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Abstract
Isotope labeling of α-amino acids is a crucial tool for drug discovery and understanding biochemical processes. The goal 
for this work was to develop a fast exchange condition to prepare D-[13C]phenylalanine in a short time with high incorpora-
tion of 13C isotope, which could be translated to 11C-α-amino acid. In this work the exchange reactions on preformed imine 
carboxylate by using [13C]CO2 gave some evidence that the fast exchange to enable direct radiolabeling of α-amino acids, 
using [11C]CO2, could be possible.
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Introduction

Isotopically labeled α-amino acids and their derivatives have 
widespread use in structural and mechanistic biochemistry 
[1], quantitative proteomics [2], absorption distribution 
metabolism and excretion (ADME) profiling [3, 4], and 
as image agents in positron emission tomography (PET) 
techniques [5–7]. The short half-life of 11C (20 min) makes 
the multi-step preparation of 11C-labeled α-amino acids 
targets needed for PET problematic. Current approaches 
are restricted to cyanation/hydrolysis reactions using [11C]
CN– (Fig. 1a) [8], Another approach includes the use of 
[11C]CH3I; an example of this is methylation of methionine 
with [11C]CH3I to get [S-methyl-11C]methionine (Fig. 1b) 
[9–11]. [C1-11C]glutamine or glutamate can be prepared by 
conjugate additions to 11C-acrylates (Fig. 1c) [12]. All these 
methods occur with low to moderate radiochemical yields 
and require time-consuming, multi-step approaches.

In general, the literature methods to prepare isotopi-
cally-labeled enantioenriched α-amino acids depend on 
the insertion of labeled carbon via classical methods, fol-
lowed by resolution [13]. The incorporation of 13/14C into 
the α-amino acids can be done by using classical methods. 

General approaches include the cyanation of electrophiles 
with [13C]CN, followed by hydrolysis [14–16], carboxyla-
tion of organometallic with [13C]CO2 [17, 18], the use of 
C-labeled acetate as a precursor [19, 20], and alkylations 
with 13C-labeled electrophiles [21]. These methods can 
be utilized to prepare enantioenriched isotopically labeled 
α-amino acids via an enzymatic approach after the insertion 
of labeled carbon. The enzymatic approach includes enzy-
matic kinetic resolution, such as acylase [14–16] and the use 
of lyases for stereoselective C–N bond formation [19, 20]. It 
also can be done by using chiral auxiliaries for α-alkylation 
or α-amination [21] and enantioselective hydrogenation of 
enamines [22]. Recently, Lundgren et.al reported that achiral 
aryl aldehyde catalyst can catalyze carboxylate exchange in 
α-amino acids to produce the isotopically labeled racemic 
α-amino acids. They also showed that this methodology can 
be used to prepare racemic 11C-isotopically labelled α-amino 
acids [23, 24]. Then after that they reported that using uryl-
based binol aldehyde receptors catalyst can catalyze car-
boxylate exchange in α-amino acids Fig. 2 [25]. These uryl-
based binol aldehyde receptors are known catalysts for the 
inversion of L-amino acids to D-amino acids via shift base 
intermediate epimerization [26–30].

Lundgren et.al. reported that using uryl-based binol 
aldehyde receptors as catalysts can catalyze carboxylate 
exchange in α-amino acids to prepare 13C and 14C-iso-
topically labelled α-amino acids. Nevertheless, they did 
not demonstrate that this technology is suitable for the 

 *	 Odey Bsharat 
	 obsharat@najah.edu

1	 Department of Chemistry, Faculty of Sciences, An-Najah 
National University, P.O. Box: 7, Nablus, Palestine

http://orcid.org/0000-0002-2375-0790
http://crossmark.crossref.org/dialog/?doi=10.1007/s10967-025-10073-7&domain=pdf


	 Journal of Radioanalytical and Nuclear Chemistry

preparation of 11C-isotopically labelled α-amino acids, as 
the reaction duration was 24–48 h [25]. The short half-life 
of 11C (20 min) makes the multi-step preparation of 11C-α-
amino acid targets needed for PET problematic [31]. This 
question emerges: is it feasible to devise a method for 13C 
labelling of α-amino acids that is time-efficient, utilizes a 
low equivalent of [13C]CO2, achieves high incorporation, 
and ensures good recovery, which could subsequently be 
used for 11C labelling of α-amino acids. Although Lundgren 
et.al reported that using uryl-based binol aldehyde recep-
tors catalyst can catalyze carboxylate exchange in α-amino 
acids with er (enantiomeric ratio) up to 90:10 and 41–92% 
13C incorporation in 24–48 h as shown in Fig. 2 [25]. The 
modification of the reaction conditions is needed to provide 

some evidence that direct radiolabeling of α-amino acids, 
using [11C]CO2, under the fast exchange conditions could 
be possible.

Results and discussion

Lundgren et al. suggested in their previous work that imine 
carboxylates are the intermediates in their mechanistic cycle, 
so the aim of this work was to prepare the imine carboxylate 
salt in a separate step and then subject it to various reac-
tion conditions to get the maximum 13C incorporation in 
the shortest time and by using a low equivalent of [13C]

Fig. 1   Classical meth-
ods for synthesis of 
11C-labeled α-amino acids

Fig. 2   The usage of uryl-based binol aldehyde receptors catalyst can catalyze carboxylate exchange in α-amino acids
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CO2, which could be applicable to direct radiolabelling of 
α-amino acids, using [11C]CO2 [23–25].

Initially, pre-formed imine carboxylate was prepared 
quantitatively by condensation of α-amino acids with uryl-
based binol aldehyde in basic MeOH [32] and examined 
as reagents for carboxylate exchange. Initial screens were 
performed at various temperatures, as can be seen in Fig. 3 
Modified reaction conditions are carried out for the forma-
tion of the Cs-imine carboxylate intermediate by performing 
the reaction at 0.1 M of MeOH to increase the solubility 
of chiral aldehyde, and the reaction was run for 2 h. The 
carboxylate exchange conditions of Cs-imine carboxylate 
were initially carried out for 30 min by using 1.1 equiv. of 
[13C]CO2 and 2.0 equiv. of DBU in 0.05 M of DMSO at 
various temperatures, as can be seen in Fig. 3. The highest 
anticipated 13C incorporation, based on the headspace of the 

one-dram vial, is 60%. At 70 °C, 85% of phenylalanine was 
identified via NMR, with a 22% incorporation of 13C and an 
er of 85:15 (D:L). At 80 °C, similar results were observed. 
To enhance incorporation within the same duration, the reac-
tion was conducted at 90 °C, yielding a slightly increased 
13C incorporation to 26%, but with a reduced er of 73:27. 
Elevating the temperature to 100 °C resulted in a further 
increase in incorporation to 39% and an er of 69:31, as illus-
trated in Fig. 3 Despite achieving a carboxylate exchange 
of 39% 13C at 100 °C, the er was inferior to the normal 
reaction conditions documented by Lundgren et al., which 
reported an er of 90:10, 71% 13C incorporation, and a 65% 
yield with 8.0 equivalents of [13C] CO2 under their standard 
conditions [25].

The next challenge was how to obtain high %13C incorpo-
ration which is close to the equilibrium incorporation which 

Fig. 3   Development of fast conditions for enantioenriched carboxy-
late exchange. 1H NMR yields were determined from crude reaction 
mixtures, using 3-(trimethylsilyl)-1-propanesulfonic acid (DSS) as an 

internal standard. LC–MS analysis was used to determine the crude 
13C% incorporation of the amino acid. The er% was obtained through 
chiral HPLC analysis of the products (General Procedure A)
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is around 60% 13C with er close to that reported in previous 
report which is 90:10 er [25]. The idea was to run the reac-
tion at high temperature to get high incorporation then cool 
it down to get good er. Running the exchange at 110 °C 
for 10 min to get 24% 13C incorporation with 76:24 er, fol-
lowed by a cool-down to 70 °C for another 10 min to get the 
equilibrium ratio of D to L (90:10), 24% incorporation, and 
77% NMR yield. The reaction was carried out at even higher 
temperature which is 120 °C, and this was the best result. 

Running the exchange at 120 °C for 10 min to get 44% 13C 
incorporation with 77:23 er, followed by a cool-down to 
70 °C for another 10 min to get the equilibrium ratio of D to 
L (90:10), 47% incorporation, and 62% NMR yield (Fig. 4).

In summary, to promote faster reactions with [13C]CO2, 
pre-formed imine carboxylates were generated quantitatively 
by condensation of α-amino acids with chiral aldehyde in 
basic MeOH [32] and examined as reagents for carboxylate 
exchange. The best conditions were by running the exchange 

Fig. 4   Development of fast conditions for enantioenriched carboxylate exchange by heating the reaction for the first interval of time then cool it 
down (General Procedure B)
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at 120 °C for 10 min to get 47% 13C incorporation with 77:23 
er, followed by a cool-down to 70 °C for another 10 min to 
get the equilibrium ratio of D to L (90:10), 47% incorpora-
tion, and 62% NMR yield (Fig. 4). As a result of this work, 
the future studies at a level close to that of [11C]CO2 could 
be done, to see if the direct radiolabeling of α-amino acids, 
using [11C]CO2, could be possible to achieve with high enan-
tiomeric ratio (90:10).

Conclusion and outlook

In summary, a modified strategy is reported for the resolu-
tion/isotopic labeling of α-amino acids mediated by using 
a uryl-based binol aldehyde receptor with conjunction of 
[13C]CO2 via reversible decarboxylation/carboxylation event 
of an imine carboxylate intermediate. The method provides 
access to C1-enantioenriched-labeled products in a direct 
and operationally trivial manner in a short time from pre-
formed imine carboxylates. The modification of the reaction 
conditions provides some evidence that the fast exchange 
conditions to enable direct radiolabeling of α-amino acids, 
using [11C]CO2, could be possible. Given the widespread 
use of enantiomerically-labeled α-amino acids in discovery 
science, drug development, and medical imaging, we expect 
this finding to have immediate application. The future stud-
ies at a level close to that of [11C]CO2 will be done.

Experimental

General procedure A and B

General procedure A

Standard reaction using the pre-formed imine from the cor-
responding amino acid and chiral aldehyde:

In an atmosphere-controlled glovebox, amino acid 
(0.10  mmol, 1.0  equiv.), chiral aldehyde (53.8  mg, 
0.10  mmol, 1.0  equiv.), Cs2CO3 (16.3  mg, 0.05  mmol, 
0.50 equiv.), and anhydrous MeOH (1.0 mL) were sequen-
tially added to a dried 1-dram vial charged with a stir bar. 
The vial was sealed with a PTFE-lined cap and removed 
from the glovebox. The reaction was stirred at 70 °C for 2 h 
in an aluminum block, and then the reaction was cooled to 
room temperature. The solvent was evaporated in vacuo to 
isolate the imine salt. Then put under a Schlenk line at 50 °C 
overnight in an aluminum block. The vial was then evacu-
ated and refilled with N2 on a Schlenk line. This cycle was 
repeated 3 times. After the purging cycle, the vial was taken 
back into the glovebox and sodium trimethylsilylpropanesul-
fonate internal standard (DSS) was added, followed by the 
addition of anhydrous DMSO (2.0 mL) and DBU (29.8 ul, 

0.20 mmol, 2.0 equiv.). The vial was sealed with a PTFE-
lined cap and removed from the glovebox. The reaction 
headspace was evacuated (~ 300 mTorr) using a 25-gauge 
needle. The vial headspace was then carefully refilled with 
15 psi 13CO2 through the PTFE-lined cap using a 25-gauge 
needle, until the internal pressure reached ~ 1 atm (requires 
20–60 s, depending on the pressure of the [13C]CO2 tank). 
This provides ~ 1.1 equivalents of (~ 0.11 mmol) 13CO2 
which would result in an equilibrium exchange incorpora-
tion of ~ 60%. The vial cap was then sealed with parafilm 
and electrical tape, and the reaction was stirred (at the corre-
sponding temp) in an aluminum block. Upon completion of 
the reaction (30 min), the vial was cooled to room tempera-
ture. To determine the percent recovery of the amino acid, 
a small aliquot (~ 5 µL) of the reaction was placed in 0.70 
mL DMSO for calibrated 1H NMR analysis, using DSS as 
the reference signal. a small aliquot of the reaction (~ 5 µL) 
was placed in 1.0 mL of 1:1 MeOH:H2O/0.1% HCO2H for 
LC–MS analysis to determine the crude 13C% incorporation 
of the amino acid. The reaction mixture was quenched (at the 
corresponding temp) with 1 ml of 2 M FA then diluted with 
H2O (5 mL). The aqueous layer was then washed with DCM 
(5 × 5 mL). The aqueous layer was lyophilized to remove 
the H2O. The crude mixture was then purified by reverse 
phase chromatography. The er% was obtained through chi-
ral HPLC analysis of the products. The 13C% incorporation 
was obtained through high resolution mass spectrometry 
(HRMS) analysis of the products.

General procedure B

Standard reaction using the pre-formed imine from the cor-
responding amino acid and chiral aldehyde:

In an atmosphere-controlled glovebox, amino acid 
(0.10  mmol, 1.0  equiv.), chiral aldehyde (53.8  mg, 
0.10  mmol, 1.0  equiv.), Cs2CO3 (16.3  mg, 0.05  mmol, 
0.50 equiv.), and anhydrous MeOH (1.0 mL) were sequen-
tially added to a dried 1-dram vial charged with a stir bar. 
The vial was sealed with a PTFE-lined cap and removed 
from the glovebox. The reaction was stirred at 70 °C for 2 h 
in an aluminum block, and then the reaction was cooled to 
room temperature. The solvent was evaporated in vacuo to 
isolate the imine salt. Then put under a Schlenk line at 50 °C 
overnight in an aluminum block. The vial was then evacu-
ated and refilled with N2 on a Schlenk line. This cycle was 
repeated 3 times. After the purging cycle, the vial was taken 
back into the glovebox and sodium trimethylsilylpropanesul-
fonate internal standard (DSS) was added, followed by the 
addition of anhydrous DMSO (2.0 mL) and DBU (29.8 ul, 
0.20 mmol, 2.0 equiv.). The vial was sealed with a PTFE-
lined cap and removed from the glovebox. The reaction 
headspace was evacuated (~ 300 mTorr) using a 25-gauge 
needle. The vial headspace was then carefully refilled 
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with 15 psi [13C]CO2 through the PTFE-lined cap using a 
25-gauge needle, until the internal pressure reached ~ 1 atm 
(requires 20 – 60 s, depending on the pressure of the 13CO2 
tank). This provides ~ 1.1 equivalents of (~ 0.11 mmol) [13C]
CO2 which would result in an equilibrium exchange incorpo-
ration of ~ 60%. The vial cap was then sealed with parafilm 
and electrical tape, and the reaction was stirred (at the cor-
responding temp) in an aluminum block. Upon completion 
of the reaction (10 min), the vial was cooled to 70 °C for 
10 min. To determine the percent recovery of the amino 
acid, a small aliquot (~ 5 µL) of the reaction was placed 
in 0.70 mL DMSO for calibrated 1H NMR analysis, using 
DSS as the reference signal. a small aliquot of the reac-
tion (~ 5 µL) was placed in 1.0 mL of 1:1 MeOH:H2O/0.1% 
HCO2H for LC–MS analysis to determine the crude 13C% 
incorporation of the amino acid. The reaction mixture was 
quenched (at the corresponding temp) with 1 ml of 2 M 
FA then diluted with H2O (5 mL). The aqueous layer was 
then washed with DCM (5 × 5 mL). The aqueous layer was 
lyophilized to remove the H2O. The crude mixture was then 
purified by reverse phase chromatography. The er% was 
obtained through chiral HPLC analysis of the products. The 
13C% incorporation was obtained through high resolution 
mass spectrometry (HRMS) analysis of the products.

Characterization of the products

Prepared according to reported literature procedure [26] and 
isolated in 70% as a yellow solid after purification by normal 
phase column chromatography (7% EtOAc in DCM).

1H NMR (d6-DMSO, 500 MHz), δ 10.30 (s, 1H), 10.22 
(s, 1H), 8.61 (s, 1H), 8.60 (s, 1H), 8.50 (s, 1H), 8.09–8.11 
(m, 1H), 8.05 (d, J = 9.2 Hz, 1H), 7.94 (d, J = 8.2 Hz, 1H), 
7.61 (d, J = 9.2 Hz, 1H), 7.20–7.45 (m, 11H), 6.96–7.05 (m, 
4H), 6.60 (d, J = 8.2 Hz, 1H), 5.13 (s, 1H);

13C NMR (d6-DMSO, 125 MHz), δ 196.9, 154.1, 152.9, 
152.3, 139.6, 139.5, 137.9, 136.9, 136.6, 133.3, 130.1, 
130.0, 129.7, 128.9, 128.7, 128.5, 128.1, 127.2, 126.6, 
124.5, 124.3, 124.0, 123.6, 122.7, 121.8, 120.2, 118.1, 
117.6, 117.5, 117.4, 116.8, 115.7, 70.1;

HRMS (ESI): calcd. for C35H27N2O4 [M + H]+: 
539.1965. Found 539.1973.
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1H and 13C spectra of chiral aldehyde
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Prepared according to the literature procedure [25]. DL-
12C-phenylalanine (33.0 mg, 0.20 mmol, 1.0 equiv.), chiral 
aldehyde ((S)-4A) (107.7 mg, 0.2 mmol, 1.00 equiv.), and 
DBU (59.6 µL, 0.4 mmol, 2.0 equiv.) in DMSO (4.0 mL). 
The reaction mixture was allowed to stir for 24 h. 1H NMR 
yield: 61%. Isolated in 52% yield, er: 88:12, 88% 13C incor-
poration (HRMS) as an off-white solid after purification by 
preparative-HPLC (Agilent Prep-C18 column, 2.5% MeOH 
in H2O, 25 mL/min).

1H NMR (D2O, 500 MHz) δ 7.40–7.38 (m, 2H), 
7.35–7.32 (m, 1H), 7.30–7.29 (m, 2H), 3.93 (m, 1H), 3.23 
(brs, 1H), 3.09 (brs, 1H);

13C NMR (D2O, 125 MHz) δ 175.3, 136.2, 130.3, 130.0, 
128.6, 56.9 (d, J = 56.2 Hz), 37.5;

HRMS (ESI): calcd. for C8[13C]H10NO2 [M-H]−: 
165.0751. Found 165.0751;

Chiral HPLC: 89:11 er. Determined on Astec Chiro-
biotic-T column (60% MeOH in H2O with 0.02% HCO2H, 
0.5 mL/min), tr = 9.6 min (minor), tr = 10.6 min (major).

Chiral HPLC chromatogram of Racermic 
DL‑phenylalnine and for 13C‑D‑phenylalanine

Chiral HPLC: 89:11 er. Determined on Astec Chirobi-
otic-T column (60% MeOH in H2O with 0.02% HCO2H, 
0.5 mL/min), tr = 9.6 min (minor), tr = 10.6 min (major).
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1H and 13C spectra of 13C‑D‑phenylalanine
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High resolution mass spectrometry data of 13C‑D‑phenylalanine

m/z Relative 
natural 
abundance 
(%)

Observed 
abundance 
(%)

Corrected 
abundance 
(%)

Isotopic 
enrichment 
relative (%)

[M-H] + 0 100 11,749 11,749 12
[M-H] + 1 10.29 86,090 84,881 88
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