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Abstract

(1) Background: Urban traffic micro-environments show strong spatial and temporal vari-
ability. Short and intensive campaigns remain a practical approach for understanding
exposure patterns in complex environments, but they need clear and interpretable sum-
maries that are not limited to simple site or time segmentation. (2) Methods: We carried
out a multi-site campaign across five traffic-affected micro-environments, where measure-
ments covered several pollutants, gases, and meteorological variables. A machine learning
framework was introduced to learn interpretable operational regimes as recurring multi-
variate states using clustering with stability checks, and then we evaluated their added
explanatory value and cross-site transfer using a strict site hold-out design to avoid infor-
mation leakage. (3) Results: Five regimes were identified, representing combinations of
emission intensity and ventilation strength. Incorporating regime information increased
the explanatory power of simple NO, models and allowed the imputation of missing H,S
day using regime-aware random forest with an R? near 0.97. Regime labels remained
identifiable using reduced sensor sets, while cross-site forecasting transferred well for NO,
but was limited for PM, indicating stronger local effects for particles. (4) Conclusions:
Operational-regime learning can transform short multivariate campaigns into practical
and interpretable summaries of urban air pollution, while supporting data recovery and
cautious model transfer.
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flow, building geometry, and fuel handling, where pollutant mixtures and exposure in-
tensities can differ markedly from values at regulatory background monitors. Near-road
corridors, street canyons, and queue-prone intersections often show sharp spatial concen-
tration gradients over tens of meters and strong diurnal variability tied to congestion and
boundary-layer dynamics. These features are recognized in guidance and siting criteria
for dedicated near-road monitoring [2]. Beyond the curbside, activities such as vehicle
parking and refueling create semi-enclosed or source-proximate spaces that mix primary
emissions with ventilation constraints. In many mid-sized cities, permanent monitoring
networks are sparse, so short, intensive campaigns are often used to understand exposure
patterns in these settings. A key challenge is to summarize a few days of multi-pollutant
measurements into clear conditions that allow fair comparison across micro-environments
and support exposure interpretation and follow-up decisions like targeted monitoring,
ventilation checks, or operational guidance during high-risk regimes.

Vehicle exhaust emissions are a major contributor to air pollution in semi-enclosed
traffic environments such as parking garages, where pollutants accumulate due to limited
air exchange. These emissions contain a complex mixture of carbon monoxide (CO),
nitrogen oxides (NOy), hydrocarbons (HCs), aldehydes, and particulate matter (PM) [3,4].
In practice, CO is often used as an operational indicator in garages, yet fine particles remain
a major health concern, and short exposure peaks can matter [5].

Traffic-related pollutants are linked to respiratory and cardiopulmonary risks, and
guideline values emphasize the importance of both short and long exposures [6]. Some
gases, such as hydrogen sulfide (H,S), may remain low in ambient urban air but can rise
episodically in poorly ventilated settings and cause acute irritation and nuisance odors [7].
When a campaign covers several micro-environments in only a few days, there is a practical
need to summarize multi-pollutant conditions in a consistent way. This helps compare sites
and time periods, link observed patterns to plausible drivers such as traffic activity and
ventilation, and apply simple analyses without mixing very different conditions.

In this work, an operational regime refers to a recurring multi-pollutant condition that re-
flects the joint behavior of emissions and ventilation, expressed through a characteristic com-
bination of pollutant levels, diurnal timing, and simple meteorological indicators [8-11].
We define regimes by grouping observations with similar multi-pollutant and meteoro-
logical patterns, and we then use the regime label as a compact description of conditions
that matter for exposure interpretation and simple analyses. Because regimes are defined
from the measured variables rather than fixed labels, a given regime can occur at different
sites and at different times when conditions are similar. Practically, the regime approach
turns a short multi-pollutant campaign into (i) a time series of regime labels at each site and
(ii) per-regime summaries of pollutant levels and co-variation. This supports like-for-like
comparison across micro-environments (same regime), identification of regime-specific
peak exposure periods, and use of the regime label as an additional categorical predictor
for simple analyses and gap-filling.

Compared with common segmentation approaches such as site-based grouping, fixed
time-slot grouping, or single-pollutant thresholding, the regime approach aims to identify
recurring multi-pollutant situations that can reappear across-sites and times [8,10,11]. This
is useful in short campaigns because it provides a small set of interpretable conditions that
can be summarized and tested by keeping some days and some sites completely separate
for evaluation. It also supports simple analyses and gap-filling by using the regime label as
a practical indicator of conditions, together with the other pollutants and meteorological
variables measured at the same time.

Short multi-site urban campaigns reveal strong diurnal and micro-environmental
structure, yet few studies formalize compact and interpretable multi-pollutant regimes,
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test them using separate days and separate sites, and examine whether patterns identified
at one location also appear at another [8-10,12,13]. Recent reviews confirm the growing
use of machine learning in air quality studies, and they also highlight the importance of
interpretability and careful evaluation when data are limited or heterogeneous [14,15].
We address this gap with three aims: (1) to define operational regimes from simple and
physically grounded features across five contrasting micro-environments, (2) to examine
whether the regime label helps explain key tracers beyond wind, time of day, and activity
by testing on separate days and separate sites, and (3) to examine how far results can
be used across locations by identifying when cross-site use is reasonable and when local
effects dominate. Because the campaign duration is short and sources differ by location,
we treat cross-site use cautiously and present it as limited to comparable settings rather
than a universal rule.

Our contribution is a practical data-driven framework that links the regime approach
to concrete uses in short campaigns. These uses include summarizing multi-pollutant
conditions into a small number of interpretable situations, checking whether the regime
label improves simple exposure-relevant models when tested on separate days and sites,
and evaluating when cross-site use is reasonable and when site dependence dominates.

Hyperlocal monitoring has shown sharp concentration contrasts over short distances,
which motivates multi-site designs that compare micro-environments within limited sam-
pling periods [12,13]. Meteorological normalization further emphasizes that diurnal timing
and mixing conditions are central for interpreting observed variability in traffic-related
pollution [10]. Together, these findings motivate the regime approach as a structured way
to summarize short campaign observations and to support cautious interpretation and
limited use across comparable settings [9].

2. Materials and Methods

To identify and interpret recurring multi-pollutant conditions that govern exposure
in traffic-affected urban micro-environments, we implemented a pipeline that links high-
cadence, multi-site measurements to operational regime identification, robustness checks,
and task-based evaluation. The pipeline is designed for short campaigns, where the prac-
tical goal is to summarize complex pollutant-meteorology mixtures into a small number
of interpretable states (regimes) and to test whether the regime label is useful for down-
stream analyses. We evaluate performance using designs that keep whole days and whole
sites separate, so the reported results reflect out-of-sample behavior rather than reuse of
information from the held-out blocks.

Figure 1 shows the full analytical pipeline, from measurement to regime discovery,
stability testing, and evaluation under day and site-blocked designs.

- - Feature engineering
Input Preprocessing and quality control he and hegs, PM; /PM s
Multi-site fixed fifteen minute day- Numeric coercion schedule an daPMz :°/si,Mml s;ohllf [ Stan daf;?l‘enfiaturei ]

time records pollutants plus context alignment RH sentinel handling elevation proxy wind activity

Applications and evaluation
Regime profiles and diur-
nal shares, regime assign- — — k-means regime learnin

ment on hel%l out dati Stability and sensitivity Hartigan anc% Wong, choo%e
Parsimonious pollutant models, Day blo_ck bootstrap k by silhouette and con-

leave one site out prediction, and minimal ablations firm by ARI plateau
Reconstruction when one

stream is fully missing

Figure 1. Analysis workflow.

As shown in Figure 1, we start from quality-controlled multi-site observations and
derive physically grounded features that reflect traffic activity, ventilation, and diurnal
timing. We then identify operational regimes by grouping similar multivariate feature
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patterns, and we summarize each regime by its typical pollutant profile and its occurrence
across micro-environments and hours. Finally, we evaluate three practical uses under day-
and site-blocked designs: compact condition summarization, explanatory modeling for key
tracers, and reconstruction when one pollutant stream is fully missing. In each evaluation,
every data-driven step (scaling, regime identification, and model fitting) is learned on
training blocks only and then applied unchanged to the held-out blocks.

2.1. Study Design, Instrumentation, and Data Quality Control

We conducted a short fixed-schedule campaign that covered five urban micro-
environments typical of traffic-affected settings. The five sites were an open garage, a
large roundabout with street canyon form, a closed municipal garage, a gasoline forecourt,
and a campus entry that served as an urban background. Sampling followed a constant
fifteen-minute cadence from 08:00 to 18:45 local time on four consecutive weekdays during
August 2024. This window aligns with peak activity and human presence at these locations
and is therefore the period of primary interest for exposure and operations.

We recorded PMy, PM, 5, PM;,, NO,, CO, H5S, and total VOCs. We also recorded
relative humidity, wind speed, geographic coordinates, and a vehicle activity proxy that
captures near field traffic intensity. The proxy was derived from an on site infrared traffic
counter that produced fifteen minute counts. Site-wise summary statistics appear in Table 1.

For this work, we group the variables into three input sets: (i) measured inputs,
pollutant concentrations and contextual variables recorded during the campaign; (ii) regime
identification features, engineered variables that reflect emissions, ventilation, and diurnal
structure, used to define the regimes; (iii) task predictors, the variables used in each analysis
task, such as regression, cross-site testing, and imputation, which may include the regime
label when we test its added value. This organization makes it clear what each step uses,
and it helps keep test days and test sites separate from model fitting.

Using this organization, we applied a common preprocessing pipeline before any
analysis. All channels were synchronized to a fixed 15 min time grid and checked for
invalid readings and logging artifacts. Relative humidity was retained and inspected
because optical PM can be biased upward during humid periods. Day and site identifiers
were kept so that any step that learns from the data, such as scaling, regime identification,
and model fitting, was fitted using only the calibration days and sites and then applied
unchanged to the test days and sites.

Additionally, instruments were selected to balance robustness, portability, and trace-
ability under field conditions. Particulate matter (PM;, PM; 5, PMj) was monitored with
a Casella Dust Detective optical instrument operating on the light-scattering principle,
where a laser beam passes through the sampled air and scattered light intensity is mea-
sured to determine particle concentration. The device includes an internal pump that
maintains a stable flow rate, provides real-time output for fine and coarse fractions, and
is well suited for urban air quality studies. Trace gases (NO,, CO, H;S, total VOCs) were
measured with Aeroqual Series 500 modular heads, and meteorological variables were
recorded using a Kestrel 5500 vane and cup anemometer. All sensors were co-located on a
tripod at breathing height ~ 1.5m, and powered by field batteries. Table 2 summarizes the
instruments, principles, and ranges, where PID refers to a Photoionization Detector Head
used for total VOCs.

https://doi.org/10.3390/atmos17020125


https://doi.org/10.3390/atmos17020125

Atmosphere 2026, 17, 125 50f23
Table 1. Site-wise statistics of pollutants and context variables over four campaign days.
PM; (pg/m®) PMy;5 (ng/m3®) PMy (ug/m®) NO, (ppb)  CO (ppm)  H>S (ppb)  VOC (ppb) RH (%) Wind Speed (m/s)
Site  Description Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Open air taxi park
Site1l with high idling 1369 127 1751 6.8 195.7 6.7 668 71 463 41 595 76 914 266 569 28 0.7 0.1
and turnover
Sitep Dusyroundabout 5, ug 996 58 1116 48 592 85 267 51 515 52 563 22 491 40 09 0.1
in a street canyon
Multi storey
Site3 semi-enclosed taxi 1324 155 160.6 7.0 1750 6.8 643 77 498 27 681 64 781 69 584 23 0.7 0.2
hub
Fuel forecourt
Site4 with near source 67.4 3.1 88.9 4.0 97.2 3.4 583 67 522 107 521 50 914 257 560 54 1.0 0.1
emissions
University
Site5 campus entry as 377 35 88.4 3.6 93.2 4.0 53.0 369 222 22 551 56 8.6 245 550 45 12 0.6
urban background
Table 2. Instruments, principles, and ranges.
Variable Instrument and Model Measurement Principle Range and Resolution
Casella Dust Detective (Casella CEL Ltd., . . . . _
PM;, PM, 5, PM;, Bedford, UK) Optical light scattering (photometric) 0-150 mg m 3, 1 ug/m?
Aeroqual Series 500 (NO; head; .
NO, Aeroqual Ltd., Auckland, New Zealand) Electrochemical 0-1 ppm, 0.001 ppm
Cco Aeroqual Series 500 (CO head) Electrochemical 0-100 ppm, 0.1 ppm
H,S Aeroqual Series 500 (HS head) Electrochemical 0-5 ppm, 0.001 ppm
Total VOCs Aeroqual Series 500 (PID head) Photoionization detector 0-30 ppm, 0.01 ppm

Relative humidity, wind speed

Kestrel 5500 Weather Meter
(Nielsen-Kellerman Co., Boothwyn, PA,
USA)

Capacitive humidity and cup anemometer

10-90%, 0.1%, 0-20m s~ !, 0.1 m s~}
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Moreover, quality assurance and quality control (QA/QC) procedures were applied
to ensure precision, accuracy, and full traceability. Prior to deployment, the Casella Dust
Detective and Aeroqual analyzers were calibrated using certified manufacturer standards,
with calibration certificates archived. Daily zero and span checks were performed in the
field using High-Efficiency Particulate Air (HEPA)-filtered air for the particulate instrument
and certified calibration gases for the gas analyzers. Instrument response and flow-rate
stability were verified within 2% of nominal values before each sampling session. Device
clocks were synchronized to local time within 1 min and logged at fixed 15 min intervals
aligned to wall time. Each day’s measurement sequence included start- and end-of-day
bump checks, and any deviation beyond acceptance limits triggered corrective action and
notation in the field log. Sampling conditions (duration, location, temperature, RH, and
airflow) were recorded concurrently and cross-checked with calibration records. Data
validation involved cross-comparison between the Casella Dust Detective and a secondary
colocated handheld monitor (HAZ-Scanner) used as a consistency check, inspection for
outliers, and exclusion of points attributable to instrument fault or procedure anomalies.
Optical PM data were screened with a relative humidity sentinel rule to limit hygroscopic
bias. Intervals with RH > 85% were flagged and removed prior to summary analyses [16].
All serial numbers, maintenance logs, and calibration records were archived for traceability.

A simple site-level calibration protocol defined threshold criteria to maintain con-
sistency across all locations. Zero and span verifications for each pollutant analyzer and
flow-rate stability within +2% were confirmed before and after daily measurements. This
standardized procedure ensured that observed spatial differences reflected genuine envi-
ronmental variability rather than calibration drift or bias.

The campaign emphasizes hours that dominate activity and human presence around
the sites, and it spans contrasting micro-environments within a compact window. This
supports the discovery of recurring daytime conditions and provides a shared context
across locations [9]. Hyperlocal studies that mapped street-scale variability concentrated
their measurements in active daytime periods and showed consistent spatial patterns
across repeats. This aligns with our focus on practical regime identification under real
constraints [12,13,17,18]. Because temporal coverage is short, we explicitly evaluate the
robustness of the learned regimes using block-resampling stability and sensitivity checks
as seen in Section 2.4. Overall, the combined design delivers the spatial contrasts needed
for regime learning while documenting stability of the resulting structure.

2.2. Physically Grounded Feature Engineering

Regime learning is driven by a feature vector that combines pollutant levels with
simple indicators of timing and mixing. The goal is to represent recurring emission and
ventilation conditions in a way that remains interpretable and comparable across sites.

Short roadside campaigns show strong diurnal structure driven by activity timing,
mixed-layer growth, and ventilation in semi-enclosed spaces. To represent these rhythms
smoothly without arbitrary cutoffs, we encode local time of day t € [0,24) with two

. (27t 27Tt
hsin = Sln<24>, hcos = COS<24). (1)

We include two composition ratios that reflect shifts in the particle-size mixture linked

circular terms

to emission and processing pathways

_PM,
1w PMy

PM, 5
Ros = S 2
% PM; @

R
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The ratios increase when the fine mode dominates (e.g., fresh exhaust or confined micro-
environments) and decrease when coarse mechanisms (e.g., resuspension or road dust)
dominate. These ratios provide a compact unitless indicator of shifts in size mix that is
comparable across sites in short campaigns.

We also include a simple daytime mixing proxy based on the sine of the solar-elevation
angle «, used here as a practical indicator of convective mixing strength. The angle is
computed from site latitude ¢, solar declination 6 from day of year, and hour angle H using
the NREL Solar Position Algorithm and then truncated at zero

sina = sin¢ sind + cos¢ cosd cos H. 3

The truncation is appropriate because the window is daytime only; negative solar elevation
corresponds to night, when this proxy would not represent convective mixing. More details
about this algorithm are found in [19].

2.3. Learning Recurring Conditions as Regimes

In this work, clustering is used as a regime-construction step. The objective is to obtain
a small set of stable and interpretable operational prototypes, “centroids,” that can be
summarized physically and used consistently in subsequent regime-conditioned modeling
and transport checks across sites.

Operational regimes summarize recurring multivariate conditions that matter for
exposure and for simple forecasting. Let x; € RF denote the feature vector with pollutant
levels, basic meteorology, the diurnal terms, and the composition ratios.

To place heterogeneous variables on a comparable geometry and to avoid information
leakage, each column j is standardized using training only moments (y;,o; > 0)

std xz]_]/l] (4)

xXi© = 7

k-means is used in this study because the regimes are intended to act as operational
prototypes: each record must receive a single, reproducible label, and the same regime
definition must be assignable to unseen days and unseen sites using training information
only. In this setting, centroid-based regimes provide (i) direct regime-wise profiles via
cluster centroids/medians and (ii) a deterministic out-of-sample rule (nearest-centroid
assignment) that fits naturally with the day- and site-blocked evaluation design. Other
clustering families such as model-based mixtures or density-based methods are useful
when the scientific goal is to represent non-spherical structure or variable-density groups.
However, for short campaigns and for the specific downstream tasks studied here (regime
recognition from reduced sensors, regression with a regime factor, and fold-safe reconstruc-
tion), the key requirement is a stable partition with complete assignment and a transparent
out-of-sample mapping under leakage control. We therefore use k-means as a controlled,
stability-documented baseline and quantify robustness via block-resampling stability, per-
turbation checks, and feature-group ablations (Section 2.4), alongside alternative partitions
in Appendix A.3 [20-27].

Furthermore, we learn k regimes with k-means by minimizing within cluster distortion
using the Hartigan and Wong algorithm with multiple random starts [22]. The number
of regimes k is chosen from a small grid by maximizing mean silhouette and then con-
firmed by plateaus in adjusted Rand index under day block bootstrap resampling [20,26].
This stability-aware selection reduces sensitivity to unequal densities and supports repro-
ducibility. Let {cj};‘zl denote the centroids of the k clusters in the standardized feature
space, where each ¢; is a p-dimensional mean vector representing the typical conditions
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of regime j. For new observations X we assign regimes by nearest centroid in the training

standardized space

X — Py
Otr

7(x) = arg min,

, )

2

with (p, o) and {c;} learned on training data only, and ||.||, is the Euclidean norm.
Alternative views that included Ward linkage on Euclidean distances, k-means in principal
component analysis (PCA) space, and adjusted Rand index (ARI) agreement checks were
explored. As reported in the Appendix A, candidate k was scanned over a small grid using
average silhouette, and stability was evaluated by day block bootstrap and ARI [27-29].

2.4. Stability, Sensitivity, and Interpretability

To evaluate whether the discovered regimes are robust under a short duration and
limited sample size, we assessed stability and sensitivity using blocked resampling and
controlled input perturbations. Stability was assessed by resampling entire site—day blocks
with replacement, refitting k-means with the selected k, and summarizing agreement with
the reference partition using the adjusted Rand index (ARI) [20,27]. Sensitivity was assessed
in two complementary ways. First, we applied small multiplicative perturbations (jitter)
to VOC and RH and refit the clustering, following stability-based clustering validation
practice [30]. Second, we performed feature-group ablations by refitting the clustering
after removing one feature group at a time (diurnal terms, PM ratios, VOC, or RH) and
quantifying partition agreement using ARI. These checks are used to confirm that the main
regime structure is not driven by a single channel and that it persists under small changes
to the input representation; they are not used to claim causal importance.

For each regime, pollutant and meteorological distributions were summarized using
the median and interquartile range, and hourly regime occurrence was tabulated over
the daytime window to characterize diurnal representation. Robust summaries, such as
median and interquartile range (IQR), are used because short roadside campaigns often
produce right-skewed distributions with episodic peaks.

2.5. Imputing One Missing Sensor Stream

One site—day record of H)S was unavailable in the collected dataset. Device logs
indicated a transient sensor fault, while all other channels remained stable. We treated
this gap as missing at random conditional on observed covariates and reconstructed the
missing values using a regime-aware random forest [31,32]. Random forest was selected
because it captures nonlinear relationships among co-pollutants and meteorology, and
it is also robust to multicollinearity. The operational regime label was included as an
auxiliary predictor to encourage coherence with the multivariate pollutant-meteorology
state, linking the regime framework to a practical sensor-recovery task. This imputation
example is presented as a proof of concept for feasibility in short campaigns; generalization
to longer gaps or substantially different source mechanisms is discussed in Section 4.

The input features used as predictors for the imputation task included site/location co-
variates (site name, latitude, longitude), time-of-day features (hour and sin/cos encoding),
meteorology /proxies (wind speed, relative humidity, and a mixing proxy), a traffic proxy
(car-parking), co-pollutants (PM;, PM; 5, PM;9, NO,, CO, total VOCs), and the regime
label. This use of co-pollutants as predictors follows the general idea that co-occurring
air-pollution variables can carry strong predictive information, which has been shown in
multi-output VOC prediction settings [33]. Regimes were learned on the training data only;
the resulting cluster ID (1, .. ., k) was then assigned to held-out and new records (including
the missing day) using the trained centroids and included in the random forest model
as a categorical factor. Random forest models were fit without hyperparameter tuning,
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keeping the default number of candidate predictors considered at each split, because the
goal was a robust reconstruction baseline for a short campaign rather than optimizing
performance. We used ensembles of 600 trees in cross-validation and 1000 trees for the final
imputation fit to stabilize the ensemble predictions [31,32]. Because H,S is unobserved on
the missing day, performance cannot be computed for that day. We therefore evaluated
the reconstruction model on non-missing days using day-blocked splits, then refit the final
model on all available non-missing days and applied it to the missing site-day. This avoids
using information from the target day during fitting.

Predictive dispersion across trees was used as an exploratory proxy for variability
in the imputed estimates. We report the spread of predictions across the random forest
ensemble only as a heuristic indicator of prediction stability, not a statistically calibrated
predictive uncertainty interval.

2.6. Do Regimes Add Explanatory Value Beyond Basic Covariates?

The analysis tests whether the learned regimes capture exposure-relevant multivariate
conditions that are not already explained by common covariates used in air-quality inter-
pretation (wind speed, solar mixing proxy, diurnal timing, and traffic activity). Regime
membership represents recurring states in which pollutants and meteorology co-vary (e.g.,
traffic build-up under weak ventilation versus well-mixed periods). We quantify the added
explanatory value of regimes by comparing a baseline model to an augmented model that
includes the regime label.

The baseline linear model for pollutant Y; at time i is

Y; = Bo + B1WS; + B2SE; + B3 sin(zgf") + Ba cos(zg’) + BsCars; + ¢, (6)

where wind speed is denoted WS, the truncated solar-elevation proxy is SE, the cyclic hour
terms describe diurnal timing, and the vehicle activity indicator is Cars, which is recorded
by the IR traffic counter (vehicles per 15 min) at all sites.

Let R; € {1,...,k} denote the regime label at time i, with regime 1 as the reference
level. The augmented model adds the regime label as a categorical fixed effect to estimate
the mean pollutant shift associated with each regime:

Y; = Bo + B1 WS; + B2 SE; + B3 sin(2§i> + B4 cos(zﬂf) + Bs Cars;

+ 2 v¥{Ri=r} +ei. )

k
=2

r

Treating regime as a fixed effect allows a direct estimation of the average pollutant dif-
ference across the identified multivariate conditions and enables formal testing of whether
regime membership adds independent explanatory value. Models were estimated by
ordinary least squares [34].

Residuals were inspected (residuals versus fitted and Q-Q plots). For skewed targets,
we repeated the analysis on the log scale as a sensitivity check, as presented in Appendix A .4;
results are reported on the natural scale.

2.7. Generalization Across Sites and Leakage Control

To evaluate whether models trained in some locations can predict pollutant levels in a
new but comparable micro-environment(site), we assessed cross-site generalization using
a Leave-One-Site-Out (LOSO) design and trained identical models with and without the
regime factor. This reflects a common operational setting where monitoring exists at only a
subset of locations.
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In each LOSO round, one site served as the test set and models were trained on the
remaining sites. Any step that learns from the data distribution (standardization and regime
identification) was fit on the training sites only and applied unchanged to the held-out site
to prevent information leakage. Predictive performance was summarized by R? and RMSE,
and we compared models with and without the regime factor.

Within-site analyses used day-blocked cross-validation [35], where entire days were
held out together to respect temporal dependence and avoid optimistic splits within the
same day. Together, LOSO and day-blocked validation address (i) generalization to a new
day at the same site and (ii) generalization to a new site.

These validation schemes provide a rigorous test of robustness under strict leakage
control [36] and support the use of the framework for short multivariate campaigns in
operational and regulatory contexts.

3. Results
3.1. Operational Regimes: Selection, Profiles, and Stability

A grid search over the number of clusters k gave the highest mean silhouette 0.379 at
k = 5. Stability diagnostics show high ARI stability k = 3-5 with a plateau at k = 4-5, and a
clear deterioration for k > 6 (Appendix A.1, Table Al). Considering these values supports
selecting k = 5 as a stable and well-separated solution.

Per-regime pollutant profiles (median and IQR) are summarized in Table 3 and visual-
ized in Figure 2. The regimes mainly differ by (i) particulate loading versus ventilation (PM
size fractions: PM1, PM; 5, PM;q versus wind speed) and (ii) near-source gaseous signatures
(CO and VOC). Resampling whole site-days confirms high stability of the partition (ARI
mean 0.945, Table Al). Alternative partitions, like Ward's linkage and PCA-space k-means,
recover a comparable structure as presented in Table A3 and Figure Al in Appendix A.3,
indicating that the main regime patterns are not specific to one clustering choice.

With the regime labels fixed at k = 5, Table 3 and Figure 2 provide the five reference
profiles used in the remaining analyses. In practical terms, Regime 1 is characterized by
elevated CO/VOC (near-source influence). Regime 2 captures the highest PM levels under
the weakest winds and Regime 3 remains PM-elevated but with slightly stronger mixing.
Regimes 4-5 represent cleaner and/or better-ventilated states; in particular, Regime 5 shows
the lowest PM and CO under the strongest winds (background/ventilated conditions),
while VOC may remain elevated.
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Figure 2. Regime-wise pollutant and meteorology profiles (Regimes 1-5 correspond to the five
reference regimes from the k = 5 clustering), where points represent central tendency and error bars
show spread.
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Table 3. Regime-wise pollutant profiles across all sites and daytime campaign hours (median, IQR).

PM; (pg/m?) PM; 5 (ng/m?) PMyy (ng/m3) NO; (ppb) CO (ppm) VOC (ppb) RH (%) Wind Speed (m/s)
Regime Median IQR Median IQR Median IQR Median IQR Median IQR Median IQR Median IQR Median IQR
1 67 6 89 6 98 5 62 8 61 22 114 22.25 59 7.25 1 0.2
2 144 11 172 14 189 19 66 15 47 5 70 3 59 5 0.6 0.14
3 122 9.25 160 20 180 28 70 4 50 8 89 37 56 1 0.8 0.06
4 55 14 93 13 106 17 51 17 26 13 57 3 50 3 0.9 0.2
5 36 8.75 89 5 95 7 54 4 22 3 104 3 59 8 1.1 0.1
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3.2. Recognition from Partial Sensor Sets

Table 4 shows that regime labels are highly classifiable under day-blocked cross-
validation (i.e., all samples from the same day are kept in the same fold), where accuracy
is 0.928 using PM only, 0.989 using gases and meteorology, and 0.993 using all variables.
This indicates that a lean gases and meteorology suite can recover the learned regimes with
near-perfect fidelity. Indeed, this task does not re-learn regimes; it quantifies how well
a reduced sensor set can reproduce the fixed regime labels learned from the full feature
representation under day-block testing.

Table 4. Day-block cross-validated accuracy for regime classification by sensor set.

Set Accuracy
PM only 0.928
Gases+Met 0.989
All (mix variables) 0.993

Moreover, perturbation (“jitter”) checks indicate that labels are insensitive to small
VOC/RH noise (Appendix A.2, Table A2). These results summarize the day-blocked
regime-recognition performance for the three sensor sets considered.

3.3. Diurnal Distribution of Regimes

Figure 3 presents, for each daytime hour, the proportion of all concurrent observa-
tions from the five monitored micro-environments that were assigned to each pollution
regime. Because all sites were sampled simultaneously, each stacked segment represents
the distribution of regimes across the entire network at a given hour rather than a temporal
evolution within any single site. The figure therefore illustrates how the prevalence of each
pollution regime changes through the day when combining all sites and campaign days.

The results reveal clear transitions between contrasting conditions. Early-morning
hours (08:00-10:00) are shared mainly between Regimes 2 and 4, reflecting the coexistence
of stagnant, high-PM conditions typical of garage-like sites (Regime 2) and cleaner, better-
ventilated settings (Regime 4). From around 10:00 onward, Regime 5, the cleanest and
most ventilated state, emerges and remains steady at roughly one-quarter of observations.
Around midday, Regime 1 becomes more frequent, while after 14:00 the mix shifts toward
Regime 3, which shows elevated PM and NO, but lower humidity, indicating stronger
dispersion yet persistent local emissions. Overall, no single regime dominates the daytime
period: cleaner (4-5) and more polluted (2-3) states coexist at the same hours as each
site responds to its own micro-environmental drivers such as ventilation, traffic activity,
and enclosure.

Figure 4 presents the same information as a compact hour-by-regime matrix. Since each
hour contains five simultaneous site observations, a regime share near to 40% corresponds
roughly to two sites out of five at that hour.

To make the site-regime links explicit, Table 5 summarizes the regimes together with
their dominant site types and typical active hours. In line with Figure 5, Regimes 2-3
are driven mainly by the two garage-like sites (Sites 1 and 3), Regime 1 is largely as-
sociated with the forecourt site (Site 4), Regime 4 reflects the more ventilated outdoor
settings (often including Site 2), and Regime 5 is almost exclusively associated with the
campus/background site (Site 5).
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Figure 3. Hourly shares of regimes across all sites and days (daytime 08:00-18:45).
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Figure 4. Fraction of all observations at each hour that belong to each regime.
Table 5. Link between learned regimes, site types, and dominant daytime hours.
Regime Description (From Profiles) Main Contributing Sites Dominant Hours
1 Forecourt/near-source, CO and VOC Site 4: fuel forecourt 12:00-18:45
elevated, moderate PM
High PM (1/2.5/10), weak wind, Site 1: open taxi park, Site 3: semi-enclosed
2 . " . 08:00-12:45
traffic/garage conditions taxi hub
3 I_.Ilg.h PM, later-day version (more mixing, Sites 1 and 3: same garages as Regime 2 14:00-18:45
similar gases)
4 Outdoor /street-canyon/mixed ventilation Site 2: roundabout, Site 4, Site 5: background  08:00, 09:00, 11:00
5 Cleanest/windiest/background Site 5: campus entry 13:00-15:00, 17:00-18:45

Figure 5 shows the fractional contribution of each site to each regime. It confirms
that Regimes 1 and 5 are almost entirely associated with single-site micro-environments
(forecourt and campus, respectively), while Regimes 2 and 3 are jointly shared between the
two garage-like sites. Together, Figures 3-5 show that different micro-environments can
occupy different regimes at the same hour, so the observed diurnal pattern is driven by
spatial heterogeneity and local forcing rather than a single synchronized daily cycle.
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Figure 5. Share of each site within each regime. Darker cells indicate higher contribution of that site
to the regime.

3.4. Effect of Regimes on NO, Model Performance

A baseline OLS model for NO, (wind speed, solar-elevation proxy, cyclic hour, vehicle
activity) achieved R? = 0.194. Adding the five-level regime factor increased R? to 0.251
(AR? = 0.057, ANOVA p = 478 x 10-13; Figure 6). In other words, the regime label
explains an additional 5.7 percentage points of variance in hour-to-hour NO, beyond wind,
diurnal timing, solar mixing proxy, and activity, using only one categorical descriptor
of the multipollutant state. Practically, regimes provide a compact label for recurring
“states” (like build-up under weaker ventilation versus better-mixed periods), which helps
summarize and compare exposure conditions across hours and micro-environments. This
indicates that regime membership captures joint pollutant-meteorology structure that is
not fully represented by the individual covariates. The gain is modest, as expected in
short near-road campaigns with unmeasured drivers, but it is consistent and obtained with
only one additional categorical factor, improving interpretability without increasing model
complexity. Residual diagnostics and a natural-vs.-log robustness check are provided in
Appendix A .4 (Figure A2 and Table A4).

0.34

0.2

R2

0.1

0.0

+ Regime Baseline

Model

Figure 6. Incremental explanatory power of the regime factor for NO, hourly variability.
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Figure 6 reports the NO, model-fit change associated with including the regime factor.
These results support that incorporating regime information enhances the explanatory
capacity of pollutant models by capturing complex mixture-dispersion patterns. Building
on this added interpretive value, next, we assess the practical utility of the framework
in reconstructing a fully missing pollutant channel through a fold-safe, regime-aware
imputation approach.

3.5. Fold-Safe HyS Reconstruction and Predictive Uncertainty

The regime-aware random forest achieved R? = 0.972 and RMSE = 1.467 under
day-blocked cross-validation (n = 836). Applied to the single missing site-day, the model
produced 44 imputed values (Figure 7) with low predictive dispersion (mean predictive
standard deviation ~ 0.067), supporting stable reconstruction for this missing-channel case.

H2S (native units)
(6] [9,]
B [o¢]

w
o

09:00 12:00 15:00 18:00
Local time

Figure 7. Reconstruction of a fully missing H,S site-day using a fold-safe, regime-aware
random forest.

3.6. Cross-Site Generalization

Leave-one-site-out (LOSO) results in Table 6 show the strongest portability for NO;
(mean site-wise R? = 0.402). By contrast, PM fractions, CO, VOC, RH, and H;S often
show weak or negative R?, reflecting strong local heterogeneity where negative R? values
indicate a performance that is worse than predicting the mean concentration of the held-out
observations (the R? baseline), so it provides a direct signal that transportability is limited
in that setting [37]. Several LOSO R? values are strongly negative for some targets/sites.
This can occur when the held-out site has a different mean/scale or a smaller variance than
the pooled training sites: even moderate absolute errors can exceed the test-site variance,
producing large negative R? despite RMSE values that remain interpretable on the original
scale. For this reason, we report both R> and RMSE and interpret strongly negative R?
primarily as clear evidence of limited transportability under cross-site extrapolation in
this campaign. Paired LOSO runs with and without the regime factor are summarized in
Appendix A.5 (Table A5).

Table 6. Leave-one-site-out performance by site and target pollutant.

Method Site Target R2 RMSE Hiest
RF 1 CcO —11.411 14.256 176
RF 2 CcO -3.29 10.491 176
RF 3 CcO —2.522 4.971 176
RF 4 CcO —-0.21 11.751 176
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Table 6. Cont.
Method Site Target R? RMSE test
RF 5 CcO —44.03 14.444 176
RF 1 H,S 0.521 5.277 176
RF 2 H,S 0.101 4961 176
RF 3 H>S —3.513 13.643 176
RF 4 H>S —6.247 13.349 176
RF 5 H>S 0.491 4.010 132
RF 1 NO; 0.554 4.745 176
RF 2 NO; 0.377 6.664 176
RF 3 NO; 0.546 5.152 176
RF 4 NO, 0.489 4.749 176
RF 5 NO, 0.046 35.935 176
RF 1 PM; —12.723 46.810 176
RF 2 PM; —30.676 26.685 176
RF 3 PM; —4.823 37.327 176
RF 4 PM; —149.927 37.676 176
RF 5 PM; —69.908 29.759 176
RF 1 PM;y —47.683 46.428 176
RF 2 PMyy —28.854 26.141 176
RF 3 PMjg —15.883 28.065 176
RF 4 PM;y, —262.094 55.263 176
RF 5 PM;y, —30.192 22.404 176
RF 1 PM;s5 —32.934 39.381 176
RF 2 PM; 5 —18.134 25.379 176
RF 3 PM; 5 —20.048 31.893 176
RF 4 PM; 5 —182.216 53.315 176
RF 5 PM;s5 —17.864 15.751 176
RF 1 RH 0.236 2.405 176
RF 2 RH —1.157 5919 176
RF 3 RH —1.327 3.459 176
RF 4 RH 0.327 4.402 176
RF 5 RH —1.298 6.864 176
RF 1 VOC —0.612 33.718 176
RF 2 VOC —189.356 30.241 176
RF 3 VOC —12.712 25411 176
RF 4 VOC 0.599 16.259 176
RF 5 vVOC —0.251 27.322 176

A key implication is that models trained on pooled data may generalize for NO, (a
more spatially transferable signal in this campaign), while several other channels remain
highly site-specific and benefit more from local calibration.

4. Discussion

This section interprets the results in light of the study’s three main objectives:
(i) learning operational regimes that summarize daytime conditions across sites, (ii) testing
whether these regimes add explanatory value beyond basic covariates, and (iii) assessing
cautious model transport across comparable micro-environments. In practical terms, we
focus on a short-campaign problem: how to summarize concurrent multi-pollutant mea-
surements across different micro-environments in a way that remains usable for modeling
and data-quality tasks.

The operational regimes derived in this study summarize the joint pollutant—
meteorology structure observed across the five monitored micro-environments during
daytime hours. Compared with conventional segmentation (by site, by time slot, or by
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single-pollutant thresholds), the regime labels are assigned from multiple variables jointly,
so they can represent recurring multi-pollutant states that appear across different sites and
hours within the same campaign. At the same time, the results also show site-dominant
regimes (e.g., regimes largely associated with one site type), which helps separate site-
specific conditions from those shared across similar micro-environments. Because the
regime factor remained interpretable and was highly classifiable from reduced sensor
subsets, it provides a compact way to report multivariate conditions using a small number
of labels.

In a short campaign, a practitioner can use the regime labels to (i) summarize exposure
conditions by reporting the fraction of time each micro-environment spends in higher-
burden regimes (by hour and by site), (ii) compare locations on a common basis beyond
simple averages (e.g., whether a site is dominated by accumulation-type regimes or by
well-mixed regimes), and (iii) support operational actions such as prioritizing ventilation
or traffic-management measures during the hours when higher-burden regimes occur
most frequently. The same labels can also support data-quality workflows by flagging
records that are inconsistent with the typical regime profile and by providing context for
reconstructing short sensor outages.

We used k-means because the regime labels are intended to function as operational
prototypes: they must be (i) easy to summarize via regime-wise profiles and (ii) assignable
to new observations using only training information (nearest-centroid assignment) under
the day- and site-blocked evaluation design. This supports a clear separation between
learning and testing and keeps the regime definition reproducible across resamples. Model-
based mixtures and density-based clustering can be valuable when regimes are expected
to be strongly non-spherical, overlapping, or multi-density; however, in short campaigns
they can require additional tuning choices that affect reproducibility and the stability of
downstream comparisons. Further, methods that are more sensitive to model specification
or density/hierarchy hyperparameters may change the effective number and definition
of clusters across folds or environments, which complicates the same-regime interpre-
tation required by our framework. Additionally, because our regime label is used as a
factor/predictor and as a target in regime-recognition, we require a complete partition
where every record is assigned a regime, and we require a deterministic out-of-sample as-
signment rule under site/day hold-out. We therefore focus on prototype-based regimes via
k-means and outline a leakage-safe comparison protocol for alternative clustering families
in Appendix A.3. Accordingly, this study emphasizes a controlled, stability-documented
baseline that can be extended using the same leakage-safe validation principles when richer
datasets or additional context variables are available [20,24,25,38].

In the NO, regression, adding the five-level regime factor increased R? from 0.194
to 0.251 (AR? = 0.057). This change is reported as an incremental increase in explained
variability for a model that remains parsimonious (one additional categorical factor). The
result is consistent with near-road work highlighting the role of local dispersion and mixing
conditions in shaping concentration variability [2,8]. We report the effect as a model-level
change in explained variance and do not translate it into a ppb-scale improvement without
additional concentration-error summaries.

Moreover, the regime-aware random forest imputation reconstructed a completely
missing HyS site-day with strong cross-validated performance and low predictive disper-
sion, using a fold-safe design in which regimes are learned in training folds and assigned
in held-out folds. In this manuscript, the imputation case study is limited to one pollutant,
one site, and one missing day, so it is presented as a proof-of-concept for methodolog-
ical feasibility under short-campaign constraints rather than a general statement about
performance for longer missing periods or for sites with different source mechanisms.
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Concerning cross-site transferability and practical boundaries, leave-one-site-out test-
ing revealed substantial heterogeneity in pollutant behavior. NO, showed the strongest
portability among the tested targets in this dataset, while several other channels showed
weak or negative R%. Here, a negative R? indicates performance worse than a site-mean
baseline for the held-out site, which provides a clear marker of limited transportability.
Overall, these results highlight that some targets support pooled modeling across sites in
this campaign, whereas others remain strongly site-dependent and would require addi-
tional contextual descriptors (e.g., geometry, land use, or source mix) and/or site-specific
calibration for deployment beyond the training micro-environments.

The present campaign focused on daytime hours over a small number of representative
sites, so the learned regimes are specific to the observed daytime conditions and may not
represent nocturnal chemistry, other seasons, or more complex urban morphologies. The
solar-elevation proxy is a simplified representation of boundary-layer dynamics and does
not replace direct PBL or mixing-height measurements. Although portable analyzers
were factory-calibrated, instrument bias and channel noise remain possible, particularly
for VOC and H;S sensors. Future work should extend regime learning across longer
timeframes and incorporate physical and contextual covariates such as mixing height,
canopy geometry, and land-use class to strengthen interpretation and transport across
dissimilar micro-environments. The same stability and leakage-safe validation design
used here is compatible with other clustering families when the data support additional
complexity. Combining machine learning with mechanistic dispersion modeling is also a
promising direction for improving transport across dissimilar micro-environments.

5. Conclusions

This study develops and tests an operational-regime workflow for short, synchronized
multi-site monitoring in traffic-related urban micro-environments (open and semi-enclosed
garages, a fuel forecourt, a street setting, and a campus/background location). The regimes
are learned from the joint pollutant-meteorology space and therefore provide an alternative
to conventional segmentation by site, hour, or single-pollutant thresholds. A five-regime
solution was selected by the silhouette criterion and supported by day-block stability diag-
nostics and sensitivity checks (Appendices A.1 and A.3), and the regime profiles summarize
consistent contrasts in PM loading, gaseous signatures, and ventilation conditions across
the monitored network.

Regime labels were recoverable from reduced sensor configurations under day-blocked
validation, with accuracy 0.989 using gases and meteorology and 0.993 using all variables,
supporting regime recognition when only a subset of channels is available. In the NO, re-
gression, adding the five-level regime factor increased R? from 0.194 to 0.251 (AR? = 0.057),
providing a quantified gain in explained variability within the same parsimonious model
form. For missing data reconstruction, the fold-safe, regime-aware random forest ap-
proach reproduced a fully missing H,S site-day with strong cross-validated performance
in this proof-of-concept case, while explicitly avoiding leakage by learning regimes within
training folds.

In leave-one-site-out tests, NO; showed the strongest cross-site portability in this
dataset, whereas several other channels were strongly site-dependent and included neg-
ative R? values, indicating performance worse than a site-mean baseline. These results
summarize both what transfers across the monitored micro-environments in this campaign
and what remains local, and they define the practical operating range of the proposed
workflow for short field deployments.
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Appendix A
Appendix A.1. k Selection: Silhouette and ARI Stability

Foreachk € {3,...,7} we fitted k-means (Hartigan-Wong) on standardized features,
then performed day-block bootstrap resampling (B = 80) and computed the Adjusted Rand
Index (ARI) between the reference labels and each bootstrap refit.

Silhouette refers to the average silhouette width (computed on the same standardized
feature space) and is used as an internal separation/compactness diagnostic, while ARI
stability provides an external reproducibility check under resampling.

We selected k using a joint criterion that balances (i) cluster separation (mean
silhouette) [26], (ii) label stability under day-block bootstrap (Adjusted Rand Index,
ARI) [27], and (iii) interpretability /operational usefulness of the resulting regimes. The
silhouette score was highest at k = 5, indicating the strongest separation at this resolution.
The ARI distribution showed a high-stability plateau for k = 3-5, with a clear deterioration
for larger k, suggesting that further splitting produces less reproducible partitions. We
therefore chose k = 5 as the smallest value that (a) maximizes separation while (b) remain-
ing on the stability plateau. In contrast, smaller k values tend to merge qualitatively distinct
pollutant-meteorology states observed in the data, reducing interpretability and weakening
downstream analyses that rely on regime-specific behavior. This multi-criterion selection
supports k = 5 as a practical balance between separation, stability, and interpretability.

Table A1l. Stability across k via day-block bootstrap (ARI distribution).

k Mean Median Ps Pos

3 0.987 1.000 0.926 1.000
4 0.966 0.997 0.808 1.000
5 0.945 0.997 0.796 1.000
6 0.852 0.847 0.655 1.000
7 0.788 0.801 0.682 0.871
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Appendix A.2. Sensitivity to Small Multiplicative Perturbations in VOC and RH

We applied log-normal multiplicative noise to VOC and RH (sd = 0.05) and recom-
puted the partition B = 100 times; agreement with the reference labels was summarized

by ARL

Table A2. Partition sensitivity to VOC/RH “jitter”.

Mean Median Ps Pys
ARI 0.991 0.991 0.982 0.997

The partition is essentially unchanged by small perturbations, indicating robustness

to minor sensor-level variation.

Appendix A.3. Alternative Partitions: Ward.D2 and PCA-Space k-Means

We compared the reference solution presented in Section 2 to Ward.D2 hierarchical
clustering using Euclidean distance, and k-means applied in principal-component space
retaining > 90% variance. As seen in Table A3, agreement with the reference labels was

measured by ARL

Table A3. Agreement (ARI) between alternative partitions and the reference (k = 5).

Alternative Partition ARI vs. Reference

Ward.D2 (Euclidean) 0.86
k-means in PCA space (90% var.) 0.90

From Figure A1 below, profiles align closely, supporting algorithmic robustness.
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Figure A1. Per-regime pollutant medians under the three partitions (Regimes 1-5 correspond to the
five reference regimes from the k = 5 clustering).

Appendix A.4. Residual Diagnostics and Log-Scale Robustness for Section 3.6

As shown in Figure A2, residuals are approximately homoscedastic around zero across
the fitted range, with a single extreme positive residual producing a modest upper-tail
departure in the Q-Q plot. The bulk of residuals align with normality, indicating that
inference is not driven by systematic variance patterns. For interpretability, we use these
diagnostics as a sanity check for the linear-model inference; the predictive comparisons are
additionally supported by the hold-out design described in the main text.
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Figure A2. Left: NO, residuals vs. fitted. Right: Normal Q-Q plot (augmented model with regime).

According to Figure A2 and Table A4, conclusions on the regime effect are consistent
on both scales with the results obtained in Section 3.

Table A4. Natural- vs. log-scale models for NO, (R? and AR? from adding regime).

Scale R? (Base) R? (+Regime) AR?
Natural 0.194 0.251 0.057
Log 0.617 0.717 0.100

Appendix A.5. LOSO Portability: With vs. Without the Regime Factor

We fitted paired LOSO Random Forest models using identical predictors, once without
and once with the regime factor, where regimes were trained on the training sites and
applied unchanged to the held-out site.

Negative R? values can occur under LOSO when the model performs worse than
a simple baseline (e.g., predicting the the test-site mean baseline); in our setting, strong
cross-site heterogeneity can lead to severe extrapolation errors for some targets/sites.

As seen in Table A5, gains are most apparent for NO,. For PM and some gases,
cross-site heterogeneity limits portability despite modest RMSE reductions.

Table A5. Paired LOSO performance (excerpt). A denotes (withReg — noReg).

Method Site Target R? (noReg) R? (withReg)  AR? ARMSE
RF 1 CO ~18.50 —11.41 7.09 —3.61
RF 2 CcoO —7.81 —3.29 4.52 —4.54
RF 3 CO ~3.96 —2.52 1.43 —0.93
RF 4 CcoO —0.29 —0.21 0.08 —0.38
RF 5 CcoO —48.40 —44.03 4.41 —0.69

(full table for all targets/sites available on request)
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