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ABSTRACT

More frequent extreme rainfall events in a changing climate increase the risk of flash flooding. However, the flood hazard modelling required to
reduce disaster risk in urban environments is often limited by the availability of data required for model calibration and validation. Here, we use a
historical flood event captured by 5 m resolution satellite imagery to inform future flood hazard assessments in the West Bank, Palestine. Flooding in
January 2013 affected over 12,500 people and large areas of agricultural land. Vegetation loss and damage were captured using a normalised
difference vegetation index (NDVI), which was used as a reference flood extent. The physics-based HEC-RAS flood model best reproduced this NDVI-
derived inundation extent (F1 score = 0.76), although the FastFlood model was able to produce a similar inundation pattern (F1 score = 0.74) over
300 times faster. Simulated flood depths from both models were similar. Climate analysis revealed that the January 2013 rainfall corresponded to a
historical return period of between 1 in 5 and 1 in 10 years. In comparison, a 1 in 100-year rainfall event (RX1day (maximum 1-day precipitation) of
148 mm) based on historical data (1985-2014) could increase by almost 40 % (to 205 mm) in the mid-future (2041-2060), which could cause 23 %
(4 km?) greater inundation compared to the 2013 event. Although the patterns of future precipitation in the region are uncertain, our flood hazard
maps can support urban planning and infrastructure development to manage storm water runoff.

1. Introduction

A warming climate with more frequent extreme rainfall events [1,2] is coupled with increased exposure of populations and
infrastructure to flooding [3-5]. Flood risk is driven by factors including higher magnitude flood events [6,7], human-modified
catchment runoff characteristics [8], and encroachment into flood-prone areas [9,10]. The Intergovernmental Panel on Climate
Change’s Sixth Assessment Report (IPCC AR6) states that in many parts of Asia, the risks related to climate change are projected to
increase progressively for 1.5 °C, 2 °C, and 3 °C of global warming [11]. Vulnerability to flooding, which is a function of physical,
social, and economic factors, is generally highest in developing countries and informal settlements that lack planning and infra-
structure to manage flood water [12,13]. Therefore, pro-poor risk-informed planning is essential to reduce flood risk in an equitable
way for future developments [14,15]. However, robust flood modelling processes required to inform disaster risk reduction strategies
require high-quality input data including future precipitation trends generated by analysing historical precipitation observations
alongside global climate models [16,17]; an accurate digital elevation model that represents the channel and floodplain topography
[18-20]; and data to calibrate and validate model outputs [21,22]. In developing countries, one or more of these inputs are often
lacking. This can force simplifications to the modelling process and choice of flood model complexity, which can subsequently limit the
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effectiveness of model outputs in decision making. For example, global flood hazard maps at >90 m resolution that use open access
DEMs can provide valuable probabilistic hazard information at regional scales [23,24]. However, model intercomparisons highlight
inconsistencies that are often linked to digital elevation model (DEM) resolution and accuracy, which affects how local channel and
floodplain complexities are represented [18,25-27].

Earth observation data have broad applicability in flood disaster response and planning, owing to the large spatial coverage,
frequent revisit times, and diversity of information provided by different sensors. For example, information on the duration and in-
tensity of storms is available from precipitation monitoring missions such as NASA’s Global Precipitation Measurement (GPM)[28,29];
the height of rivers and inundated land can be derived using satellite altimetry [30,31]; antecedent conditions including soil moisture
can be obtained using radar [32,33]; flood routing and the effects on vegetation can be quantified using changing reflectance char-
acteristics [34,35]; and inundation extents can be mapped using both optical and radar data [21,36-38]. Barriers to using earth
observation datasets for city-scale flood hazard modelling include their availability and accessibility, since it is only within the last
decade that spatial and temporal resolution has improved, alongside open access licensing. Additionally, the coarse resolution global
satellite-derived products such as GPM may not capture the spatio-temporal complexities of precipitation and therefore the formation
of flood peaks in flash flooding [39].

Reducing flood disaster risk requires knowledge of current and future flood hazards under realistic climate scenarios, combined
with the ability to influence decision making at local scales. The Tomorrow’s Cities project was designed to respond to this challenge
through a risk-informed urban planning approach (Decision Support Environment (DSE)), weighted towards benefitting marginalised
and vulnerable communities [14,40]. In this study, we aimed to draw on our experience in the application of the DSE in Nablus,
Palestine, to evaluate established and emerging flood modelling approaches to demonstrate their applicability in a data-sparse flash
flood environment. Our objectives were to: (1) quantify the impact of an extensive historical flood event using pre- and post-flood
satellite imagery; (2) evaluate three flood hazard models of increasing complexity using the historical event for validation; and (3)
use this to inform an assessment of current and future flood hazard in the region.

2. Study area
Our study focused on the north-western part of the West Bank, Palestine (in Jenin and Tulkarm governorates), which is thought to

exhibit the greatest flood hazard, due to high rainfall and runoff potential [41](Fig. 1). In this region, increases in extreme rainfall,
impermeable surfaces, and lack of infrastructure to deal with flood water have led to increasing vulnerability to flash floods [41-44]. A
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Fig. 1. Study area spanning the Jenin and Tulkarm administrative governorates in the West Bank, Palestine. Rain gauge stations in Jenin and
Tulkarm are shown. The Nablus rain gauge station is 9 km to the south of the study area.
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particularly damaging flood event followed heavy and sustained winter rainfall in early January 2013, which affected 12,500 people
and caused widespread damage to agricultural land [44,45]. The flooding highlighted existing vulnerabilities and the importance of
advancing disaster risk reduction strategies and community and government levels [45]. The main landcover classes in the study area
are grassland (45 %), shrubland (17 %), tree cover (16 %), cropland (11 %) and built-up (10 %) (Table S1).

3. Methodology
3.1. Digital elevation model (DEM) preparation and analysis

A 10 m resolution DEM was created to underpin the flood hazard modelling. Contour lines at 1 m vertical intervals were supplied by
the Ministry of Local Government (Palestine) covering the study area and the Topo to Raster tool in ArcGIS Pro 3.0 was used to
interpolate a digital elevation model at 10 m resolution. This tool uses an iterative finite difference interpolation technique based on
the ANUDEM program [46]. The method and date of acquisition of the contour lines were not known. Therefore, we compared a
hillshade of the DEM to satellite imagery in Google Earth to estimate an acquisition date of 2015-2016, based on the construction date
of large buildings that were apparent in the DEM. Differencing the 10 m custom DEM from the 30 m Copernicus Digital Elevation
Model (GLO30) revealed spatially variable offsets and artefacts (Fig. 2a). Therefore, five components of the DEM were defined for
independent adjustments to improve the DEM before flood hazard modelling ([1] to [5] shown in Fig. 2a). Component [1] extended
the custom DEM beyond the study area to avoid boundary effects in the flood modelling and was filled with the GLO30 DEM.
Components [2, 3 and 5] were coregistered to the GLO30 DEM independently to correct their systematic offsets using a blockwise
coregistration pipeline in the xDEM Python package, which incorporated a bias correction, iterative closest point registration, followed
by the coregistration of Nuth and Kaab [47]. Component [4] was replaced with the GLO30 DEM due to the presence of systematic
artefacts. The refined custom DEM had a normalised median absolute deviation (NMAD) of 0.67 m when differenced with the GLO30
DEM, compared to 2.22 m before adjustment (Fig. 2). Components [1] and [4] were excluded from this NMAD calculation since these
were areas filled with the GLO30 DEM. Hydrological conditioning was applied to the coregistered 10 m custom DEM using the
BreachDepressionsLeastCost tool in Whitebox 1.4.0 [48] with a maximum breach distance of 1 km. A stream network was then derived
using a flow accumulation threshold of 1000 cells, which was selected based on a visual inspection of stream sources using the Google
Satellite Imagery basemap in QGIS.

3.2. Earth observation data

3.2.1. RapidEye imagery
Pre- and post-flood availability of RapidEye satellite imagery was used to assess the flood extent of the flooding in January 2013.
Two multi-spectral 5 m resolution RapidEye-1 satellite images (December 31, 2012 and January 15, 2013) processed to surface
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Fig. 2. (a) DEM of difference between the GLO30 DEM and the custom DEM derived in this study from contour data. Labelled components are
discussed in the text. (b) DEM of difference post-coregistration to the GLO30 DEM.
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reflectance (L3A) were accessed from PlanetLabs. The 2013 image was co-registered to the 2012 image using Cosi-Corr [49] and ENVI
5.6.3 to remove a spatially variable misregistration (east-west mean offset: 6.4 + 6.3 m, north-south mean offset: 4.2 + 6 m) using a
second order polynomial. A normalised difference vegetation index (NDVI) (1) was derived for the two acquisitions using the near
infrared and red bands.

(Nir — Red)

NDV] =-———-
(Nir + Red)

(€}

High chlorophyll reflectance in the Nir band compared to low reflectance in the red band means the NDVI is an indicator of
vegetation presence and health [50,51]. The difference in NDVI values pre- and post-flood can be used to reconstruct the inundated
extent using the change in reflectance of the damaged or scoured vegetation, which would be observed as an NDVI decrease [52,53].
The short timespan between the RapidEye acquisitions of our study side (15 days) meant that changes in NDVI values were expected to
primarily correspond to the effects of the extreme rainfall and flooding on vegetation. To mask out insignificant change in NDVI, we
manually digitised ‘stable’ sample polygons over areas where the spectral reflectance was less likely to be affected by the flooding, such
as woodland and bare ground, and extracted their NDVI difference values pre- and post-flood. We then masked pixels with NDVI
difference values less than two times the standard deviation of these stable polygons (NDVI<0.06) and sieved the output to retain
connected clusters of at least 18 pixels (450 m?). This mask is shown in Fig. S1. Finally, we intersected the remaining NDVI changes
with the stream network derived in Section 3.1 to determine whether they were likely the consequence of fluvial flooding. The Shreve
stream order [54] was allocated to the stream network derived in (3.1) and these values were used to sample the NDVI difference to
investigate the relationship between stream order and the pre- and post-flood magnitude of NDVI change.

3.2.2. Land cover

ESA WorldCover 10 m v200 dated 2021 [55] was used to quantify the landcover of each area of significant NDVI change (3.2.1). We
quantified this for both the full study area (506.5 kmz)(Fig. 1), which included NDVI changes corresponding to pluvial and fluvial
flooding and agricultural activity, and separately for the NDVI changes directly connected to the stream network (Fig. 1), which were
most likely to be caused by fluvial flooding. The 10 m pixel size of the ESA WorldCover land cover map would in some cases incor-
porate mixed pixels of urban structures, roads, tracks, and vegetation for example, given that these features are generally small within
the study area. Therefore, to evaluate potential inundation impacts for urban areas, we also used building footprints from the Global
ML Buildings dataset [56], and the transportation network including roads and tracks from OCHA [57], which were more complete
than OpenStreetMap data.

3.3. Rainfall data and climate scenarios

Daily rainfall data for the January 2013 flood event were available from the Palestine Meteorological Department for Jenin
(JEN00001, 145 m elevation), Tulkarm (TUL0O0002, 7 m elevation), and Nablus (NAB00003, 73 m elevation) stations (Figs. 1 and 3a).
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Fig. 3. Rainfall data for the January 2013 flood event. (a) Rainfall recorded at three rain gauges bounding the study area. (b) Rainfall derived from
the GPM L3 IMERG V06 product on the January 8, 2013 and interpolated rainfall between the three rain gauges for the study area (inset). Labelled
values correspond to the total recorded rainfall on January 8, 2013.
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Inverse distance weighted interpolation was used to create a grid representing peak rainfall (mm/hour) from the station data on 8th
January (Fig. 3b). We also downloaded the total rainfall on the January 8, 2013 from the calibrated GPM L3 IMERG V06 precipitation
product [58] for comparison with the gauge stations (Fig. 3b).

Historical and future projected rainfall data were used in a climate change analysis. Historical rainfall data recorded at Nablus
station (NAB00003) (9 km south of the study area) from 1985 to 2014 were provided by the Palestine Meteorological Department.
Coupled Model Intercomparison Project Phase 6 (CMIP6) Global Circulation Models (GCMs) are used for the future projected rainfall
data. The GCMs selected for this study are GFDL-ESM4 and MPI-ESM1-2-HR, as evaluated by Hamed et al. [59] and Mesgari et al. [60].
However, we acknowledge that using only two models introduces additional uncertainties into the climate change projections. Hamed
etal. [59] compared CMIP5 and CMIP6 models over the Middle East and North African (MENA) region using historical simulations and
future projections, while Mesgari et al. [60] provides an assessment of CMIP6 models’ performances and projection of rainfall based on
Shared Socio-economic Pathways (SSPs) scenarios over Middle East, North Africa, Afghanistan, and Pakistan (MENAP). The two SSPs
considered in this study are SSP2-4.5 (medium challenges to mitigation and adaptation), and SSP5-8.5 (high challenges to mitigation,
low challenges to adaptation). The time period of 1985-2014 is considered as historical. The time periods of 2021-2040, 2041-2060
and 2081-2100 are classified as near future, mid-future, and far future respectively, in accordance with IPCC AR®6.

We analysed the historical rainfall patterns and characteristics, with focus on RX1day (annual maximum 1-day rainfall) (e.g.
Ref. [17]). It was not possible to determine the precise duration of the rainfall causing the 2013 flooding, but we not that for the station
in the upper catchment (Jenin), the majority of rainfall fell on the 8th January (Fig. 3a). However, we acknowledge that RX1day does
not capture multi-day extremes or the cumulative precipitation that can influence flood magnitude. First, the GCM data were bias
corrected and statistically downscaled to the desired spatial and temporal resolution. The bias correction and statistical downscaling
were undertaken using the empirical quantile mapping method, which maps the probability distribution of rainfall of GCMs with the
probability distribution of the observed rainfall. The concept of quantile mapping can be understood as:

X = inverse ecdf 1o, (ecdfpaoce (Xiiote ) ) &%

Here, ecdf is the empirical cumulative distribution function for the reference time period, Xﬁ“ft‘ﬁeeft is the raw GCM at time t in the

-Model
reference

obs

reference 1S the inverse

future, ecd is the empirical cumulative distribution function of the GCM for the reference period, inverse ecdf

empirical cumulative distribution function of the observed rainfall for the reference period, and Xz, is the corrected estimate of

Xmgeg The monthly ecdf for this study was developed using the observed rainfall data at Nablus station and GCM hindcast data for the
period 1985-2014. Gudmundsson et al. [61] illustrates this procedure in detail. Stationary or non-stationary rainfall frequency
analysis was then performed on the bias corrected RX1day values based on the Mann Kendall trend test, to quantify the rainfall value
associated with a given return period [62,63]. The temporal disaggregation of rainfall values from the rainfall frequency analysis was
done using the Global Precipitation Measurement (GPM) - Integrated Multi-satellitE Retrievals for GPM (IMERG) (GPM-IMERG) of half
hourly temporal resolution and 0.1° x 0.1° spatial resolution based on the highest flood event recorded in Nablus.

3.4. Flood modelling

3.4.1. January 2013 flooding

Three models were used to simulate the January 2013 flooding and evaluate their performance speed and accuracy: FastFlood
v0.12 (website tool version) is a new computationally efficient model that has shown good agreement with fully dynamic physics-
based models whilst requiring up to 1500 times less computation time [64]; HAIL-CAESAR is a high performance version of the
Caesar-Lisflood model that uses simplified shallow-water equations [65]; and HEC-RAS 6.4.1 is a physics-based hydraulic model
capable of 2D unsteady flow simulations using Shallow Water Equations. The data input and parameters for the flood models are
shown in Table 1. In the absence of validation data in our catchment, we used standard model parameters and performed sensitivity
testing to Manning’s roughness values, which were uniformly applied across the study area for each simulation. Spatially variable
roughness values are preferable to capture detailed inundation characteristics, for example informed by a landcover map. However,
applying a uniform value is common where landcover data are not sufficiently high resolution or are uncertain, and where there is a
lack of field-base information to inform spatially variable Manning’s values [17,66-68]. Model sensitivity to the roughness value was
determined by increasing the value from 0.01 to 0.07 in 0.01 increments and assessing the modelled flood extent for depths greater
than 0.1 m against the NDVI-derived reference data (Section 3.4.2). The FastFlood and Hail-Caesar models were run for the model
domain shown in Fig. 1 and the outputs were then clipped to the study area to avoid artefacts at the model boundary. A smaller study
catchment was used for the HEC-RAS simulations to make them computationally viable, which was subsequently used as the reference
area to compare the outputs from all three flood models.

3.4.2. Model comparison

Modelled flood depth was evaluated against the NDVI changes that intersected with the stream network, which indicated the
removal or damage of vegetation during the 2013 flood (Section 3.2.1). FastFlood and HAIL-CAESAR were run across the full study
area (Fig. 1), whereas HEC-RAS was run for a smaller catchment due to computational limitations. Therefore, the models were
evaluated across these two domains. Since the NDVI changes were not expected to be fully representative of the observed flood extent,
for example on banks lacking vegetation, polygons of NDVI decrease that intersected with the stream network and that visually
appeared to correspond to the 2013 flood event (Section 3.2.1) were manually selected. These polygons were manually edited in some



Table 1
Flood model input parameters.

Model DEM Rainfall data Settings Manning’s Roughness values
tested
FastFlood 10 m resolution (Section 3.1) clipped to the study area (  January 8, 2013 interpolated grid (mm/hr) (Section 3.3, Solver: very high quality 0.01-0.05
Fig. 1) Fig. 4b)
HAIL- January 8, 2013 hydro index of three rainfall zones (mm/hr)  See the example parameter file in the 0.01-0.05
CAESAR for 24 h supplement
HEC-RAS 10 m resolution (Section 3.1) clipped to HEC-RAS January 8, 2013 interpolated grid (Section 3.3, Fig. 4b) Downstream boundary: normal depth 0.01-0.07

domain (Fig. 1)

(mm/hr) for 24 h

Computation interval: 10 s
Equations: SWE-ELM
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cases to improve their representation of the inundation extent (e.g. Fig. S2b). Buffers of 110 m were then created from both sides of the
stream centreline and these were clipped to encompass the NDVI polygons to form validation areas (Fig. S2). These areas were then
used to derive accuracy assessment scores for each flood model. The F1 score (2), which is a weighted average of precision (ratio of the
true positive modelled flood area to the total modelled flood area) and recall (ratio of true positive modelled flood area to the total
reference (NDVI) flood area), was used to represent overall model accuracy on a 0-1 scale where 1 is the highest accuracy [69,70].
Additionally, the intersection over union (IoU) ratio (3) was used to quantify the amount of overlap between the predicted flood extent

and the NDVI reference extent.

(Precision x Recall) )
(Precision + Recall)/2

F1 score =

and the reference flood extent
(Combined area of prediced flood extent )

(3)

(Intersecting area of the predicted flood extent )
IoU=

and the reference flood extent

4. Results

4.1. January 2013 flooding

Peak rainfall during the 2013 flooding occurred on the 8th of January with 106.7, 89.0, and 81.5 mm of rainfall recorded at Nablus,
Tulkarm, and Jenin rain gauges respectively (Fig. 3). The GPM L3 IMERG V06 satellite product showed a maximum of 96.1 mm total
rainfall in the study area for the same day, which was observed closest to Jenin station (Fig. 3b).
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4.1.1. NDVI change

The effects of the January 2013 flood event were evident in decreased NDVI values across the study area, particularly corre-
sponding to the stream network and a large area of ponded water that accumulated during the storm (Fig. 4). NDVI changes were not
exclusively confined to the stream network and incorporated the effects of pluvial flooding and seasonal agricultural activity. The
RapidEye images spanned a fifteen-day window, and the post-flood image was captured five days after the peak rainfall, therefore the
effects of vegetation change unrelated to the storm event were minimised. However, NDVI increases northeast of Arraba town were
related to specific agricultural activities (Fig. 4b). It was noted from Sentinel-2 data that NDVI values are typically increasing across the
study area between the months of December—January and that this is also a time of crop harvest (Fig. S3). There was a clear non-linear
relationship between NDVI decrease and increasing Shreve stream order (Fig. 4d). Except for stream orders 0-20, the median NDVI
decrease for other streams exceeded the expected uncertainty of 0.06, with stream orders 200-220 displaying the largest median NDVI
decrease of —0.33 (Section 3.2.1). The highest stream orders displayed greater spread in the NDVI change (Fig. 4d), likely due to a
combination of their less ephemeral nature, greater carrying capacity, and lower detection of NDVI changes for channels in built-up
environments due to sparser vegetation coverage. Therefore, using NDVI change to derive reference flood extents would not be
appropriate in urban areas; However, the deposition of sediment in these areas could be used instead if they had sufficient spectral
contrast to the surrounding roads and buildings [71].

The total area of NDVI decrease and increase across the study area was 65.3 km? (12.9 % of the study area) and 12.4 km?> (2.5 % of
the study area) respectively (Fig. 5a), with the cropland land cover class displaying the greatest extent of NDVI decrease and NDVI
increase with 13.2 km? (24 % of all cropland) and 6.1 km? (11 % of all cropland) of land affected respectively. One limitation is that
these statistics were derived from the closest in time high-resolution land cover map (2021), so are not fully representative of the
landcover at the time of flood. The NDVI decrease intersecting with the stream network, which was most likely to be a direct result of
the effect of moving water on the vegetation, totalled 35.1 km? (6.9 % of the study area) and cropland was the class most affected (10.5
kmz, 19 % of all cropland) followed by grassland (9.4 kmz, 4.1 % of all grassland) (Fig. 5b). The area of NDVI decrease also included
1.8 km? (3.5 %) of the built-up area (Fig. 5b). Non-fluvial NDVI change represents a vegetation response to the storm precipitation or
standing water, although these areas may still drain into lower order streams. Here, NDVI decrease was greatest for grassland (12.6
kmz, 5.5 % of all grassland) (Fig. 5c).

4.1.2. Flood model comparison

The modelled inundation extent across the full study area was 21.84 km? for FastFlood and 17.42 km? for HAIL-CAESAR for the
2013 flood event (Table 2). For the smaller HEC-RAS domain, the inundated areas were 3.05 km?, 2.99 km?, and 4.80 km? for
FastFlood, HAIL-CAESAR, and HEC-RAS respectively (Table 2). FastFlood and HAIL-CAESAR were compared across the full study area,
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Fig. 5. (a) NDVI increase and decrease in the study area coloured by the corresponding land cover extracted from ESA World Cover v200. (b) NDVI
increase and decreases for areas connected to the stream network and (c) for areas not connected to the stream network. The area of each class in
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and all three models were directly compared in the HEC-RAS study domain (Table 2). Here, the F1 accuracy scores were 0.74, 0.75, and
0.76 for FastFlood, HAIL-CAESAR, and HEC-RAS respectively (Table 2). Similarly, the HEC-RAS model displayed the highest IoU score
(0.61), although FastFlood (0.59) and HAIL-CAESAR (0.60) were similar (Table 2). The Manning’s n values used in these models were
0.03, 0.02, and 0.06 respectively and the sensitivity of model accuracy to Manning’s n values was low in the tested range of 0.01-0.06
(Table S2). The modelled flood depths from HAIL-CAESAR were a closer match to HEC-RAS compared to FastFlood (Fig. 6). Here,
FastFlood depths had a mean difference of —0.03 m and a mean absolute error of 0.51 m when compared to HEC-RAS, compared to
0.21m and 0.36 m respectively for HAIL-CAESAR (Fig. 7).

4.2. Future climate and flood hazard

4.2.1. Climate

Biases in the long term mean monthly rainfall between observed rainfall at Nablus rain gauge and the selected GCMs (Fig. 8a) were
observed. Although the GCMs were able to capture the monthly rainfall pattern, significant biases were observed between the observed
and modelled datasets. Fig. 8b shows the historical RX1day with future bias corrected RX1day for the two climate models and SSP
scenarios we tested. A maximum increase of 18 % and 24 % with respect to the historical RX1day was seen in GFDL-ESM4 and MPI-
ESM1-2-HR, respectively, for the SSP2-4.5 near future period (2021-2040) (Table 3). A negative change in RX1day, contrary to the
majority of other locations worldwide [72], was observed in SSP5-8.5 scenario in the mid-future, whereas no changes in RX1day can be
observed in SSP5-8.5 scenario in the near future period.

The Mann-Kendall trend test performed on bias-corrected future RX1day values indicated no significant trends, prompting the
application of stationary rainfall frequency analysis using Gumbel’s method. Table 4 shows the changes in RX1day with respect to
historical data for different return periods in the mid-future period, for both GCMs and both SSPs. For both the scenarios, GFDL-ESM4
projected a decrease in RX1day, whereas MPI-ESM1-2-HR projected an increase as high as 39 %. This difference highlights the un-
certainties inherent in climate models and future climate for the region. The return period rainfall for the near future, mid-future, and
far future is shown in Fig. 9. Both models showed an increase in rainfall compared to historical RX1day, except for GFDL-ESM4 in the
mid-future (Fig. 9b). Higher changes were observed in SSP5-8.5 for the near future, while SSP2-4.5 showed more significant changes in
the far future.

4.2.2. Flood hazard

The rainfall recorded on the January 8, 2013 (106.7, 89.0, and 81.5 mm of rainfall for Nablus, Tulkarm, and Jenin rain gauges
respectively) corresponded to a historical return period of between 1 in 5 (89 mm) to 1 in 10 years (103 mm) (Table 4). A1 in 100-year
event based on historical data (1985-2014) would feature 148 mm of rainfall. The highest projected future rainfall for a 1 in 100-year
event (205 mm) was estimated by the mid-future (2041-2060) MPI-ESM1-2-HR model and SSP2-4.5 scenario (Table 4). Owing to the
uncertainty in the future climate between the GFDL-ESM4 and MPI-ESM1-2-HR models (Table 4), we modelled both these rainfall
events to quantify the impacts of higher magnitude flooding. To derive a spatially variable rainfall grid, the Nablus rainfall scenarios
were scaled proportionally for Tulkarm and Jenin stations using the 2013 flood rainfall distributions (Table 5). Only FastFlood and
HAIL-CAESAR were applied across the study area due to the computational limitations of using HEC-RAS over the large domain.

FastFlood produced the largest inundated area for each 1 in 100-year rainfall scenario, with 26.84 km? inundated for the future 1 in
100-year rainfall event (Table 5). This model also inundated the greatest length of transportation network including roads and track
(111.5 km or 9.2 % of the total length in the study area), and the largest area of cropland (14.5 km? or 25.3 % of all cropland in the
study area) (Fig. 10d). However, the HAIL-CAESAR model for the same scenario inundated a larger number of buildings (n = 3207)
(Fig. 10c). Differences in the modelled inundation between FastFlood and HAIL-CAESAR were apparent in the low relief area north of
Arraba town where FastFlood produced greater floodplain inundation (Fig. 10).

5. Discussion

Strategies to reduce flood risk are becoming more urgent as the probability of extreme rainfall events increases with climate
warming [1,2]. In lower income countries, this is coupled with unregulated development into hazardous areas, undeveloped infra-
structure to manage flood waters, and a lack of flood hazard maps required for decision making [24,41,43,73]. Reliable urban flood
hazard modelling requires accurate and typically high resolution (<10 m) DEMs, combined with past flood inundation data, both of

Table 2
Flood model accuracy assessment for the 2013 flood compared to the NDVI-derived inundation extents.
Extent Model Mannings F1 score Precision Recall IoU Inundated area (km") Model runtime
Study area FastFlood 0.02 0.72 0.70 0.73 0.56 21.84 ~40 s"
HAIL-CAESAR 0.03 0.73 0.75 0.71 0.57 17.42 ~7h"
HEC-RAS domain FastFlood 0.03 0.74 0.73 0.76 0.59 3.05 Clipped from full study extent
HAIL-CAESAR 0.02 0.75 0.75 0.75 0.60 2.99
HEC-RAS 0.06 0.76 0.68 0.86 0.61 4.80 ~4 h*

2 Desktop PC with 14 cores (3.3 Ghz).
b High Performance Computing node with 40 cores (2.0 Ghz).
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Fig. 6. Example modelled flood depths for the January 2013 rainfall event at two locations. NDVI-derived validation extents are shown as
red polygons.
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Fig. 7. Flood depth difference boxplots (median value is labelled) and half violin plots. (a) HEC-RAS flood depth minus FastFlood. (b) HEC-RAS
flood depth minus HAIL-CAESAR. Mean, standard deviation (SD), root mean square error (RMSE), and mean absolute error (MAE) are shown.

which are not globally available or open access [17,18,67,74]. Therefore, site-specific approaches are often required. In this study, we
used flood extents observed in satellite imagery to evaluate three flood models, which were underpinned by a bespoke 10 m resolution
DEM and future climate projections incorporating local rain gauge observations (1985-2014).

Satellite imagery spanning the January 2013 flood event was used to derive NDVTI’s that captured damaged and scoured vegetation
reflecting the flood extent (Fig. 4). Similar approaches have been used elsewhere to observe flash flood inundation extents [52,53].
However, this method does not represent a definitive flood map since not all riparian areas will experience vegetation loss or damage,
and seasonal agricultural activity including crop harvest could bias the observations, as was indicated in our study. Where available,
shorter time separations between the flood event and satellite data would help minimise this, but the shortest in this case was a
fifteen-day separation. Nonetheless, NDVI difference maps (Fig. 4) revealed widespread flood impacts to cropland (24 % of cropland in
the study area) (Fig. 5), which supports observations of widespread damage to crops in the northern West Bank reported by OCHA [45]
and contrasts with the typical increase in NDVI at the time of year of the flood (December—January) (Fig. S2). Additionally, the 2013
flooding prompted the formation of the Palestinian Agricultural Disaster Risk Reduction and Insurance Fund (PADRRIF) to reduce
agricultural damage and losses [75]. Probabilistic flood hazard mapping is a key mechanism to enable this preparatory risk mitigation
and preparedness.

In the absence of gauging station data or other flood extent observations, NDVI differencing provided the basis to evaluate three
flood models’ ability to simulate the 2013 event (Table 2 and Fig. 6). As expected, the physics-based flood models HEC-RAS and HAIL-
CAESAR best matched the NDVI-derived flood extent, followed by FastFlood (Table 2). Similar accuracy assessment F1 scores of 0.74,
0.75, and 0.76 for FastFlood, HAIL-CAESAR, and HEC-RAS respectively showed that all models provided a reasonable match to the
NDVI-derived flood extent. Additionally, FastFlood’s run time of 40 s for the full study area without requiring high-performance
computing or complex model setup, demonstrates its value in providing useful flood hazard information, particularly where nu-
merical modelling resources are limited [20,64,76]. In this study we focused on the maximum flood extent and depths as an indicator
of impact. However, we recognise that we could only validate flood extent due to the absence of flood depth information and gauging
station validation data for the 2013 event. We were only able to validate the models against flood extents derived outside urban areas,
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Table 3
Percentage changes in future RX1day after bias correction.

RX1day (mm) and % changes: GFDL-ESM4

Scenarios Historical Near future % change Mid-future % change Far future
1985-2014 2021-2040 2041-2060 2081-2100

SSP2-4.5 71 84 18 72 1 82

SSP5-8.5 76 8 68 -4 80

RX1day (mm) and % changes: MPI-ESM1-2-HR

SSP2-4.5 71 88 24 83 17 82

SSP5-8.5 71 0 75 6 73

% change

15
13

15
3
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Table 4
Return period rainfall for GFDL-ESM4 and MPI-ESM1-2-HR, SSP2-4.5 and SSP5-8.5 for the mid-future.

Rainfall in mid-future (2041-2060) for SSP2-4.5

Return Period (years) Historical GFDL-ESM4 (mm) % change MPI-ESM1-2-HR (mm) % change
1985-2014 (mm)

5 89 89 0.2 112 26

10 103 102 -0.9 135 30

25 121 119 -1.9 163 34

50 135 132 -2.5 184 37

100 148 144 -2.9 205 39

Rainfall in mid-future (2041-2060) for SSP5-8.5

5 89 86 —-2.9 102 15
10 103 100 —-2.8 123 19
25 121 118 —-2.6 149 23
50 135 131 —-2.5 168 25
100 148 145 —2.4 188 27
250 250 250
225 (@) Near future: 2021-2040 225 (b) i future: 2041-2060 228 (€)  Far future: 2081-2100 A
200 200
175 175
€
£E1s0 150
3
£125 125
i
100+ 100;
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Fig. 9. Projected rainfall values for return periods and SSP2-4.5 and SSP5-8.5 for the near future (a), mid-future (b), and far future (c).

Table 5
RX1day rainfall scenarios and flood hazard.
Event Nablus rainfall Tulkarm rainfall Jenin rainfall Inundated area (km?)
(mm) (mm) (mm)
2013 flood 106.7 89.0 81.5 21.84 (FastFlood)
17.39 (HAIL-
CAESAR)
Historical 1 in 100-year 148 123.4" 113.0° 23.17 (FastFlood)
17.94 (HAIL-
CAESAR)
1 in 100-year mid-future (MPI-ESM1-2-HR model, SSP2-4.5 205 171.0° 156.6" 26.84 (FastFlood)
scenario) 21.41 (HAIL-
CAESAR)

@ Rainfall values were derived as a proportion of Nablus’s rainfall according to the 2013 rainfall event.

where the spectral change in vegetation post-flood was clear. Within built-up areas, the deposition of sediment could be used to derive
information on flood extent if it had sufficient contrast with the adjacent landcovers [71]. The lack of apparent deposition and sup-
porting field observations, precluded this in our study. Additionally, dynamic flood effects, including arrival time, flow velocity, and
depth, could also be better represented by physics-based flood models if gauging station validation data were available. These factors
are key to more accurately assessing potential damages to agricultural land and buildings for example [77,78].

In studying the impacts of climate change, GCM projections are a primary source of uncertainty [79], which affects the successive
steps including bias correction and rainfall frequency analysis [17]. Selecting models that accurately represent regional-scale climate is
crucial for reducing uncertainty in future climate projections [80]. This study used GCMs recommended by Hamed et al. [59] and
Mesgari et al. [60], which evaluated 11 climate models (CMIP5 and CMIP6 versions) over the MENA region and assessed the
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Fig. 10. HAIL-CAESAR and FastFlood flood inundation for historical and future (MPI-ESM1-2-HR model, SSP2-4.5 scenario) 1 in 100-year RX1day
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inundated area, and the area of cropland within the inundated area. Percentages are with respect to the total number, length, or area of the features
for the study area. Building footprints are from Microsoft [56], the road network is from OCHA [57], and the cropland area is from ESA WorldCover
V200 [55].

performance of 11 CMIP6 models over the MENAP region, respectively. The inter-model variation can be seen in the return period
rainfall values (Table 4). GFDL-ESM4 projects mainly negative precipitation changes with respect to historical values, while
MPI-ESM1-2-HR projects increases of up to 39 %. Using an ensemble of GCMs, and models representative of Palestine’s weather
patterns could help reduce uncertainties in the climate change projections. For example, the flood hazard modelling study of Shrestha
etal. [17] applied climate models representative of Nepal (warm-dry, cold-dry, warm-wet and cold-wet conditions), determined using
the envelope-based approach by Lutz et al. [81]. Similarly, Richardson [82] followed a process-based evaluation based on McSweeney
et al. [83], who used realistic models with maximum possible range of changes to determine the climate models generating suitable
information about future changes in extreme precipitation in South Asia. Downscaling methods add to the uncertainty of future climate
projections [79]. Quantile mapping, which has showed better performance for bias correction of stationary data (Heo et al., 2019) was
used in this study to correct the systematic biases of the GCMs. Here, the distribution of observed data is transferred to the projected
values. Therefore, the quality of observed data also influences the biases in future climate uncertainty.
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The rainfall recorded on the January 8, 2013 (106.7, 89.0, and 81.5 mm of rainfall for Nablus, Tulkarm, and Jenin rain gauges
respectively) corresponded to a historical return period of between 1 in 5 (89 mm) to 1 in 10 years (103 mm), whereas a 1 in 100-year
rainfall event (RX1day: 148 mm) from historical data (1985-2014) could become 205 mm in the mid-future (2041-2060). We note
that a Generalised Extreme Value analysis across current and future time windows would provide a more robust characterisation of
extremes, including multi-day events, but this ideally requires a longer observational precipitation record and was beyond the scope of
this study. Flood models under a mid-future precipitation scenario (MPI-ESM1-2-HR) suggested a 23 % (4 km?) greater inundation
extent compared to the 2013 event, which could affect over 3000 buildings and 100 km of road network (Fig. 10). In comparison,
OCHA [45] reported damage to 1570 houses during the January 213 flood event, although it is not clear if the strong winds associated
with the winter storm contributed to this count. Flash flooding affects built infrastructure and causes damage and erosion to cropland.
However, ponded water, which was apparent in the 2013 flood and our simulations, presents an opportunity for groundwater
recharge. Groundwater aquifers sustain populations and agricultural activity in the West Bank but their recharge is projected to decline
with climate warming [84]. Issues with water quality linked to groundwater recharge are also a concern since inadequate waste water
management and runoff from agricultural areas is linked to observations of increased nitrate contamination [85,86]. Our flood hazard
assessment provides the first high-resolution mapping for the region that can support urban planning and infrastructure development
to manage storm water runoff and improve water security. Whilst this analysis acts to bound a range of flood hazard scenarios under
current and future climate, future climate scenarios remain uncertain in the models we evaluated.

6. Conclusions

In this study, we used pre- and post-flood satellite imagery from an extreme rainfall event in January 2013 to map the associated
inundation extent and impacts in the northern West Bank, Palestine. These extents were used as reference data to evaluate the per-
formance of three flood models and quantify current and future flood hazard. Climate analysis revealed that the January 2013 rainfall
corresponded to a historical return period of between 1 in 5 to 1 in 10 years. The patterns of future precipitation in the region are
uncertain, although more frequent precipitation extremes are likely to increase the risk of flash flooding. Our analysis showed thata 1
in 100-year rainfall event (RX1day: 148 mm) based on historical data (1985-2014) could become 205 mm in the mid-future
(2041-2060), which could cause 23 % (4 km?) greater inundation compared to the 2013 event. Buildings, the road network, and
agricultural land are particularly susceptible to flooding and infrastructure development will be required to manage storm water
runoff, particularly where channels intersect the road network. Our study demonstrates the value of high-resolution satellite obser-
vations to observe flood extents, which then supports model calibration in data scare regions lacking other hydrological observations.
Whilst the physics-based HEC-RAS flood model displayed the best performance, the FastFlood model was able to produce a similar
inundation pattern and flood depths over 300 times faster using standard computing resources, which provides greater flexibility for
deployment within an urban planning decision support environment.
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