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Abstract

Global urbanization is driving high volumes of agricultural and food waste,
creating an urgent need for sustainable and effective technologies to
convert biomass into valuable products. This study explores the conversion
of palm waste into cellulose microfibers (CMF) using Ammonia Fiber
Expansion (AFEX) followed by acid hydrolysis, with a focus on structural
characterization, thermal stability, and reaction kinetics compared to raw
material.

The resulting CMF exhibited elongated, uniform fibers with smooth
surfaces, with lengths of 0.1-3.0 mm, and diameters of 5-20 pm. X-ray
analysis revealed a significant increase in the carbon/oxygen ratio, from
1.8+ 0.2 in raw palm leaves to 2.7 £0.3 in CMF, indicating enhanced
carbon content due to dehydration and reduction of carbonyl groups. FTIR
spectra confirmed effective removal of lignin and hemicellulose after
treatment, further supporting this chemical transformation.

Thermal analysis demonstrated that CMF possesses higher heat content
than raw leaves, suggesting its potential for energy-related applications.
TGA showed that CMF decomposes at slightly higher temperatures,
indicating improved thermal stability. Isoconversional Kkinetic analysis
using the Vyazovkin Nonlinear (NLN) and Kissinger-Akahira-Sunose (KAS)
methods revealed variable effective activation energies (£y), consistent
with a complex degradation mechanism. Overall, CMF displayed lower Ey
values than raw biomass, especially at early and mid-reaction stages.

Kinetic modeling at 50% conversion showed a markedly higher pre-
exponential factor (Aq) for raw leaves (2.8x10'3 s=') compared to CMF
(7.4x10° s71), reflecting structural alterations from treatment. Both raw
and CMF samples exhibited negative activation entropy (AS*) values of -
237.7 and -240.3 Jmol-t' K-, respectively, suggesting greater molecular
order in activated complexes. The enthalpy of activation (AA*) was
149.7 £3.9 k] mol-! for raw leaves versus 120.4+3.9 k] mol-! for CMF,
Gibbs free energy of activation (AG*) was slightly higher for raw leaves
(297.0£3.9 k] mol~?!) compared to CMF (269.4+3.9 k] mol—!), primarily due
to differences in AA*. These kinetic parameters are crucial for any future
implementation of palm leaves conversion into CMF at the industrial scale.
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Introduction

The accelerating pace of urbanization, driven by population growth and
socioeconomic changes, has placed immense pressure on global food
production and supply chains. This escalation results in the accumulation
of vast quantities of agricultural waste, compounded by social habits such
as the disposal of food leftovers. Although much of this waste is inherently
biodegradable, the 4R concept (reduce, reuse, recycle, and repurpose)
necessitates the development of innovative and scalable technologies that
transform agricultural waste into valuable resources [1-3].

Despite efforts made by many countries to manage and recycle
agricultural waste, open burning remains the most dominant method of
disposal, particularly in densely populated areas such as China, India, and
Africa, as well as in many other nations [4, 5]. Open burning is a significant
contributor to air pollution, releasing hazardous pollutants including
greenhouse gases (GHGs), particulate matter (PM), and various toxic
chemicals [6, 7].

Among various sources of agricultural waste, palm trees are considered a
major contributor due to their extensive cultivation and their importance
in palm oil production. According to the Food and Agriculture Organization
(FAO), there are over 100 million date palm trees worldwide, producing
more than 10 million metric tons of dates annually (as of 2024) [8]. The
Middle Eastern countries contribute between 60 and 70% of the global
date production, with Egypt, Saudi Arabia, and Iraq being the leading
producers [8, 9]. With this in mind, palm cultivation generates massive
amounts of waste, including fruit bunches, trunks, kernel shells, leaves,
and husks. These materials, which are often discarded or burned,
contribute significantly to environmental pollution [9, 10]. This motivated
us to explore the conversion of palm waste into valuable materials,
particularly microcellulose, through an innovative technology based on
Ammonia Fiber Expansion (AFEX).

Since the time of Egyptian papyri, cellulose-based products have played a
central role in the recording and transmission of knowledge [11]. One of
these products, microcellulose, is a flexible, low-cost, biopolymer that is
both biodegradable and non-hazardous. Microcellulose occurs in different
shapes and has substantial applications in high-performance composites
and other advanced applications. Microcellulose exists in different
polymorphs, including cellulose nanocrystals (CNC) and cellulose
microfibers (CMF), each with distinct structural characteristics and
properties[12-15]. CNC can be described as crystalline nanoparticles with
a highly ordered structure, while CMF are longer, more flexible, and
entangled fibers.

One significant advantage of microcellulose materials is that they can be
easily functionalized to enhance their properties. This can be achieved by
modifying or adding functional groups to their surfaces using various
techniques. Chemical modification of CNC and CMF improves their
stability under thermal, chemical, and mechanical stress. Functionalized
microcellulose materials find applications in drug delivery, wound healing,
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tissue engineering, and energy storage in supercapacitors and batteries
[16-19]. Additionally, microcellulose plays important roles in
biodegradable packaging, composites, water filtration and purification
products, cosmetic and personal care items, and environmental
remediation [12-14].

While several technologies exist for producing microcellulose from
agricultural waste, such as acid hydrolysis, catalytic pyrolysis, and
enzymatic treatments, Ammonia Fiber Expansion (AFEX) offers distinct
advantages [20]. AFEX, also known as ammonia steam explosion [21], is a
novel pre-treatment method that utilizes ammonia to break down the
lignocellulosic structure found in leaves structures (such as palm leaves in
this study), enhancing their reactivity for subsequent steps (e.g., acid
hydrolysis) [22, 23].

The term "expansion" refers to the critical step in AFEX, which involves
the sudden release of pressure at the end of the reaction. In a typical AFEX
treatment, the biomass is mixed with ammonia in a 1:3 ratio under high
pressure (between 7 and 10 atm). As the mixture is heated, ammonia vapor
increases the internal pressure to 10-20 atm, depending on the
temperature. At the end of the process, pressure is quickly released by
opening the vent valve, creating an explosive discharge that breaks down
lignocellulosic, forming nanocrystals or microfibers. Additionally, AFEX is
advantageous because it requires simple washing steps, thus reducing
waste generation and processing costs [24, 25].

In this context, Thermogravimetric Analysis (TGA) and Differential
Scanning Calorimetry (DSC) play a crucial role in revealing the
transformations that raw materials undergo during treatment to produce
the final product; in this case, CMF [20, 26-28]. These techniques are
essential for tracking thermal stability and decomposition behavior.
Moreover, isoconversional methods applied to TGA data allow for the
determination of effective activation energies, which are critical for
assessing thermal decomposition and understanding its kinetics [27, 29-
31]. DSC can also be used to evaluate the thermal content of materials, as
it directly quantifies the heat released or absorbed during the process,
enabling accurate measurement of reaction enthalpies [27, 32].

The main goal of this study is to convert palm leaves into CMF using AFEX
followed by acid hydrolysis. As the findings of the study indicate, the
process resulted in the production of high-quality CMF. The formed CMF
were characterized by FTIR and SEM coupled to EDX. The study also aims
to evaluate the thermal stability and heat content of the produced CMF in
comparison to the virgin materials. This is accomplished using TGA and
DSC. The reaction kinetics were analyzed using advanced isoconversional
kinetic methods, and a reaction model was developed to evaluate the pre-
exponential factor (4) and the Kinetic triplet (A/#, AS*, and AG).

Experimental

Materials and Instruments

Palm leaves(Phoenix dactylifera - Palmae) were collected under
authorization (see Ethics approval and consent to participate section) from
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a local farm in the Jericho region, Palestine. The plants were identified by
a pharmacognosist Prof. Nidal Jaradat and voucher specimens were
deposited at the Natural Products Laboratory of the Faculty of Medicine
and Health Sciences at An-Najah National University and kept under the
herbarium voucher specimen number: Pharm-PCT-1842 [33, 34]. Ammonia
solution (NH4OH, 25%) was purchased from Riedel-de Haén (Seelze,
Germany). Sodium hydroxide (NaOH, =97%), hydrogen peroxide (H202,
30%), and hydrochloric acid (HCI, 37%) were obtained from Sigma-Aldrich
(St. Louis, Missouri, USA). Sodium hypochlorite (NaOCl, 10-15%) was
supplied by Alfa Aesar (Haverhill, Massachusetts, USA). Milli-Q purified
water was used throughout the experiments.

All solid samples in this study were weighed using MRC analytical balance
ASB-310-C2-V2 (MRC). Solution pH was recorded by JENWAY 3510 pH
meter (Cole-Parmer, USA). Infrared spectra were collected using a
Fourier-transform infrared spectrometer (Thermo Scientific Nicolet iS5
FT-IR, Waltham, Massachusetts, USA). A stainless-steel reactor (1.0-L)
equipped with a heating mantle (BMD 300, Buchiglasuster, Uster,
Switzerland) was used for the AFEX experiments.

The TGA/DSC experiments were performed using a simultaneous thermal
analyzer (SDT 650 TA Instruments, Waters LLC, New Castle, USA). In such
analysis, the relative weight of the materials and the heat flow were
measured simultaneously while raising the temperature. Each TGA run
was performed by loading a small sample of each material into an open
alumina crucible. The sample size was kept to a minimum ([J5 mg) to avoid
diffusion and mass transfer limitations [35, 36]. The sample was then
heated to a temperature of 800 °C under continuous air purging at a rate
of 100 mL min-!. Various heating rates were performed (10, 15, 20, and 25
°C min'!) for each sample in discrete runs. Both the mass change and heat
flow were measured and recorded simultaneously during the run.

The morphological textures of the materials were examined using a
Scanning Electron Microscope (SEM) of Phenom ProX (ThermoFisher
Scientific, USA) equipped with an energy dispersive X-ray (EDX) analyzer.
A specimen of each sample was initially sputtered with a carbon nanolayer
and then loaded onto the instrument separately. Thereafter, a beam of
energetic electrons (10-15 kV) was focused on the held sample, generating
SEM images. Surface elemental analysis of the materials was performed
using the SEM instrument in Energy-Dispersive X-ray (EDX) mode.

AFEX Experiments

The synthesis procedure of the CMF is shown in Fig. 1. The raw palm
leaves were first dried in an oven at 60 °C for 24 h to remove water
content. Using a crusher, the dried palm leaves were milled into granules
ranging from 1 to 10 mm in size. For the AFEX reaction, the powdered raw
palm leaves were placed in a 1.0-L stainless-steel high-pressure reactor.
The biomass-to-ammonia ratio was maintained at approximately 1:3 (w/w).
Approximately 15 grams of the palm leaves powder were weighed, and 100
mL of distilled water along with 200 mL of 25% NH4,OH were added to the
reactor vessel. The reactor lid was securely fastened, and the entire
reactor assembly was placed in a heating mantle.
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The reactor was heated to temperatures ranging from 80 to 90 °C, and the
pressure (due to ammonia gas) required to keep ammonia in its liquid state
during the treatment ranged between 7 and 10 atm. These conditions were
maintained for 2 h. The temperature and pressure were carefully
controlled and monitored during the reaction. After the treatment, the
mixture was gradually cooled to around 30 °C. Then, the reactor was
opened to relieve the pressure. As mentioned earlier in the introduction,
this is a critical step that allows the biomass fibers to expand, increase
their surface area, and become more reactive for subsequent steps.

The treated palm leaves powder was then washed thoroughly with DW to
remove residual ammonia. The washed palm leaves powder was placed on
trays and dried in an oven at a low temperature (40-60 °C) until their
moisture content was reduced to less than 10%. The percent yield for this
step was ~ 45% (Fig. 1), in agreement with previous studies [18, 37, 38].

Ammonia Fiber Expansion E]
AFEX
L,
,8[, Bleaching “
S EE— .
1% NaOCl| ~ 45% Yield
NaOH Afex-treated
— material
25% NH,OH pH>10
Ammonia 80 to 90°C 03%HO
7-10 bar a2
) - @ow i ’1'2 —>
Drying/Grinding ;’::J;J 17 1 MHC
- @owades T Bleached Washing/ =77~
Raw saild Cellulose Fibers orying ~ Final
Palm leaves powder Aqueous CMF
Phase
~ 70% Yield

Fig. 1: Schematic representation of the experimental procedure to
prepare cellulose microfibers (CMF) out of raw palm leaves using AFEX
technology.

Cellulose Extraction

The AFEX-treated palm leaves were sieved and finely milled into a uniform
size range of 1 to 5 mm. The bleaching process was done by mixing ~ 50
g (collected from several runs) of the treated sample with 1.2 L of 1%
NaOCl (wt%), 1.0 g of NaOH, and 200 mL of distilled water, as illustrated
in Fig. 1. The pH was adjusted to 10-11 to optimize the bleaching efficiency
[38]. The mixture was then stirred using a mechanical stirrer at 25 °C for
48 h, as previously reported [38]. The solid white cellulose obtained from
the bleaching solution was filtered and thoroughly rinsed with distilled
water until a neutral solution (pH ~7) was achieved.

The filtered product was treated with 10 mL of 0.3% H,O, for 1 h at room
temperature (23 °C). H,O; acts as an oxidizing agent that removes lignin
and colored impurities under alkaline conditions, producing bright and
pure CMF. H,0O, also acts as a stabilizer, preventing premature peroxide
decomposition by chelating metal ions and maintaining controlled
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oxidation, while a wetting agent enhances fiber penetration by increasing
surface wettability and separation [17].

A second filtration was applied to extract the treated cellulose from the
H20:2 solution. The cellulose was thoroughly rinsed with distilled water to
ensure all residual chemicals were removed. The purified cellulose was
then dried at 80 °C until it reached a constant weight. After drying, the
cellulose was allowed to cool to room temperature and subsequently
transferred to a desiccator.

After bleaching, the obtained CMF underwent acidic hydrolysis by mixing
2.5 g of bleached leaves with 500 mL of 1 M HCI and agitating the mixture
at 25 °C for 2 h. The CMF was then washed 3 to 5 times with distilled water
to remove residual acid and dried at 60 °C until a constant weight was
achieved [38]. The percent yield for this step was ~70%.

All by-products, wastewater, and chemicals were handled and disposed of
according to local regulations and standard laboratory safety procedures.

Isoconversional Analysis

Isoconversional methods, often referred to as model-free methods, are
kinetic analysis approaches that determine the apparent activation energy
(Ey) as a function of the conversion degree (a) without assuming any
specific reaction model [26, 27]. Such methods are useful for analyzing
complex or multi-step reactions, as in the case of palm Ileaves
decomposition. Isoconversional methods can reveal how the activation
energy changes with conversion and thus provide insight into possible
mechanism shifts. These methods are based on the principle that, at a
constant a, the reaction rate depends only on the temperature and not on
the heating rate or reaction pathway temperature [26-30]. By conducting
experiments at several heating rates (typically 3-5) under otherwise
identical conditions, £y values can be estimated as a function of a, enabling
a more accurate description of the overall reaction kinetics [26, 27].

In this context, the degree of conversion («) is defined as:
Mo-m  Am
Mo -Ms  AMyor

(1)

a =

where my is the initial sample mass, mris the final mass, and mis the mass
at a given time. In eqn. (1), Vyazovkin and coworkers have developed a

technique to determine £, as a function of conversion (@) based on a
nonlinear (NLN) numerical integration of the rate equation of the

Arrhenius form (k, = Ae®/RT)  without assuming a reaction model.
Specifically, the method solves for the following equation [39, 40].

gla) = 25N JIELTi)] ()

where g(a) is the integral form of the reaction model, A, is the conversion-
dependent pre-exponential factor, Ti(t) represents the set of

temperatures at which a specific conversion fraction [] is reached during
the £t experiment, and Ris the universal ideal gas constant.
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The main assumption in Vyazovkin’s NLN method is that the reaction
model 9g(a) which is independent of the heating rate [26, 39].
Consequently, for a set of 7 experiments performed at different heating
rates, Ti(t)), Eq can be determined at any specific a by identifying the value
that minimizes the following function

—_ n n J[Eceri(tcx)]
D(Ey) = Z=1Z¢lm (3)

where J[Eq,Ti(ty)] stands for the integral ftt“_ A exp(- R'IEO((t) )dt. In this study,

the integral was evaluated numerically based on experimental heating
data divided into small time steps using Mathematica [41]. More details
on the use of the NLN method can be found elsewhere [39, 40].

Another widely used integral method is the one developed by Kissinger-
Akahira-Sunose (KAS), which is based on the following equation [42, 43]:

Y L Y o
12, - "\ Ea RTq,i

Here, g(a) is the same as defined earlier. /j; represents the heating rate,
defined as B; = dT/dt for linear non-isothermal reactions [26, 27, 30]. The
index (i) corresponds to various temperature programs, T; is the
temperature at which the (a) is achieved under the corresponding heating
rate. The E, can then be estimated from the plot of the left side of eq. (4)
against 1/T,; at a given o. These E, values are subsequently plotted

against the a values to represent the isoconversional analysis. All graphs,
mathematical fittings, and integrations were done using Origin® [44].

-Ing(a) - (4)

Differential Scanning Calorimetry (DSC) Analysis

DSC is a critical thermal analysis technique used to measure heat flow
changes as materials undergo transformations at varying temperatures. It
provides both qualitative and quantitative data on processes such as
melting, crystallization, and phase transitions [32, 45].

When there are no physical or chemical changes at a particular
temperature T, the heat absorbed or released by the sample can be
expressed by the equation [46]:

ap = Cp AT (5)

where g, represents the heat flow, G, is the specific heat capacity at
constant pressure, and AT = T—T, denotes the temperature change. This
relationship is useful as it allows for the estimation of the amount of heat
released or absorbed during a given event in the reaction. This can be
determined from the area under the curve when plotting g, (heat flow)
against temperature, provided the reaction takes place at constant
pressure.

Assuming that C, remains constant within the relevant temperature range,
the relationship between temperature and time can be represented as
follows [46]:
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T =Ty, + 6t (6)
where 0 represents the scan rate. Substituting this into eqn. 6 gives
AT = 6t (7)

Thermal transitions cause significant changes in the heat flow signal.
During endothermic processes, such as melting, sublimation, or
decomposition, the sample absorbs heat, leading to a decrease in the heat
flow. In contrast, exothermic processes like oxidation, crystallization, and
solid-solid transitions release heat. Depending on the instrument settings,
either an upward or downward peak is observed in each case [32, 45].

Finally, the slope of the baseline line before a transition peak is indicative
of the heat capacity of the substance [46]:

N =c, (8

This relationship is important for determining the thermal stability and
heat capacity of materials, including the palm leaves samples. The
enthalpy change related to thermal transitions quantifies the energy
required for a phase change to occur. Understanding this energy
measurement is essential for evaluating the material's stability under
varying thermal conditions.

3. Results and Discussion

3.1 Material Characterizations

The SEM images presented in Fig. 2 show the structural differences
between the raw palm leaves and the synthesized CMF at the microscopic
level. The raw material (a and b) exhibits the typical structure of plant
fibers with a rough and irregular surface, containing numerous pores. The
produced CMF (c and d) appear as elongated, uniformly shaped fibers with
smooth surfaces. It is also interesting to observe that many of these fibers
are bundled into larger strands. The length of individual fibers ranged
from 0.1 to 3.0 mm, with diameters between 5 and 20 pm. The diameter of
the obtained CMF is close to what was obtained by Giri et al. (~5 pm) [45],
and Abzan et al. (10-15 pm) [47]. However, the fibers produced in this
study exhibited substantially greater lengths (0.03-0.3 mm for Giri et al
[45]. The size of the obtained CMF suggests that these fibers have
potential for use in future applications, particularly in the paper and
pharmaceutical industries [12-14]. Further comparison between the raw
palm leaves and the produced CMF in this study is shown in Table 1.

Table 1: A side-by-side comparison of raw palm leaves versus the obtained
CMF.

Property Raw Palm CMF
leaves
C/O ratio 1.8 £0.2 2.8 0.3
Microstructure Irregular Elongated fibers
fibers
FTIR Bands (cm™1)
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1600-
1700
1000- C-0 Weaker
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1000- Minor Reduced
1600
DSC area (a.u) Lower energy | Higher energy
content content (3411)
(3107)
Activation energies Higher Lower
(Ey) k] moll
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The EDX analysis shown in Fig. S1-S6 in the supplementary materials
shows differences between raw and treated palm leaves. In particular, it
was observed that the carbon/oxygen ratio (C/O) changed notably after the
treatment. Palm leaves are mainly composed of lignin (32.5%),
hemicellulose (23%), and cellulose (44.5%) [48, 49]. The C/O ratios in
cellulose, lignin, and hemicellulose are 0.75, 2.1, and 0.95, respectively.
According to EDX analysis, the raw material had an average C/O ratio of
1.8+0.2, which increased to 2.8 = 0.3 after the AFEX/bleaching treatment.
The carbon ratio in the synthesized CMF exceeds that of any of the three
components.

This increase likely reflects real chemical restructuring rather than an
analytical artefact. The combined AFEX and acid hydrolysis treatment can
promote dehydration, decarboxylation, and condensation reactions,
consistent with known acid-catalyzed sugar degradation mechanisms.
AFEX pretreatment increases accessibility and reduces crystallinity,
facilitating these reactions during subsequent acid hydrolysis. Notably,
SEM-EDX probes a subsurface region (typically 0.3 pm to a few
micrometers), providing insight into near-surface composition rather than
just the outermost layer.

The elevated carbon content in the synthesized CMF suggests enhanced
thermal stability, conductivity, and heat capacity process [11, 48, 50, 51],
as discussed in the following sections.

10
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Fig. 2: SEM images at different magnifications of a-b) raw palm leaves, and c-d)
cellulose microfibers (CMF). EDX measurements are provided in the Supplementary
Materials.

The above findings are consistent with our observations from the FTIR
analysis. Fig. S2 provides further insights into the chemical changes
induced by the treatment of raw palm leaves. The FTIR spectrum of the
raw palm leaves (Fig. S2-a) shows a broad O-H stretching band (~3300-
3500 cm™?), indicative of water content and/or hydrogen-bonded hydroxyl
groups, which are characteristic of the hydroxyl-rich structure of cellulose
and hemicellulose [18]. Additionally, two prominent bands at 2918 and
2850 cm™! are observed, corresponding to C-H stretching vibrations in
alkanes, aldehydes, or carboxylic acids [18]. The presence of carboxylic
acids is further supported by a band at 1633 cm~!, which falls within the
1600-1700 cm™?! region typically associated with carbonyl (C=0) groups.
This band strongly suggests that the raw material is rich in lignin, as lignin
is known to contain abundant conjugated carbonyls [18, 48, 49, 51].
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The FTIR spectrum of the AFEX-treated material (before bleaching) is
shown in Fig. S2-b. The signal intensity is notably enhanced compared to
that of the raw material, with pronounced bands in the 1000-1600 cm™!
region. These changes reflect the chemical modifications to the plant
structure resulting from ammonia treatment under high pressure. The
bands in this region are indicative of the formation of various nitro,
carbonyl, and aromatic functional groups. Specifically, bands in the 1000-
1200 cm™! range correspond to C-O stretching vibrations, which are
characteristic of the polysaccharide backbone of cellulose and
hemicellulose, confirming the presence of glycosidic linkages. This is in
agreement with the CMF characterization reported by Bahloul et al. and
Sajid et al. [17, 52].

Finally, Fig. S2-c shows the FTIR spectrum of the CMF produced after
bleaching the AFEX-treated samples. The intensity of most bands has
either diminished or disappeared entirely, particularly those in the 1600-
1700 cm~* and 2800 cm~?! regions. This observation suggests the effective
removal of lignin and hemicellulose during the bleaching process. These
results are in excellent agreement with our conclusion that bleaching
effectively removes oxygenated functional groups, thereby enriching the
carbon percentage in the sample. This finding highlights the efficiency of
the treatment process in significantly increasing the carbon content of the
final product.

3.3 DSC Analysis and Heat Content Assessment

The DSC thermograms for the raw material and the synthesized CMF are
depicted in Fig. 3. The data were fitted at two heating rates of 10 and 25
°C min! to ensure a fair comparison. The thermograms show distinct
endothermic peaks at around 350 and 400°C. The first peak agrees well
with the reported thermal degradation temperatures (Tq) of the CMF [18,
53]. As previously described in the DSC analysis (Section 3.5), it is possible
to estimate the amount of heat in DSC curves by calculating the area under
the curve of ¢, against temperature. Using Origin ® software package
[44], the integrated area under the curves and the corresponding numbers
are shown in Fig. 3 in arbitrary units. The CMF exhibits a higher heat
content than the raw material under identical conditions. The DSC analysis
was conducted at three different heating rates, and the previous
observation remained consistent. This can be attributed to the higher
carbon content in the bleached CMF, which contributes to its greater heat
value compared to the raw material [11, 51]. This increase in heat content
makes the CMF a potentially valuable material for energy-related
applications, such as biofuels or energy storage, where a higher calorific
value is desirable.
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Fig. 3: DSC curves for raw and bleached palm leaves at a) 10 °C min!, b) 15 °C min, c¢)
20 °C min!, and d) 25 °C min-!.

3.2 Isoconversional Kinetics

Fig. 4 illustrates the TGA thermograms for the raw palm leaves (a) and the
synthesized CMF (b), under air flow of 100 mL min-!, in the temperature
range of 180-720 °C and at different heating rates of 5, 10, and 25 °C min-
1. As seen, the sample temperature increases at the set heating rate. This
behavior suggests that the decomposition of palm leaves is kinetically
controlled, as the process depends not only on temperature but also on
reaction time, which is influenced by the heating rate. The derivative
thermogravimetry (DTG) curve (blue) for raw palm leaves exhibits three
distinct peaks at approximately 260, 410, and 630 °C, whereas for CMF,
four peaks appear at higher temperatures of 360, 460, 530, and 680 °C.
These observations reflect the structural and chemical modifications that
the material has undergone during thermo-oxidative decomposition.

Upon comparing the thermograms of raw palm leaves and CMF, it is
evident that CMF begins to decompose at a slightly higher temperature.
This difference, along with the distinct decomposition profile, is attributed
to variations in composition and thermal reactivity between the two
materials. The higher onset temperatures (Tonset) Observed for CMF
suggest enhanced thermal stability, which can be attributed to the
increased carbon content, as mentioned earlier. This finding is also in
agreement with our subsequent DSC analysis.
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Fig. 4: TGA curves for a) raw palm leaves and b) cellulose microfibers (CMF), under air
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The isoconversional analysis of the TGA data was performed as outlined in
the previous section. As reported, applying the isoconversional method
requires using 3-5 heating rates, where the curves should be well-
separated [26, 27]. Fig. 5 shows the extent of conversion («) as a function
of temperature at different heating rates for both the raw palm leaves and
CMF. The curves demonstrate clear separation within almost the entire o
range between 0.05 and 0.9. However, the curves for CMF demonstrate
areas of overlap around 0.9 due to the complex reactions taking place in
the region. Therefore, the isoconversional analysis was done for the full
range between 0.05 and 0.9 for the raw material, and over the same range
for CMF, except for a between 0.85 and 0.95.
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Fig. 5: The conversion degree () as a function of temperature at varying heating rates
in the presence of air flow of 100 mL min-! for: a) raw palm leaves and b) cellulose
microfibers (CMF).

Following the KAS method, plotting In //against 1/T at each value of a, £,
is obtained from the slope of the best-fit line for both raw material and
CMF as shown in Fig S8 (supplementary information section). All linear
fittings were acceptable with R2 > 0.99 (for KAS), and were numerically
optimized to a minimum using nonlinear regression for NLN.

Fig. 5, shows the E, values obtained by the NLN and KAS methods for both
the raw palm leaves and CMF as a function of a. As seen, the E, values
obtained by the KAS method were identical to those obtained by the NLN
method. This observation comes as no surprise, as the KAS method was
developed to solve the same fundamental kinetic equations as the NLN
approach, although using a different mathematical approximation
(linearization against non-linear optimization) [40, 54, 55]. Furthermore,
the KAS method produced nearly identical E, values to NLN, particularly
at low-to-moderate conversions, where the linear approximation in KAS
remains valid [39, 55]. However, minor deviations, as in our case (cf. Fig.
5), may arise at higher a due to the NLN method’s superior handling of
variable activation energies in multi-step processes.

It is noteworthy that the E, values obtained in this study for CMF (100-
150 kJ-mol-') were lower than those reported by Barud et al for
commercial microcrystalline cellulose, which ranged from 175 to 185
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kJ-mol-* [56]. Barud et a/ employed the Capela-Ribeiro isoconversional
method in their study.

The trend shown in Fig. 6 indicates that the £y values vary throughout the
reaction, indicating a switch in the reaction pathways. This variation
reflects the presence of complex reaction mechanisms [29, 30, 57]. Also,
the figure shows that the £, values for the reaction of CMF are lower than
those obtained for the raw palm leaves, particularly during the initial and
middle stages of the reaction (up to o=0.7, T=450 °C). Under such
conditions, the thermal degradation of organic compounds dominates over
oxidation, as the latter requires higher temperatures [30, 58, 59].

As shown in Fig. 6 the E; values exhibit a sharp increase at higher
conversion levels («>0.75), corresponding to temperatures above 450 °C.
This spike coincides with the second DTG peak observed for both the raw
palm leaves and CMF (see Fig. 2). Notably, the CMF displays multiple DTG
peaks at elevated temperatures, along with a distinct overlapping
degradation region around 550 °C. These observations suggest that the
material undergoes a complex oxidation process at this stage, likely
involving the oxidation of more stable intermediate products formed
during the primary degradation phase at lower temperatures.
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Fig. 6: The effective activation energy profiles (E) for the oxidative decomposition of
palm leaves and CMF under air flow between 120 and 690 °C using a) the NLN and b)
KAS methods. Standard deviations of E, values were in the range of 1-4 k] mol-!. Error
bars are not shown for clarity purposes

3.3 Kinetic modeling and determination of the kinetic triplet

The isoconversional method serves as a tool to identify the reaction model
and determine kinetic parameters, including A,, AH*, AS*, and AG*[28,
29, 35, 57]. The entropy of activation (AS*) is related to the unimolecular
pre-exponential factor A n; by [46]:

Auni = (22T)ess™ R [9]
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here, e is Euler’'s number (2.7183), kg is Boltzmann’s constant, 4 is
Planck’s constant, and R is the ideal gas constant. Rearranging eqn. 9
allows for calculating the entropy of activation AS* [46]:

= _ Ah
AS™ =R (In ekBT) [10]
The y-intercept of the best-fit-line firing of eq. 4 corresponds to In( - %).

Therefore, Aq (Ayni) and AS™ were calculated.

Additionally, the enthalpy AA* and Gibbs free energy AG* of activation
can be derived using the following equations [46]:

E//= AH™ +RT [11]
AG™ = AH™ -TAS ™ [12]
The calculated kinetic parameters are all tabulated in Table 2.

Table 2: Kinetic parameters were determined by combining the KAS equation
with model fitting at a=0.5, for raw and CMF.

Samples Raw CMF

T (°C) 346.7 346.7
Aq (s7Y) 2.8x1013 7.4%x109
AS* (J mol-t K1) -237.7 -240.3
AH* (k] mol-?) 149.7 120.4
AG* (k] mol-?) 297.0 269.4

The kinetic study reveals notable differences between the raw material
and CMF under oxidative conditions, as shown in Table 2. At 50%
conversion, raw palm leaves exhibit a considerably larger pre-exponential
factor (4y) of 2.8 x 1013 s-1, compared to 7.4 x 109 s~ for CMF. This
difference can be attributed to the bleaching procedure, which alters the
molecular structure and reaction pathways, leading to a significant
reduction in A, for the bleached sample. Additionally, the activation
entropy (AS*) values for the raw palm leaves and CMF samples are similar,
measured at -237.7 and -240.3 ] mol~! K-, respectively. The negative AS*
values indicate that the activated complexes possess lower entropy (i.e.,
higher molecular order) compared to the reactants.

Table 2 also presents a comprehensive comparison of the thermodynamic
parameters AH* and AG* for raw and bleached palm leaves under
oxidative conditions. Raw palm leaves exhibit a significantly higher
enthalpy of activation (A/A*) of 149.7+3.9 k] mol!, compared to 120.4 £3.9
k] mol! for the bleached samples. This difference is related to the
dependence of AH* on the activation energy (£,), as described by eq. 12.
The higher A #* for raw palm leaves indicates that more energy is required
to reach the transition state, likely due to the structural complexity and
stronger molecular interactions inherent in the untreated biomass. On the
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other hand, the bleached palm leaves, with their simplified structure,
require less energy for decomposition, as reflected in the lower A 7= value.

Using eq. 12, the Gibbs free energy of activation (A G*) was calculated. The
AG* value for raw palm leaves was 297.0+3.9 k] mol!, while the CMF
sample exhibited a slightly lower value of 269.4 kJ/mol. According to eq.
12, AG* depends on both the enthalpy of activation (AA*) and the
activation entropy (AS*). Since the AS* values for both samples were
similar, the observed difference in AG* can be mainly attributed to
variations in A H*.

The value of AAF* (149.7+3.9 k] mol!) for the raw material is higher than
that for CMF (AAH* = 120.4+3.9 k] mol-!). This suggests that more energy
is required to break down the palm leaves lignocellulosic matrix, which is
more resistant to thermal degradation. In contrast, CMF decomposes more
readily, requiring less energy input for the same process.

Table 3 shows a comparison of the CMF obtained in this study with those
reported in the literature from different tree leaves. The CMF produced in
this study showed high thermal stability, good yield (70%), and relatively
low activation energy of decomposition (100-150 kJ-mol-') compared to
other sources. These characteristics indicate that the CMFs have good
potential for industrial and biochemical applications. With that being said,
future work is needed to scale up the process the industrial level. This
includes handling ammonia at high pressure, the associated safety
requirements, and the capital cost of installing efficient ammonia-recovery
systems. We also note, however, that AFEX remains one of the few pre-
treatment techniques where over 95% of the ammonia can be recovered.
which substantially mitigates both cost and safety concerns at scale [20,
21]. Modern AFEX units already operate with established engineering
controls, making the process manageable and comparable in safety to
other high-pressure processes.

Table 3: Comparison of CMFs from tree leaves and those obtained from
the literature

Name of tree CMF CMF Method Yield | Crystallinity%
leaves diameter | length (%)
(nm) (nm)

Palm leaf (Phoenix | 5-20 0.1-0.3 | AFEX/Bleaching | 70% 75%
dactylifera L.)
were
Banana Plant 2-8 - Alkaline - 65%
Leaves (Musa hydrolysis +
balbisiana Colla) Bleaching
Washingtonia 6 -20.5 Alkaline 39 65%
Palm (Petiole hydrolysis +
fibers) Bleaching
Cherry Plum 0.3-0.6 - Alkaline 19- -
(Prunus cerasifera hydrolysis + 26%
pissardi nigra), Bleaching
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White Mulberry
(Morus alba),
Plane (Platanus
orientalis)
doum tree 3-10 0.45 Alkaline - 76-80%
(Chamaerops hydrolysis +
humilis var. Bleaching
argentea
Wheat Stalk 4.7-5.0 25 = 5 | Alkaline - Crystalline
hydrolysis +
Bleaching
Gluconacetobacter | - - Commercial - 78%
xylinus bacteria
Shrub (Cistus 9,20 - 100 - Alkaline 51,5% | 72.4-81.0 %
ladanifer L. and 15,30 110 hydrolysis +
Erica arborea L. ) Bleaching

Conclusion

The study presented a new pathway to fabricate high-quality cellulose
microfibers (CMF). The nanofibers were produced by first treating raw
palm leaves with AFEX, followed by bleaching and acid hydrolysis. The
novelty of this work lies in the specific application of the AFEX
pretreatment to palm leaves, a highly abundant but underutilized
agricultural residue, which effectively disrupts the lignocellulosic
structure and facilitates the subsequent efficient extraction of CMF.

SEM characterization of the final CMF showed a transition from the
irregular and porous architecture characteristic of raw palm leaves to the
formation of elongated, uniformly contoured CMF (with dimensions 0.1-
3.0 mm in length, and 5-20 pym diameter), often naturally aggregating into
bundles, and exhibiting notably smooth surface topographies.

Further EDX and FTIR analysis confirmed the elimination of lignin and
hemicellulose during the treatment, indicating an increase in the carbon
content in the CMF. This carbon enrichment strengthens the material and
increases its heat value. This chemical purification directly translated to
enhanced material properties: the CMF demonstrated higher thermal
stability and a greater heat content than the raw biomass, as revealed by
TGA and DSC analyses.

The kinetic analysis provided critical insights for future scale-up. The use
of advanced isoconversional methods (Vyazovkin NLN and KAS) revealed
a complex, multi-step decomposition mechanism for both raw and treated
materials. It was found that the effective activation energy values (£y) of
the thermal decomposition of both the raw leaves and the CMF change as
the reaction progresses, indicating a multi-step mechanism. Furthermore,
the Ey values for CMF (100-150 kJ-mol-*!) were lower than those of the raw
material. The high stability, low activation energies, along with our high
yield of 70% and the fact that the reaction follows a very orderly path, give
us a solid practical foundation to scale this process up for industrial use.
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The kinetic modeling also involved the determination of the kinetic
parameters Ay, AS#*, AF¥, and AG*. The entropy of activation (A S#) values
were negative for both CMF and raw material, indicating the formation of
a more ordered activated complex. The enthalpy of activation (A /A#) of the
raw leaves was higher than that for CMF, in agreement with the
experimental £ values. Because AS* for the raw material and CMF were
close, the AG* was enthalpy dependent.

The features of the synthesized CMF make it promising for different
industrial applications, such as the pulp and paper and pharmaceutical
industries and the energy sector. In addition, the kinetic insights gained
provide a foundation for scaling up palm leaves conversion into CMF.
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