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Abstract 

Acinetobacter baumannii causes severe Intensive Care Unit (ICU) infections with high mortality, 
yet most prediction tools rely on risk scores or supervised machine learning (ML) and overlook 
hidden patient subgroups. This study applied a hybrid machine learning framework combining 
unsupervised clustering and supervised prediction to refine ICU mortality estimation and evaluate 
whether incorporating phenotype information enhances performance. Patient phenotypes were 
identified using clustering, and cluster membership was incorporated as an additional predictive 
feature. ML models were trained with and without cluster membership under two feature settings: 
full-feature models including all variables and reduced-feature models limited to significant 
predictors identified within the clusters.  The resulting phenotypes were clinically distinct and 
strongly associated with mortality, demonstrating that data-driven patient grouping can provide 
complementary prognostic information. Incorporating phenotype membership improved 
predictive accuracy in a context-dependent manner, varying by feature regime and the learning 
algorithm. This study introduces a novel framework for phenotype-guided critical care modeling 
that bridges unsupervised and supervised learning, advancing personalized critical care and 
supporting global efforts to reduce preventable ICU mortality. 

Keywords: Machine learning in critical care, ICU mortality prediction, Phenotype-guided 
modeling, Clinical risk stratification, Acinetobacter baumannii prediction, Unsupervised 
clustering. 

1 Introduction 

Acinetobacter baumannii is a major cause of hospital-acquired infections in intensive care units. 
Its ability to survive in the hospital environment and to rapidly acquire antimicrobial resistance 
has made it a critical-priority pathogen on the World Health Organization (WHO) list [1,2]. 
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Mortality rates among  ICU patients with A. baumannii infections are strikingly high, ranging 
from 10% to more than 70% depending on resistance patterns and timeliness of effective treatment 
[3,4]. 

Prognosis is typically assessed using severity scores, such as Sequential Organ Failure Assessment 
(SOFA) and Acute Physiologic Assessment and Chronic Health Evaluation (APACHE), or 
supervised ML models that use large sets of clinical variables [5,6]. While these approaches can 
predict outcomes with moderate accuracy, they generally treat all patients as a single homogeneous 
group, and ignore heterogeneity in comorbidities, infection sites, and responses to treatment, which 
may mask important subgroups at higher or lower risk of mortality. 

In broader ICU research, unsupervised learning methods such as clustering and latent class 
analysis have been successfully applied to identify patient phenotypes that differ in outcomes and 
even in treatment response. Phenotypes of sepsis and septic shock have been linked to 14-day 
mortality and organ failure trajectories [7,8]. Similarly, subgroups in acute respiratory distress 
syndrome (ARDS) showed differential mortality and response to therapy [9]. These advances 
demonstrate that machine-learned phenotypes can provide clinically meaningful stratification. 
However, no studies to date have applied such methods to ICU patients with A. baumannii 
infection. 

ML is increasingly applied in intensive care medicine, where supervised models have shown 
strong performance in predicting sepsis, organ failure, and short-term mortality [5,10].ICU patients 
with A. baumannii infection are one such group, typically having multiple comorbidities, severe 
organ dysfunction, and intensive use of invasive support and antibiotics, making them a 
heterogeneous, high-risk population well suited to ML-based analysis.Yet, most models still 
assume patient populations are uniform and rarely account for hidden subgroups that may differ 
in risk or response. Similarly, while clustering and other unsupervised methods have been applied 
to broader ICU cohorts, little is known about how such phenotype labels interact with supervised 
algorithms to improve prediction. This represents an important methodological gap: the role of 
unsupervised phenotypes as features in supervised learning has not been systematically tested 
across modeling strategies or feature regimes. 

To address this gap, we designed a two-stage study with complementary clinical and ML 
objectives. Clinically, we aimed to uncover phenotypes of ICU patients with A. baumannii 
infection and test their association with mortality. From an ML perspective, we examined whether 
incorporating phenotype labels into supervised models improves predictive performance, and 
under what conditions such benefits arise. Methodologically, we treat this as a phenotype-guided 
modelling framework: a model-agnostic, stepwise pipeline that (i) derives phenotypes using 
unsupervised clustering on routine ICU variables, (ii) integrates the phenotype label as an optional 
predictor in different algorithms and feature sets, and (iii) compares performance across these 
regimes to quantify the incremental value of phenotype information. This study explores when 
unsupervised phenotypes add value to supervised prediction, and contributes not only to infection-
specific critical care but also to the broader question of how clustering-derived features can 
enhance clinical ML. 
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Given the high case-fatality of ICU A. baumannii infection, we focused on in-hospital mortality 
as the primary outcome, using predictors available during the index ICU admission to enable early 
risk stratification and to inform decisions about monitoring, antimicrobial therapy, and organ 
support. 

2 Literature Review 

Early attempts to predict outcomes in A. baumannii infection relied on conventional severity 
scores such as SOFA and APACHE, or regression-based analyses of clinical risk factors. These 
studies identified illness severity, comorbidities, and invasive procedures as predictors of poor 
prognosis, but their discriminative ability was modest and inconsistent across cohorts [3]. Logistic 
regression models, including nomograms, were later developed to refine risk prediction, 
incorporating variables such as infection source, mechanical ventilation, albumin, and comorbidity 
burden. While these improved calibration, their discriminatory performance remained limited, 
with Area Under the Curve (AUCs) generally below 0.80 [12]. 

With the rise of ML, more flexible models were introduced. Xu et al. applied an interpretable 
gradient boosting framework (XGBoost) to predict fulminant sepsis due to A. baumannii 
bloodstream infection and demonstrated better performance than conventional severity scores [5]. 
Neuman et al. developed and externally validated a prediction model for hospital-acquired A. 
baumannii using electronic health record data, confirming feasibility but with only modest 
discrimination [13]. Other contemporary studies combined regression and ML to address 
carbapenem-resistant A. baumannii bloodstream infections [11,4]. These studies illustrate the 
transition from traditional regression-based models to supervised ML approaches, though most 
continue to treat patients as a homogeneous group and lack strategies to address underlying 
heterogeneity. 

In parallel, unsupervised methods have been applied more broadly in critical care to uncover latent 
clinical subgroups. In ARDS, latent class analysis revealed “hyper-inflammatory” and “hypo-
inflammatory” phenotypes with distinct mortality and treatment responses [9]. Subsequent studies 
validated these subphenotypes and showed they can be predicted using routine clinical variables, 
enabling practical bedside classification [15,16]. Similar progress was made in sepsis, where 
Seymour et al. identified four phenotypes associated with unique host-response patterns and 
outcome trajectories [7]. More recent studies extended this approach to sepsis-associated ARDS, 
where mortality varied dramatically across subgroups [14]. Unsupervised clustering has revealed 
clinically meaningful phenotypes across sepsis, ARDS, and COVID-19, consistently associated 
with prognosis and treatment response [17–19].  

Supervised ML methods such as Random Forest (RF) and gradient boosting (including XGBoost) 
are now well established in ICU prognostic modeling, owing to their ability to capture 
nonlinearities, interactions, and high-dimensional data while providing interpretable feature 
importance [20–22]. For unsupervised learning, Partitioning Around Medoids (PAM) has been 
recommended in clinical contexts because it accommodates mixed variable types and is more 
robust to outliers than k-means [23,24]. Prior successes of these approaches in ICU research 
therefore provide strong justification for their use in our study: RF and XGBoost for mortality 
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prediction, and PAM for identifying subgroups of A. baumannii patients with potentially distinct 
risk profiles. 

Despite these advances, unsupervised clustering has not been applied to ICU patients with A. 
baumannii, nor has the integration of phenotype membership into supervised ML models been 
systematically studied. Addressing this gap, the present work applies a two-stage design to identify 
phenotypes and evaluate their added value for mortality prediction in critically ill patients with A. 
baumannii infection. 

 3. Methods 

3.1 Study Design and Population 

We worked on a previously conducted retrospective observational study of 231 intensive care unit 
(ICU) patients with confirmed A. baumannii infection, admitted to three different tertiary hospitals 
from the north, middle, and south of the West Bank, Palestine. Clinical and microbiological data 
were collected from hospital records across the three tertiary hospitals. Variables are summarized 
in Table A1 in Appendix. The primary endpoint was all-cause in-hospital mortality at discharge.  

All methods were carried out in accordance with relevant guidelines and regulations. The use of 
anonymized human data in this study was conducted in accordance with both local and 
international ethical principles, including the Declaration of Helsinki. The protocol involving the 
data source was approved by the Institutional Review Board (IRB) of An-Najah National 
University (approval number Mas. Feb. 2023/7, approved on February 5, 2023). The requirement 
for informed consent was waived by the IRB. 

3.2 Data Preparation and Preprocessing 

The initial dataset contained 231 patient records and 49 variables. The structured preprocessing 
pipeline, presented in Figure 1, was applied to ensure data quality, reduce redundancy, and retain 
clinically meaningful features for analysis. 

  From the initial cohort of 231 eligible ICU patients, 19 (8.2%) had at least one missing value in 
predictors required for clustering or prediction, leaving 212 complete cases for all modeling 
analyses.  Given the modest fraction of missing data and the limited sample size, we used a 
complete-case approach rather than multiple imputation, which allows to build robust and 
interpretable models while keeping additional assumptions about the missing-data mechanism to 
a minimum. Further, ten variables judged a priori to be unrelated to the study objectives were 
excluded, and records with incomplete data were removed, reducing the dataset from 231 to 212 
patients. The full list of excluded variables and the rationale for their exclusion is provided in 
Appendix Table A2. Additionally,  categorical features were label-encoded and continuous 
predictors were converted into pre-specified ordinal categories, chosen using standard ICU 
practice and the empirical distribution in our cohort to form meaningful categories with adequate 
counts. The full set of cut-points for all discretized variables is reported in Appendix Table A3. To 
refine the dataset, we applied variance filtering to remove features with minimal variability, as 
near-zero variance predictors add complexity without improving discrimination [25]. Binary and 
categorical variables were label-encoded, and features with variance less than 0.01 were removed 
as near-constant. This conservative cut-off is consistent with recent medical ML work using 0.01 
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to filter near-zero-variance predictors [26,27], and led to the exclusion of variables such as urinary 
catheter, cancer, and effective antibiotic therapy. Accordingly, the dataset was reduced from 49 to 
35 variables. Next, correlation filtering was conducted to minimize redundancy. Associations 
among variables were quantified using Cramér’s V, which is a normalized measure of association 
[28]. Variables with correlation coefficients ≥ 0.60 were considered redundant. For each correlated 
pair, the clinically more relevant feature was retained. Because several predictors were originally 
continuous, we also examined Spearman correlations between the original continuous variables as 
a sensitivity check and it showed a very similar pattern. This confirmed that strongly correlated 
pairs had already been removed, and among the remaining predictors the highest correlation was 
observed between hospital length of stay and duration of antibiotic therapy (ρ ≈ 0.65), which we 
judged clinically distinct and therefore retained both. After this step, 28 variables remained. 
Finally, the variable set was reviewed in consultation with specialists in the domain to ensure 
clinical interpretability and relevance. Six additional variables judged redundant or less 
informative were excluded: categorize reason, hypertension, neurological disease, infection with 
multidrug-resistant strains, white blood cell count, and platelet count. 

 

Figure 1: Preprocessing and feature selection workflow for the ICU dataset. 

The final dataset comprised 212 patients and 22 clinically relevant variables, detailed in Table  A3 
in the Appendix, which were subsequently used for clustering and predictive modeling. 
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3.3 Clustering Analysis 

Because ICU patients with A. baumannii infection are highly heterogeneous, we applied 
unsupervised clustering to identify subgroups of patients with similar clinical characteristics. This 
step aimed to reveal latent phenotypes that may underlie differences in prognosis and provide 
additional information to enhance supervised mortality prediction. Before clustering, 
dimensionality reduction was performed using Principal Component Analysis (PCA). PCA 
transforms correlated clinical variables into a smaller number of uncorrelated components while 
retaining most of the variability in the data. This reduces noise, mitigates the effect of collinearity, 
and improves the stability of clustering in high-dimensional datasets [29,30]. 

Clustering was then performed using the Partitioning Around Medoids (PAM) algorithm. Unlike 
centroid-based k-means, PAM selects actual patient records as cluster representatives “medoids” 
and minimizes the sum of dissimilarities to these medoids, which improves robustness to outliers 
and does not assume continuous variables with approximately spherical clusters [23]. We preferred 
PAM over agglomerative hierarchical clustering, which is sensitive to irreversible early merges 
and requires a subjective choice of dendrogram cut, and over density-based methods such as 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Hierarchical 
Density-Based Spatial Clustering of Applications with Noise (HDBSCAN), which require tuning 
density parameters and can leave some patients unassigned as noise, whereas our aim was to assign 
every ICU patient to a phenotype. Patient-to-medoid dissimilarities were computed using the 
Minkowski distance, a flexible metric that generalizes several distance measures and is applicable 
to our coded “binary/ordinal” clinical predictors [23]. 

The optimal number of clusters was evaluated using two complementary methods. The Elbow 
Method inspects the reduction in within-cluster variation and identifies the point where adding 
further clusters yields diminishing returns [31]. The Calinski–Harabasz Index compares the 
separation between clusters with cohesion within clusters, with higher values reflecting better-
defined groupings [32]. 

To evaluate reproducibility, cluster stability was assessed using bootstrap resampling combined 
with the Jaccard similarity index, which quantifies how consistently patients are assigned to the 
same cluster across repeated resamples [24]. Finally, the cluster assignments derived from PAM 
were retained as an additional feature and incorporated into the supervised prediction models, as 
clarified in Section 3.5, to test whether phenotypic information improved mortality prediction. 

3.4 Cluster Profiling 

Following clustering, we profiled the subgroups to characterize their clinical and demographic 
features. For each cluster, mean and median values were computed to summarize age, 
comorbidities, infection characteristics, interventions, and outcomes. 

To formally test for differences between clusters, non-parametric statistical methods were applied. 
Mann–Whitney U tests were used for ordinal variables, while chi-square tests were used for binary 
variables. For cluster profiling, nominal p-values were complemented by Benjamini–Hochberg 
False Discovery Rate (FDR–adjusted) q-values, where variables with q < 0.05 are highlighted as 
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the most robust differences, and others are interpreted as exploratory. This approach follows prior 
phenotyping work in sepsis and ARDS, where cluster profiles were statistically validated to 
confirm their clinical distinctiveness [7,9]. Additionally, this approach provided interpretable 
phenotypes and allowed us to assess whether mortality differed significantly between clusters.  

3.5 Supervised Prediction Models 

To assess whether cluster membership improved prediction, we developed supervised machine-
learning models. Cluster assignments obtained in Section 3.3 were incorporated as an additional 
feature alongside demographic, clinical, and infection-related variables. Two algorithms were 
selected based on their strong performance in structured clinical prediction tasks, RF and XGBoost 
[36]. 

RF is an ensemble method that constructs multiple decision trees using bootstrapped samples and 
aggregates their outputs. This approach reduces overfitting, captures nonlinear relationships, and 
produces measures of variable importance, making it valuable in clinical prognostic modeling [33]. 
XGBoost is a gradient boosting algorithm that builds trees sequentially, with each new tree 
correcting the errors of the previous ones. It incorporates regularization to prevent overfitting and 
has consistently shown high predictive accuracy in biomedical applications [34]. 

To examine the role of cluster membership across different clinical data conditions, we adopted a 
dual-model design. Each algorithm was trained under two complementary feature regimes: (1) a 
full-feature model including all 22 predictors, and (2) a reduced-feature model restricted to 
variables that differed significantly between clusters in Section 3.4. This design tested whether the 
cluster label contributes as an additional signal in data-rich settings or as a summary interaction 
feature in data-limited settings.  Accordingly, for each algorithm, this yielded four configurations: 
a full-feature baseline model (all predictors, no cluster label), a full-feature cluster-enhanced model 
(all predictors plus the binary cluster label), a reduced-feature baseline model (reduced predictor 
set without the cluster label), and a reduced-feature cluster-enhanced model (the same reduced set 
plus the cluster label). 

Model training and validation were conducted using 10-fold cross-validation, in order to provide 
stable performance estimates while minimizing overfitting [35]. For Random Forest and XGBoost 
models, the predictors were the original clinical variables, with or without the discrete phenotype 
label obtained from the PCA–PAM step. In each fold, the model was fitted on the training data 
and evaluated on the held-out fold. The mortality outcome in test folds was never used for 
phenotyping or model fitting, and the PCA components themselves were not entered into the 
supervised models; the cluster labels were treated as fixed baseline covariates. 

Figure 2 summarizes the full methodological pipeline, including dimensionality reduction, 
clustering, and construction of baseline and enhanced supervised prediction models across the full 
feature set. The same process was also applied to reduced-feature models, restricted to variables 
that differed significantly between clusters.  

This pipeline corresponds to the proposed phenotype-guided modeling framework, defined as a 
model-agnostic three-step pipeline that (i) derives data-driven phenotypes, (ii) integrates them as 
candidate features in supervised models, and (iii) formally evaluates their incremental predictive 
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value. Additionally, it can in principle be applied to other ICU cohorts using different learning 
algorithms. 

Figure 2: Workflow of clustering and supervised prediction modeling for the full feature set. 
 

3.6 Model Evaluation and Interpretability 

To assess the ability of the supervised models to predict mortality, we evaluated their performance 
using a set of complementary metrics which capture different aspects of classification performance 
and to ensure a fair evaluation of predictive ability in clinical practice. 

The area under the receiver operating characteristic curve (AUROC) was used as the primary 
measure of discrimination. AUROC quantifies how well the model distinguishes between 
survivors and non-survivors across all thresholds, with 0.5 indicating no discrimination and 1.0 
representing perfect separation: 

𝐴𝑈𝑅𝑂𝐶 = ∫ ₀¹𝑇𝑃𝑅൫𝐹𝑃𝑅⁻¹(𝑥)൯𝑑𝑥 

Where TPR is sensitivity and FPR is the false positive rate [37]. 

To complement AUROC, several threshold-dependent metrics were also reported: 

 Accuracy: the proportion of correct classifications among all cases: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁) (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)⁄  
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While intuitive, accuracy alone can be misleading in imbalanced data [38]. 

 Sensitivity (Recall): the proportion of deaths correctly identified: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄  

A key measure in clinical settings where missing high-risk patients has serious consequences [40]. 

 Specificity: the proportion of survivors correctly identified: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁 (𝑇𝑁 + 𝐹𝑃)⁄  

This helps ensure the model avoids excessive false alarms [40]. 

 Balanced Accuracy: the average of sensitivity and specificity, designed to provide a fairer 
estimate of performance under imbalanced outcomes: 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) 2⁄  

Recommended for skewed class distributions [41]. 

 F1-Score: the harmonic mean of precision and sensitivity, balancing the ability to detect 
deaths with the risk of false positives: 

𝐹1 = 2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)⁄  

where 

 

which is particularly informative when positive cases (mortality) are less frequent [38]. 

Because mortality was less common than survival in our dataset, using this combination of metrics 
provided a more balanced and clinically meaningful assessment of predictive performance. For 
Random Forest and XGBoost models, predicted probabilities of in-hospital mortality were 
converted to class labels using a fixed threshold of 0.5. Accordingly, sensitivity, specificity, 
balanced accuracy, and F1-score were computed from the resulting confusion matrices at this 
threshold. 

Finally, to enhance interpretability, we used Shapley Additive Explanations (SHAP). SHAP values 
assign a contribution of each feature, including conventional clinical predictors and cluster 
membership, to individual predictions. This allowed us to both rank variables by their global 
influence and explain risk estimation at the patient level [39]. 

4. Results 
4.1 Study Population and Baseline Characteristics 

The final analysis was conducted on 212 ICU patients with complete data on all predictors used 
for clustering and mortality prediction. The data included both male and female patients with a 
wide age distribution. Comorbid conditions were common, with substantial proportions presenting 

AUROC= ∫ ₀¹TPR(FPR ⁻ ¹(x))dx
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with diabetes mellitus, heart failure, chronic kidney disease, chronic liver disease, and chronic 
respiratory disease. Prior exposure to antibiotics and previous ICU admission within the last 90 
days were also frequently observed. The majority of infections were hospital-acquired, and a 
notable fraction of patients were colonized with A. baumannii at nasal or rectal sites. Interventions 
such as mechanical ventilation and central venous catheter insertion were prevalent, reflecting the 
severity of illness in this cohort. The Sequential Organ Failure Assessment (SOFA) score varied 
widely, with patients distributed across low, moderate, and high severity categories. Length of stay 
in both the ICU and hospital was heterogeneous, with some patients requiring prolonged 
admissions. 

The primary outcome variable was mortality at hospital discharge, which served as the dependent 
endpoint for subsequent analyses. Baseline demographic and clinical characteristics of the study 
population are summarized in Table  A4 in the Appendix. 

4.2 Clustering Outcomes 
The study applied unsupervised clustering to identify subgroups of patients with similar clinical 
characteristics, and to uncover latent phenotypes that might explain differential outcomes and 
provide additional information for enhancing supervised mortality prediction. Because the dataset 
included 22 clinically relevant and intercorrelated variables, , we first applied principal component 
analysis (PCA) for dimensionality reduction. Following standard recommendations in clinical data 
analysis, we retained the first eight principal components, which together explained 82% of the 
total variance  [29,30]. Inspection of PCA loadings (Appendix Table A5) showed that first 
principal component (PC1) was mainly driven by longer hospital stay, longer duration of antibiotic 
therapy, older age, and higher SOFA score, while the second principal component (PC2) captured 
a related gradient combining age, SOFA, length of stay, antibiotic duration, and comorbidities; 
together, these components can be interpreted as latent axes of acute severity, treatment intensity, 
and baseline vulnerability. 

 Clustering was then performed using the PAM algorithm in this eight-dimensional PCA space, 
following the procedure described in Section 3.3, and the resulting cluster assignments were used 
for subsequent profiling and prediction. 
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Figure 3. Distribution of ICU patients by cluster assignment on the first two principal 
components. 

The optimal number of clusters was determined using complementary criteria applied to candidate 
solutions with k=2–10 (Appendix Fig. A1). The elbow plot of within-cluster sum of squares 
showed a marked decrease up to k=4 and only small improvements thereafter, while the Calinski–
Harabasz index was maximal at k=2 and declined for larger k. Considering both criteria and this 
agreement between the two metrics, the moderate sample size, and the clinical interpretability of 
a simpler structure, we selected a two-cluster solution [29,30]. As a result, two clusters were 
identified, Cluster 0 (n = 85, 40%) and Cluster 1 (n = 127, 60%). The separation of the two clusters, 
projected onto the first two principal components, is illustrated in Figure 3. In this representation, 
Cluster 0 occupies the region with higher values on these severity and vulnerability components, 
consistent with its high-risk profile, whereas Cluster 1 is concentrated at lower values, matching 
the lower-risk phenotype described in Section 4.3. These clusters were then carried forward for 
clinical profiling and statistical comparison as presented in the following Section 4.3. 

4.3 Cluster Profiling 
The clinical and demographic features of the two clusters were characterized to determine whether 
they represented clinically meaningful phenotypes. Cluster profiling revealed marked differences 
in demographic, comorbidity, and outcome patterns. Cluster 0 represented a high-risk phenotype, 
characterized by older age, higher prevalence of heart failure, diabetes mellitus, chronic kidney 
and liver disease, higher SOFA scores, longer hospital stays, prolonged antibiotic therapy, and a 
mortality rate of 51%. In contrast, Cluster 1 represented a lower-risk phenotype, comprising 
younger patients with fewer comorbidities, lower SOFA scores, shorter hospital stays, shorter 
antibiotic courses, and a mortality rate of only 10%. 

Table 1 summarizes  the cluster comparison for the coded variables used in modeling, including 
p-values and FDR-adjusted q-values.. Out of the 21 clinical and demographic variables assessed, 
only nine  showed nominal differences between clusters (p < 0.05), of which eight remained 
statistically significant after FDR correction (q < 0.05), where chronic liver disease variable 
retained a nominal association but did not pass the 5% FDR threshold and is therefore interpreted 
as exploratory. For completeness, the corresponding comparisons on the original continuous scale 

ARTICLE IN PRESS



ARTIC
LE

 IN
 PR

ES
S

 

(age, SOFA score, length of stay, and duration of antibiotic therapy) are reported in Appendix 
Table A6, which confirms the same pattern of higher values in Cluster 0 (older age, higher SOFA, 
longer stays, longer antibiotic courses, and higher mortality) compared with Cluster 1. These 
results show that PAM clustering successfully identified two clinically meaningful phenotypes 
with distinct prognostic implications. 

Table 1.  Cluster comparison of key baseline variables (coded ordinal/binary predictors) with p-
values and FDR-adjusted q-values. 

Variable Type P-value 
FDR 
(q-

value) 

Cluster 0 Cluster 1 

Test 
 Mean Median Mean Median 

Age  Ordinal 
< 0.05 

(Signifi-
cant 

< 0.05 
(Sig-
nifi-
cant 

0.96 1 2.57 3 Mann-Whit-
ney U 

Heart fail-
ure  Binary 

< 0.05 
(Signifi-

cant 

< 0.05 
(Sig-
nifi-
cant 

0.24 0 0.65 1 Chi-square 

Diabetes 
mellitus Binary 

< 0.05 
(Signifi-

cant 

< 0.05 
(Sig-
nifi-
cant 

0.48 0 0.7 1 Chi-square 

Chronic 
kidney dis-

ease 
Binary 

< 0.05 
(Signifi-

cant 

< 0.05 
(Sig-
nifi-
cant 

0.12 0 0.28 0 Chi-square 

Chronic 
liver disease Binary 

< 0.05 
(Signifi-

cant 

> 0.05 
(Not 

Signif-
icant 

0.07  0 0.18 0 Chi-square 

SOFA score  Ordinal 
< 0.05 

(Signifi-
cant 

< 0.05 
(Sig-
nifi-
cant 

1.4 1.5 2.8 3 Mann-Whit-
ney U 

Length of 
hospital 

stay 
Ordinal 

< 0.05 
(Signifi-

cant 

< 0.05 
(Sig-
nifi-
cant 

2.9 3 1.6 1.25 Mann-Whit-
ney U 
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Duration of 
antibiotic 
therapy 

Ordinal 
< 0.05 

(Signifi-
cant 

< 0.05 
(Sig-
nifi-
cant 

1.9 2 0.95 2 Mann-Whit-
ney U 

Mortality at 
discharge Binary 

< 0.05 
(Signifi-

cant 

< 0.05 
(Sig-
nifi-
cant 

0.51 1 0.1 0 Chi-square 

4.4 Predictive Modeling 
Supervised prediction models, RF and XGBoost, were trained to evaluate whether adding cluster 
membership improved mortality prediction under both full-feature and reduced-feature settings.  
For each configuration, point estimates of the evaluation metrics were obtained from 10-fold cross-
validation (CV), and 95% confidence intervals (CIs) were derived by non-parametric 
bootstrapping (1,000 resamples) of the out-of-fold predictions. 

Table 2. Random Forest performance (10-fold CV) with 95% bootstrap CIs for full and reduced 
models, with and without cluster membership. 

 

Metric 

Full Model Reduced model 

RF Baseline RF Cluster-
Enhanced 

RF Baseline RF Cluster-
Enhanced 

AUROC  0.95 
(0.92 – 0.99) 

0.95 
(0.92 – 0.99) 

0.92 
(0.89 – 0.98) 

0.93 
(0.88 – 0.97) 

Accuracy 
 

0.91 
(0.89 – 0.96) 

0.93 
(0.91 – 0.97) 

0.91 
(0.89 – 0.95) 

0.91 
(0.88 – 0.95) 

Balanced Accuracy 
 

0.87 
(0.84 – 0.94) 

0.90 
(0.86 – 0.95) 

0.88 
(0.83 – 0.93) 

0.88 
(0.83 – 0.93) 

Sensitivity 
 

0.79 
(0.71 – 0.91) 

0.82 
(0.76 – 0.93) 

0.79 
(0.71 – 0.90) 

0.79 
(0.70 – 0.90) 

Specificity 
 

0.96 
(0.95 – 0.99) 

0.97 
(0.95 – 0.99) 

0.95 
(0.92 – 0.98) 

0.95 
(0.92 – 0.99) 

F1-score 
 

0.89 
(0.86 – 0.95) 

0.91 
(0.88 – 0.96) 

0.88 
(0.84 – 0.93) 

0.88 
(0.84 – 0.94) 

F1(Minority) 
 

0.83 
(0.78 – 0.92) 

0.87 
(0.82 – 0.94) 

0.82 
(0.76 – 0.90) 

0.82 
(0.75 – 0.90) 

4.4.1 Random Forest Models 
The RF full-feature baseline model achieved strong discriminative performance. As seen in Table 
2, adding cluster membership improved several metrics: balanced accuracy increased to 0.90, 
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F1(Minority) to 0.87, and sensitivity rose from 0.79 to 0.82, while AUROC remained stable at 
0.95. These improvements indicate that cluster membership contributed additional prognostic 
signal beyond conventional clinical predictors, enhancing the identification of high-risk patients. 
In contrast, when using the reduced feature set, RF performance remained unchanged with or 
without cluster membership. This suggests that, for RF, the reduced set of statistically significant 
variables already captured the most discriminative information, leaving little added value from 
cluster membership. Generally, RF results highlight that phenotype information is most valuable 
in data-rich settings, where it acts as an additional predictor to improve sensitivity and balanced 
classification. 

4.4.2 XGBoost Models 
The opposite pattern was observed with XGBoost. For the full-feature baseline model, it also 
demonstrated high performance, with AUROC 0.95 and balanced accuracy 0.90. Inclusion of 
cluster membership produced no measurable improvement, as all metrics remained essentially 
unchanged as presented in Table 3. This indicates that the full feature set was sufficient for 
XGBoost to capture most of the prognostic information, and the cluster label did not add 
incremental benefit. This reflects that XGBoost was already capturing the relevant interactions 
among predictors. By contrast, in the reduced-feature setting, cluster membership provided clear 
gains. Balanced accuracy increased from 0.86 to 0.89, sensitivity from 0.79 to 0.84, and the F1-
score for the minority (mortality) class from 0.81 to 0.84. These results demonstrate that when 
fewer variables were available, the cluster label acted as a compact summary of underlying 
interactions, thereby restoring predictive capacity. 
Table 3.  XGBoost performance (10-fold CV) with 95% bootstrap CIs for full and reduced 
models, with and without cluster membership. 

Metric Full Model Reduced model 

XGBoost Baseline XGBoost Cluster-
Enhanced 

XGBoost Baseline XGBoost Cluster-
Enhanced 

AUROC 
 

0.95 
(0.91 – 0.98) 

0.95 
(0.91 – 0.98) 

0.95 
(0.90 – 0.97) 

0.94 
(0.90 – 0.97) 

Accuracy 
 

0.92 
(0.88 – 0.95) 

0.93 
(0.90 – 0.91) 

0.90 
(0.86 – 0.93) 

0.92 
(0.89 – 0.96) 

Balanced Accuracy 
 

0.89 
(0.85 – 0.94) 

0.91 
(0.86 – 0.95) 

0.87 
(0.81 – 0.92) 

0.90 
(0.86 – 0.95) 

Sensitivity 
 

0.84 
(0.75 – 0.93) 

0.86 
(0.78 – 0.94) 

0.79 
(0.69 – 0.89) 

0.86 
(0.77 – 0.94) 

Specificity 
 

0.95 
(0.91 – 0.98) 

0.95 
(0.92 – 0.99) 

0.94 
(0.90 – 0.97) 

0.95 
(0.91 – 0.98) 

F1-score 
 

0.89 
(0.85 – 0.94) 

0.91 
(0.87 – 0.95) 

0.87 
(0.82 – 0.92) 

0.90 
(0.86 – 0.95) 

F1(Minority) 
 

0.84 
(0.78 – 0.92) 

0.87 
(0.80 – 0.93) 

0.81 
(0.74 – 0.88) 

0.86 
(0.79 – 0.92 
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4.5 Feature Importance Analysis 

To further interpret model predictions, we examined feature importance rankings from the RF and 
XGBoost classifiers as presented in Figures 4 and 5. In all configurations, the SOFA score emerged 
as the strongest predictor of mortality, clearly outweighing all other variables. Additional 
influential features included mechanical ventilation, chronic kidney disease, length of hospital 
stay, and age, while infection-related variables such as hospital-acquired infection and A. 
baumannii colonization consistently had negligible influence on mortality prediction. 

In the RF full model, cluster membership appeared as one of the leading predictors, positioned 
just below SOFA score and other severity indicators as seen in Figure 4, which is consistent with 
the observed improvement in model performance when cluster was added. In contrast, according 
to Figure 5, XGBoost in the full feature setting assigned only moderate weight to cluster 
membership, placing greater emphasis on conventional severity and comorbidity variables, 
which aligns with the minimal performance change reported for this model. 

When analyses were restricted to the nine variables that differed significantly between clusters, 
RF continued to assign cluster a measurable role, but its relative importance declined compared 
to the full model, reflecting the lack of additional predictive gain. XGBoost, however, increased 
the relative weight of cluster membership in the reduced model, ranking it among mid-level 
predictors and producing measurable improvements in balanced accuracy and sensitivity. 

 

 
Figure 4. Feature importance ranking for mortality prediction using RF with full feature (left) 

and reduced feature (right) sets. 
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Figure 5. Feature importance ranking for mortality prediction using XGBoost with full feature 

(left) and reduced feature (right) sets. 
 

These complementary patterns confirm that while severity measures dominate mortality 
prediction across algorithms, the phenotypes derived from clustering can provide meaningful 
additional signal, with their influence depending on the modeling strategy and the feature space 
considered. 

5. Discussion and Conclusions 

In this study, we applied a hybrid “unsupervised-supervised” ML pipeline to ICU patients with A. 
baumannii infection and demonstrated that clustering revealed two reproducible phenotypes with 
distinct clinical characteristics and mortality risks. This extends prior work in sepsis and ARDS 
[7-9,14-16], showing that machine-learned phenotypes can uncover heterogeneity often masked 
in conventional models of A. baumannii . Because all predictors are obtainable during the ICU 
stay, these mortality predictions are intended to support early identification of high-risk patients 
and to inform decisions about monitoring, antimicrobial optimization, organ support, and goals of 
care. 

Supervised analyses confirmed that phenotypes add predictive value, but our results also show that 
this enhancement is not universal. In RF, cluster membership contributed additional prognostic 
signal in the full model, ranking just below SOFA score in importance and improving 
discrimination beyond conventional variables. Yet, when only reduced variables were included, 
the added value of cluster membership diminished, since the most discriminative features had 
already been retained. By contrast, in XGBoost, cluster membership provided little benefit in the 
full model but became more influential in the reduced setting, acting as a summary marker that 
compensated for the smaller input space. This demonstrates an important methodological 
contribution: the utility of phenotype labels depends not only on the data but also on the interaction 
between algorithm choice and feature regime. To our knowledge, this is the first study to explicitly 
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test this “algorithm × feature regime” interaction in a clinical ML context, highlighting a 
contribution that is relevant beyond medicine. 

Feature importance analyses provided further context. Across models, SOFA score consistently 
emerged as the strongest predictor of mortality, followed by mechanical ventilation, chronic 
kidney disease, and age, confirming established knowledge that severity of organ dysfunction and 
invasive support are central determinants of outcome in A. baumannii infection [3,4,12]. Cluster 
membership, while not the dominant predictor, provided complementary signal under specific 
circumstances, underscoring its role as an additional, not universal, contributor to prognostic 
modeling. 

From a clinical perspective, phenotype-guided models are best seen as tools for early risk 
stratification rather than as deterministic prognostic scores. Using routine ICU data, high-risk 
phenotypes could be flagged for closer monitoring, optimization of antimicrobial therapy and 
source control, and escalation of organ support, while lower-risk phenotypes may support more 
cautious de-escalation under clinical judgment. Because phenotypes improved performance only 
in specific algorithm–feature regimes, they are best viewed as risk modifiers that complement 
existing severity scores and help design trials or quality-improvement efforts in clearly defined 
high-risk subgroups. 

From an ML perspective, this dual design illustrates two distinct roles of unsupervised phenotypes: 
as an extra layer of information in data-rich models (RF, full set) and as a compact summary of 
interactions in data-limited settings (XGB, reduced set). This clarifies why clustering sometimes 
improves prediction and sometimes does not, resolving a common ambiguity in the literature. 

This study has some considerations when interpreting the findings. It was conducted 
retrospectively across three hospitals, which provides valuable real-world data but may not capture 
the full spectrum of patient populations. Additionally, missing predictors were handled using 
complete-case analysis, which assumes that missingness does not depend on unobserved outcomes 
or covariates. In a retrospective ICU chart review, missing values are likely related to 
documentation and ordering patterns and thus approximately Missing at Random (MAR), but some 
deviation from this assumption cannot be excluded. As a result, our estimates may be subject to 
residual bias and the effective sample size for model development is slightly reduced. Moreover, 
model performance was assessed using internal cross-validation, which is a robust approach for 
internal validation, though future prospective and multi-center studies will be important to confirm 
reproducibility in broader contexts. The clustering results may also vary depending on the input 
variables and distance metric, which is inherent to most unsupervised methods and underscores 
the need for methodological comparisons in future research. The dataset was also imbalanced, with 
mortality more frequent than survival. While balanced accuracy and F1 scores were used to 
mitigate bias, larger and more diverse datasets or advanced resampling techniques would help 
confirm the stability of the observed effects. In this methodological study, we used a fixed 0.5 
threshold for all models to allow fair comparison of algorithm–feature regimes; in future work, 
threshold optimisation based on Youden’s J or explicit clinical trade-offs could be explored for 
deployment in practice. Moreover, clustering was performed once on the full cohort using baseline 
clinical variables, and the resulting phenotypes were treated as fixed labels in the prediction 
models. This two-stage approach is standard in ICU phenotyping studies, where phenotypes are 
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derived once from baseline data and then used to study prognosis or treatment response [7,9,14–
16]. From a strict predictive-pipeline perspective, a fully automated deployment system would 
refit PCA and clustering within training samples and assign phenotypes to new patients; this is a 
natural refinement for future external validation work. Finally, as with most retrospective studies, 
some unmeasured clinical factors were not available, highlighting the value of integrating richer 
data sources in future work. 
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