stays, shorter
antibiotic courses, and a mortality rate of only 10%.

Table 1 summarizes the cluster comparison for the coded variables used in modeling, including
p-values and FDR-adjusted g-values.. Out of the 21 clinical and demographic variables assessed,
only nine showed nominal differences between clusters (p < 0.05), of which eight remained
statistically significant after FDR correction (q < 0.05), where chronic liver disease variable
retained a nominal association but did not pass the 5% FDR threshold and is therefore interpreted
as exploratory. For completeness, the corresponding comparisons on the original continuous scale



(age, SOFA score, length of stay, and duration of antibiotic therapy) are reported in Appendix
Table A6, which confirms the same pattern of higher values in Cluster 0 (older age, higher SOFA,
longer stays, longer antibiotic courses, and higher mortality) compared with Cluster 1. These
results show that PAM clustering successfully identified two clinically meaningful phenotypes
with distinct prognostic implications.

Table 1. Cluster comparison of key baseline variables (coded ordinal/binary predictors) with p-
values and FDR-adjusted g-values.

Cluster 0 Cluster 1
FDR
Variable Type | P-value (q- Test
value) Mean Median Mean Median
<0.05
<0.05 . .
Age | Ordinal | (Signifi- | & | 096 1 2.57 3 Mann-Whit-
nifi- ney U
cant
cant
Heart fail < 0.05 <(SIO—5
cartfatl- | ginary | (Signifi- | .2 0.24 0 0.65 1 Chi-square
ure nifi-
cant
cant
Diabetes < 0.05 <(Slg—5 0
mellitus Binary | (Signifi- nifi. 0.48 0.7 1 Chi-square
cant
cant
Chronic <0.05 <(£10_5
kidney dis- | Binary | (Signifi- nifi(f_ 0.12 0 0.28 0 Chi-square
ease cant
cant
Chronic <005 >(I(\)I£t5 0
liver disease Binary | (Signifi- Signif- 0.07 0.18 0 Chi-square
cant .
1cant
< 0.05 <(£1 0—5 Mann-Whit-
SOFA score | Ordinal | (Signifi- | .8 1.4 15 2.8 3
nifi- ney U
cant
cant
<0.05
Length of <0.05 . .
hospital | Ordinal | (Signifi- | I 2.9 3 1.6 125 | Mann-Whit-
nifi- ney U
stay cant cant




Duration of <0.05 <(§10_5 Mann-Whit-
antibiotic | Ordinal | (Signifi- '8 1.9 0.95 2
nifi- ney U
therapy cant
cant
Mortality at < 0.05 <(§1§—5
discharge Binary (S(l;illllltﬁ- nifi. 0.51 0.1 0 Chi-square
cant

4.4 Predictive Modeling

Supervised prediction models, RF and XGBoost, were trained to evaluate whether adding cluster
membership improved mortality prediction under both full-feature and reduced-feature settings.
For each configuration, point estimates of the evaluation metrics were obtained from 10-fold cross-
validation (CV), and 95% confidence intervals (Cls) were derived by non-parametric

bootstrapping (1,000 resamples) of the out-of-fold predictions.

Table 2. Random Forest performance (10-fold CV) with 95% bootstrap Cls for full and reduced
models, with and without cluster membership.

Full Model Reduced model
Metric RF Baseline RF Cluster- RF Baseline RF Cluster-
Enhanced Enhanced

AUROC 0.95 0.95 0.92 0.93
(0.92-0.99) (0.92-10.99) (0.89 - 0.98) (0.88-10.97)

Accuracy 0.91 0.93 0.91 0.91
(0.89 —0.96) (0.91 -0.97) (0.89 —0.95) (0.88-0.95)

Balanced Accuracy 0.87 0.90 0.88 0.88
(0.84 — 0.94) (0.86 - 0.95) (0.83-10.93) (0.83-10.93)

Sensitivity 0.79 0.82 0.79 0.79
(0.71-0.91) (0.76 — 0.93) (0.71 - 0.90) (0.70 — 0.90)

Specificity 0.96 0.97 0.95 0.95
(0.95-0.99) (0.95-0.99) (0.92 - 0.98) (0.92 - 0.99)

F1-score 0.89 0.91 0.88 0.88
(0.86 —0.95) (0.88 - 0.96) (0.84 -0.93) (0.84-10.94)

F1(Minority) 0.83 0.87 0.82 0.82
(0.78 - 0.92) (0.82-0.94) (0.76 — 0.90) (0.75-10.90)

4.4.1 Random Forest Models

The RF full-feature baseline model achieved strong discriminative performance. As seen in Table
2, adding cluster membership improved several metrics: balanced accuracy increased to 0.90,




F1(Minority) to 0.87, and sensitivity rose from 0.79 to 0.82, while AUROC remained stable at
0.95. These improvements indicate that cluster membership contributed additional prognostic
signal beyond conventional clinical predictors, enhancing the identification of high-risk patients.
In contrast, when using the reduced feature set, RF performance remained unchanged with or
without cluster membership. This suggests that, for RF, the reduced set of statistically significant
variables already captured the most discriminative information, leaving little added value from
cluster membership. Generally, RF results highlight that phenotype information is most valuable
in data-rich settings, where it acts as an additional predictor to improve sensitivity and balanced
classification.

4.4.2 XGBoost Models

The opposite pattern was observed with XGBoost. For the full-feature baseline model, it also
demonstrated high performance, with AUROC 0.95 and balanced accuracy 0.90. Inclusion of
cluster membership produced no measurable improvement, as all metrics remained essentially
unchanged as presented in Table 3. This indicates that the full feature set was sufficient for
XGBoost to capture most of the prognostic information, and the cluster label did not add
incremental benefit. This reflects that XGBoost was already capturing the relevant interactions
among predictors. By contrast, in the reduced-feature setting, cluster membership provided clear
gains. Balanced accuracy increased from 0.86 to 0.89, sensitivity from 0.79 to 0.84, and the F1-
score for the minority (mortality) class from 0.81 to 0.84. These results demonstrate that when
fewer variables were available, the cluster label acted as a compact summary of underlying
interactions, thereby restoring predictive capacity.

Table 3. XGBoost performance (10-fold CV) with 95% bootstrap Cls for full and reduced
models, with and without cluster membership.

Metric Full Model Reduced model
XGBoost Baseline | XGBoost Cluster- | XGBoost Baseline | XGBoost Cluster-
Enhanced Enhanced

AUROC 0.95 0.95 0.95 0.94
(0.91-0.98) (0.91-0.98) (0.90-10.97) (0.90-10.97)

Accuracy 0.92 0.93 0.90 0.92
(0.88 —0.95) (0.90-0.91) (0.86 - 0.93) (0.89 -0.96)

Balanced Accuracy 0.89 0.91 0.87 0.90
(0.85-10.94) (0.86 - 0.95) (0.81-0.92) (0.86 - 0.95)

Sensitivity 0.84 0.86 0.79 0.86
(0.75-10.93) (0.78 —0.94) (0.69 —0.89) (0.77-0.94)

Specificity 0.95 0.95 0.94 0.95
(0.91 -0.98) (0.92 - 0.99) (0.90 - 0.97) (0.91 -0.98)

F1-score 0.89 0.91 0.87 0.90
(0.85-0.94) (0.87-0.95) (0.82-0.92) (0.86 —0.95)

F1(Minority) 0.84 0.87 0.81 0.86
(0.78 - 0.92) (0.80 —0.93) (0.74 — 0.88) (0.79-0.92




4.5 Feature Importance Analysis

To further interpret model predictions, we examined feature importance rankings from the RF and
XGBoost classifiers as presented in Figures 4 and 5. In all configurations, the SOFA score emerged
as the strongest predictor of mortality, clearly outweighing all other variables. Additional
influential features included mechanical ventilation, chronic kidney disease, length of hospital
stay, and age, while infection-related variables such as hospital-acquired infection and A.
baumannii colonization consistently had negligible influence on mortality prediction.

In the RF full model, cluster membership appeared as one of the leading predictors, positioned
just below SOFA score and other severity indicators as seen in Figure 4, which is consistent with
the observed improvement in model performance when cluster was added. In contrast, according
to Figure 5, XGBoost in the full feature setting assigned only moderate weight to cluster
membership, placing greater emphasis on conventional severity and comorbidity variables,
which aligns with the minimal performance change reported for this model.

When analyses were restricted to the nine variables that differed significantly between clusters,
RF continued to assign cluster a measurable role, but its relative importance declined compared
to the full model, reflecting the lack of additional predictive gain. XGBoost, however, increased
the relative weight of cluster membership in the reduced model, ranking it among mid-level
predictors and producing measurable improvements in balanced accuracy and sensitivity.
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Figure 4. Feature importance ranking for mortality prediction using RF with full feature (left)
and reduced feature (right) sets.
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Figure 5. Feature importance ranking for mortality prediction using XGBoost with full feature
(left) and reduced feature (right) sets.

These complementary patterns confirm that while severity measures dominate mortality
prediction across algorithms, the phenotypes derived from clustering can provide meaningful

additional signal, with their influence depending on the modeling strategy and the feature space
considered.

5. Discussion and Conclusions

In this study, we applied a hybrid “unsupervised-supervised” ML pipeline to ICU patients with A.
baumannii infection and demonstrated that clustering revealed two reproducible phenotypes with
distinct clinical characteristics and mortality risks. This extends prior work in sepsis and ARDS
[7-9,14-16], showing that machine-learned phenotypes can uncover heterogeneity often masked
in conventional models of A. baumannii . Because all predictors are obtainable during the ICU
stay, these mortality predictions are intended to support early identification of high-risk patients

and to inform decisions about monitoring, antimicrobial optimization, organ support, and goals of
care.

Supervised analyses confirmed that phenotypes add predictive value, but our results also show that
this enhancement is not universal. In RF, cluster membership contributed additional prognostic
signal in the full model, ranking just below SOFA score in importance and improving
discrimination beyond conventional variables. Yet, when only reduced variables were included,
the added value of cluster membership diminished, since the most discriminative features had
already been retained. By contrast, in XGBoost, cluster membership provided little benefit in the
full model but became more influential in the reduced setting, acting as a summary marker that
compensated for the smaller input space. This demonstrates an important methodological
contribution: the utility of phenotype labels depends not only on the data but also on the interaction
between algorithm choice and feature regime. To our knowledge, this is the first study to explicitly



test this “algorithm x feature regime” interaction in a clinical ML context, highlighting a
contribution that is relevant beyond medicine.

Feature importance analyses provided further context. Across models, SOFA score consistently
emerged as the strongest predictor of mortality, followed by mechanical ventilation, chronic
kidney disease, and age, confirming established knowledge that severity of organ dysfunction and
invasive support are central determinants of outcome in A. baumannii infection [3,4,12]. Cluster
membership, while not the dominant predictor, provided complementary signal under specific
circumstances, underscoring its role as an additional, not universal, contributor to prognostic
modeling.

From a clinical perspective, phenotype-guided models are best seen as tools for early risk
stratification rather than as deterministic prognostic scores. Using routine ICU data, high-risk
phenotypes could be flagged for closer monitoring, optimization of antimicrobial therapy and
source control, and escalation of organ support, while lower-risk phenotypes may support more
cautious de-escalation under clinical judgment. Because phenotypes improved performance only
in specific algorithm—feature regimes, they are best viewed as risk modifiers that complement
existing severity scores and help design trials or quality-improvement efforts in clearly defined
high-risk subgroups.

From an ML perspective, this dual design illustrates two distinct roles of unsupervised phenotypes:
as an extra layer of information in data-rich models (RF, full set) and as a compact summary of
interactions in data-limited settings (XGB, reduced set). This clarifies why clustering sometimes
improves prediction and sometimes does not, resolving a common ambiguity in the literature.

This study has some considerations when interpreting the findings. It was conducted
retrospectively across three hospitals, which provides valuable real-world data but may not capture
the full spectrum of patient populations. Additionally, missing predictors were handled using
complete-case analysis, which assumes that missingness does not depend on unobserved outcomes
or covariates. In a retrospective ICU chart review, missing values are likely related to
documentation and ordering patterns and thus approximately Missing at Random (MAR), but some
deviation from this assumption cannot be excluded. As a result, our estimates may be subject to
residual bias and the effective sample size for model development is slightly reduced. Moreover,
model performance was assessed using internal cross-validation, which is a robust approach for
internal validation, though future prospective and multi-center studies will be important to confirm
reproducibility in broader contexts. The clustering results may also vary depending on the input
variables and distance metric, which is inherent to most unsupervised methods and underscores
the need for methodological comparisons in future research. The dataset was also imbalanced, with
mortality more frequent than survival. While balanced accuracy and F1 scores were used to
mitigate bias, larger and more diverse datasets or advanced resampling techniques would help
confirm the stability of the observed effects. In this methodological study, we used a fixed 0.5
threshold for all models to allow fair comparison of algorithm—feature regimes; in future work,
threshold optimisation based on Youden’s J or explicit clinical trade-offs could be explored for
deployment in practice. Moreover, clustering was performed once on the full cohort using baseline
clinical variables, and the resulting phenotypes were treated as fixed labels in the prediction
models. This two-stage approach is standard in ICU phenotyping studies, where phenotypes are



derived once from baseline data and then used to study prognosis or treatment response [7,9,14—
16]. From a strict predictive-pipeline perspective, a fully automated deployment system would
refit PCA and clustering within training samples and assign phenotypes to new patients; this is a
natural refinement for future external validation work. Finally, as with most retrospective studies,
some unmeasured clinical factors were not available, highlighting the value of integrating richer
data sources in future work.
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