
Academic Editor: Mostafa

Abbaszadeh

Received: 25 July 2025

Revised: 16 September 2025

Accepted: 22 September 2025

Published: 25 September 2025

Citation: Tarapiah, S.; Abbas, L.;

Mardawi, O.; Atalla, S.; Himeur, Y.;

Mansoor, W. Evaluating the

Effectiveness of Large Language

Models (LLMs) Versus Machine

Learning (ML) in Identifying and

Detecting Phishing Email Attempts.

Algorithms 2025, 18, 599. https://

doi.org/10.3390/a18100599

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

algorithms

Article

Evaluating the Effectiveness of Large Language Models (LLMs)
Versus Machine Learning (ML) in Identifying and Detecting
Phishing Email Attempts
Saed Tarapiah 1,* , Linda Abbas 2 , Oula Mardawi 3, Shadi Atalla 4 , Yassine Himeur 4 and Wathiq Mansoor 4

1 Department of Telecommunication Engineering, An-Najah National University, Nablus P.O. Box 7, Palestine
2 Department of Information Technology, An-Najah National University, Nablus P.O. Box 7, Palestine;

s12255086@stu.najah.edu
3 Department of Computer Engineering, An-Najah National University, Nablus P.O. Box 7, Palestine;

oula.mardawi@najah.edu
4 College of Engineering and Information Technology, University of Dubai, Dubai P.O. Box 14143,

United Arab Emirates; satalla@ud.ac.ae (S.A.); yhimeur@ud.ac.ae (Y.H.); wmansoor@ud.ac.ae (W.M.)
* Correspondence: s.tarapiah@najah.edu

Abstract

Phishing emails remain a significant concern and a growing cybersecurity threat in online
communication. They often bypass traditional filters due to their increasing sophistica-
tion. This study presents a comparative evaluation of machine learning (ML) models and
transformer-based large language models (LLMs) for phishing email detection, with embed-
ded URL analysis. This study assessed ML training and LLM fine-tuning on both balanced
and imbalanced datasets. We evaluated multiple ML models, including Random Forest,
Logistic Regression, Support Vector Machine, Naïve Bayes, Gradient Boosting, Decision
Tree, and K-Nearest Neighbors, alongside transformer-based LLMs DistilBERT, ALBERT,
BERT-Tiny, ELECTRA, MiniLM, and RoBERTa. To further enhance realism, phishing emails
generated by LLMs were included in the evaluation. Across all configurations, both the
ML models and the fine-tuned LLMs demonstrated robust performance. Random Forest
achieved over 98% accuracy in both email detection and URL classification. DistilBERT
obtained almost as high scores on emails and URLs. Balancing the dataset led to slight
accuracy gains in ML models but minor decreases in LLMs, likely due to their sensitivity to
majority class reductions during training. Overall, LLMs are highly effective at capturing
complex language patterns, while traditional ML models remain efficient and require
low computational resources. Combining both approaches through a hybrid or ensemble
method could enhance phishing detection effectiveness.

Keywords: phishing; emails; cybersecurity; threat; URL; machine learning; large language
models; balanced datasets; imbalanced datasets; ensemble

1. Introduction
With the rapid evolution of internet technologies and increasing reliance on online

platforms, concerns about cybersecurity issues have amplified. These emerging threats
pose an increasing danger to users across digital environments, which can also lead to
financial and identity loss. Phishing attacks take several forms, including URLs, emails,
and websites, which are among the most frequently used methods [1]. Email, in particular,
has emerged as the most widely used, efficient, and cost-effective form of communication,
resulting in a significant increase in the volume of emails exchanged; as a result, there

Algorithms 2025, 18, 599 https://doi.org/10.3390/a18100599

https://doi.org/10.3390/a18100599
https://doi.org/10.3390/a18100599
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-8053-6467
https://orcid.org/0009-0005-5953-1513
https://orcid.org/0000-0003-3017-9243
https://orcid.org/0000-0001-8904-5587
https://orcid.org/0000-0003-2784-5188
https://doi.org/10.3390/a18100599
https://www.mdpi.com/article/10.3390/a18100599?type=check_update&version=2

Algorithms 2025, 18, 599 2 of 25

is a need for more accurate spam filtering solutions that can detect phishing emails in
real time [2].

Major email service providers, like Gmail, Yahoo Mail, and Outlook, have deployed
advanced spam filtering systems that incorporate methods like blocklists alongside a
variety of machine learning techniques, including neural networks, to address the threats
posed by email spam effectively [3]. Since phishing attacks are constantly evolving, there is
still a real need for new and more effective ways to detect them. However, emails that do
not contain any links, also known as link-less emails, require an effort for spam filters [4].
Although the capabilities of large language models (LLMs) have been widely studied for
multiple tasks such as code generation, text synthesis, and summarization, their potential in
analyzing and detecting malicious web content, particularly phishing emails, has received
comparatively less attention [5].

The term “phishing” first appeared in the mid-1990s, with early incidents involving
fake credit card details to access America Online (AOL) services. By 1995, attackers began
impersonating AOL staff to trick users into revealing personal information. Although
phishing started during that period, it did not become widely recognized by the public until
many years later [6,7]. Phishing remains one of the most widespread and destructive types
of cyberattacks, designed to trick users into revealing sensitive information or installing
malware. CyBOK classifies it as both a technical and social engineering threat, exploiting
users’ lack of awareness to deceive them [8].

Detecting phishing emails is becoming more difficult due to various modern chal-
lenges. Many phishing websites now use secure protocols like HTTPS, which gives users
a false sense of safety, misled by SSL certificates. Studies show that over 45% of phishing
URLs use HTTPS, making it hard to distinguish between fake and real sites [9]. Another
issue is advanced persistent threats (APTs) and zero-day attacks, which are new and evolv-
ing phishing methods that traditional machine learning models struggle to catch; they
have never encountered similar patterns before [10]. Additionally, traditional machine
learning models (ML) approaches often depend on manual feature engineering, which is
time-consuming, error-prone, and dependent on expert knowledge. This manual process
can limit the scalability and effectiveness of detection systems [11,12].

The Anti-Phishing Working Group (APWG), a global organization that monitors
phishing attacks, reported that nearly 5 million phishing incidents occurred in 2023, making
it the worst year on record [13]. The 2023 SlashNext Phishing Intelligence Report indicated
a 45% increase in malicious threats and noted phishing and Business Email Compromise
(BEC) were reported as the primary source of financial loss. According to the Federal
Bureau of Investigation’s (FBI) Internet Crime Complaint Center (IC3) report, total losses
are estimated at $6.9 billion, led by phishing and BEC. SlashNext also confirmed that
malicious phishing email attacks increased by 1265% since Q4 of 2022 and that 68% of
phishing attacks were text-based, and credential theft increased by 967%. The generative
AI tools currently accessible to the public, like ChatGPT 4, have also enabled much more
sophisticated attack methods [14].

Phishing attacks rely on social engineering to deceive victims into providing sensitive
info or funds by impersonating trusted online sources (e.g., banks, organizations using
online platforms, online shops, and government services). To identify phishing threats,
ML algorithms can be applied in various forms, including kNN, Random Forest, Decision
Tree, SVM, and Naïve Bayes. The final choice of algorithm often depends heavily on
the problem and data type, as some ML models are better suited to structured data as
opposed to unstructured data [15–18]. In the context of phishing email detection, fine-
tuning improves the classification accuracy of a pre-trained LLMs by matching it with the
patterns of malicious messages. Fine-tuning involves training a model, such as an LLM,

Algorithms 2025, 18, 599 3 of 25

on a particular dataset to enhance its performance on specialized tasks. However, it has
challenges, mainly the high computation process, as it needs a lot of memory and GPU
power, making it both expensive and time-consuming [19–21].

2. Research Objectives
The main goals of this research are outlined below:

1. To compare the classification performance of large language models (LLMs) and
traditional machine learning (ML) models in phishing email detection, using metrics
such as precision, recall, F1 score, accuracy, and balanced accuracy.

2. To assess the computational efficiency of both LLMs and ML models during train-
ing and fine-tuning, including processor usage, memory consumption, and overall
resource requirements.

3. To evaluate the capability of LLMs to handle complex and nuanced phishing content,
highlighting their advancements in text classification.

4. To analyze misclassification cases from both LLMs and ML models to identify potential
areas for improvement in future phishing detection systems.

3. Materials and Methods
3.1. Overview of Dataset Collection

The dataset used in this study was manually collected from various online source plat-
forms. The raw datasets consisted of email texts and URLs from different research projects
and repositories. This dataset contains 146,426 email records, which were reduced to about
26,365 samples (approximately 18%). Of these, 7623 were already labeled as phishing, while
18,742 were classified as legitimate. The URL dataset initially had 449,271 entries, but it
was filtered down based on the proposed cleaning method to 67,391 (around 15%). Among
these, 15,540 were phishing URLs and 51,851 were legitimate. Datasets were randomly
combined from different sources to enhance the diversity of the dataset.

The labels were coded as binary values, with “1” representing phishing and “0”
representing legitimate URLs and emails. To add variety to the dataset, additional emails
generated by LLMs were included to help balance it. The final dataset consisted of samples
from Enron, Fraud, LingSpam, Nazario, SpamAssassin, TREC-06, and content generated
by LLMs, along with Huggingface_dataset and URL_dataset. The LLM-generated emails
used in this study were not created manually but obtained from an existing research
project published on Kaggle, titled Human-LLM Generated Phishing–Legitimate Emails. This
dataset was specially designed to provide realistic synthetic phishing and legitimate email
examples, ensuring reliability and reusability. Details about the dataset and its sources are
provided in Appendix A.

This study trained traditional ML and fine-tuned the pre-trained LLMs separately on
email and URL datasets. Training occurred in two stages: first, with imbalanced data to re-
flect real-world scenarios, then with balanced datasets. The datasets were balanced through
under-sampling of the majority class, which maintains data quality. Figure 1 illustrates the
dataset distributions before balancing both the email and URL datasets. The sources of the
emails and their distribution are shown in Figure 2. https://www.kaggle.com/datasets/
francescogreco97/human-llm-generated-phishing-legitimate-emails/data (accessed on
21 September 2025).

3.2. Data Processing
3.2.1. Text Cleaning and Normalization

Due to the strong dependence of ML model and LLM performance on the quality of
the training data, data quality has received increasing attention in recent research, with

https://www.kaggle.com/datasets/francescogreco97/human-llm-generated-phishing-legitimate-emails/data
https://www.kaggle.com/datasets/francescogreco97/human-llm-generated-phishing-legitimate-emails/data

Algorithms 2025, 18, 599 4 of 25

numerous approaches developed to detect, correct, and prevent data errors [22]. High-
quality, consistent data is essential for ensuring that models can learn meaningful patterns
and generalize effectively to unseen examples. To this end, we applied a comprehensive
text cleaning pipeline to prepare the email data for training. The cleaning process involved
removing HTML tags, special symbols, and stop words, which are typically considered
noise and can negatively impact model learning. In addition, all text was converted to
lowercase to ensure uniformity across entries and avoid discrepancies due to case sensitivity.
Following these steps, the text data was further normalized to maintain consistency across
datasets from multiple sources to ensure that variations in formatting did not introduce
unintended bias or inconsistencies into the model training process.

Legitimate
71.1%

Phishing
28.9%

Emails Dataset

Legitimate
76.9%

Phishing
23.1%

URLs Dataset

Figure 1. Dataset Distribution: 28.9% of emails and 23.1% of URLs labeled as phishing.

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

Nu
m

be
r o

f E
m

ai
ls

49,152
Enron

11,928
Fraud

2,893
LingSpam

2,000
LLMs-Generated 3,015

Nazario

77,677 Huggingface_dataset

2,797
SpamAssasin

16,381
TREC-06

Total Entries in Each Raw Email Dataset

Figure 2. Entry Distribution Based on Email Sources (Total = 146,426).

3.2.2. Data Preparation for ML

After the cleaning process, the text data was normalized to maintain consistency.
Two methods of vectorization techniques were tested: TF-IDF and Word2Vec [23]. While
both were effective, the TF-IDF feature extraction yielded slightly better results for phishing
email detection. In addition, as supported by previous research, the TF-IDF method was
chosen as the primary method for creating the final machine learning models. Regarding
URLs, a total of 30 engineered features were extracted, including the presence of HTTPS,
URL length, number of dots, and the use of special characters, to distinguish phishing
links from legitimate ones [24]. Feature extraction was applied only to traditional ML
models. In contrast, LLMs operate directly on raw URL text and leverage contextual and

Algorithms 2025, 18, 599 5 of 25

semantic representations without requiring manual feature engineering. A complete list of
all features used in this study is provided in Appendix B. These numerical features were
then normalized using MinMaxScaler to scale all values to a standard range between 0 and
1, improving model performance and consistency. Figure 3 shows the feature distributions
after normalization.

0 10 20 30 40 50

Length of URL
Number of dots

Number of slashes
Presence of 'www'

Presence of HTTP/HTTPS
Presence of '?'
Presence of '#'

Number of query parameters
Domain name length

Number of subdomains
Presence of port

Presence of IP address
Uppercase letters
Number of digits

Special characters
TLD length

Domain length
Path length

Path parameters
Subdirectories

Secure connection
Login/register keyword

Underscores
Specific keywords

File extensions
Session ID

Digit/Char ratio
Upper/Lower ratio

URL entropy
Email address presence

51.2

42.9

50.2

45.2

51.4

43.6

48.7

52.4

49.0

48.7

46.1

49.3

52.2

44.6

50.0

42.0

47.8

49.8

51.7

52.6

51.3

48.6

47.2

50.6

45.6

49.5

50.4

52.9

42.0

48.0

Feature Values (Before Scaling)

0.0 0.2 0.4 0.6 0.8 1.0

0.52

0.45

0.50

0.45

0.52

0.44

0.51

0.53

0.49

0.49

0.45

0.50

0.53

0.46

0.50

0.42

0.48

0.50

0.52

0.53

0.53

0.50

0.48

0.51

0.44

0.50

0.51

0.54

0.44

0.49

Feature Values (After MinMax Scaling)

Figure 3. Normalization Effect of URL Features Using MinMaxScaler.

Phishing datasets are retained and fine-tuned through our filtering approach to opti-
mize and match computational efficiency resource limitations.

3.2.3. Data Preparation for LLMs

Tokenization is a fundamental preprocessing step in LLMs that transforms raw text
into smaller units called tokens for model processing. LLMs rely on subword tokeniza-
tion methods such as WordPiece, Byte Pair Encoding (BPE), and SentencePiece to break
words into meaningful subword units. This approach allows the model to handle rare,
compound, or misspelled words effectively. The HuggingFace Transformers library offers
the AutoTokenizer class, which automatically loads the appropriate pretrained tokenizer
for each model architecture (e.g., BERT, RoBERTa), maintaining alignment with the model’s
vocabulary and ensuring accurate text representation.

The Max_seq_length parameter, which determines the maximum number of tokens
processed from each input, was set to 256 tokens for email texts and 128 for URL inputs.
These values were applied consistently across all transformer LLMs to ensure consistent
performance. The choices were based on the token length distributions observed in the
datasets, as shown in Figure 4.

0 200 400 600 800
Token Count

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Em
ai

l C
ou

nt

Email Token Length Distribution
256 tokens

0 50 100 150 200
Token Count

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

U
RL

 C
ou

nt

URL Token Length Distribution
128 tokens

Figure 4. Managing Sequence Lengths in Tokens.

Algorithms 2025, 18, 599 6 of 25

3.3. Model Selection for ML and LLMs

Research in the field of email fraud detection using machine learning and deep learn-
ing technologies dates back as early as 2015. Since then, various supervised learning
algorithms [25] have set the baseline for detection. Unfortunately, comparing findings
across studies remains challenging, as different researchers have employed varying algo-
rithms, datasets, and evaluation methods, particularly in how accuracy is measured [26].
Although research works and literature on transformer-based approaches are compara-
tively limited, they are highly popular for dealing with natural language processing (NLP),
and even include complex tasks involving sentiment analysis, text generation, and human
emotion recognition [27].

ML models such as Decision Tree (DT), Linear Regression (LR), Support Vector Ma-
chine (SVM), Gradient Boosting, and Neural Networks, including deep learning (DL)
architectures, have long formed the core of artificial intelligence (AI) and have been widely
applied for decades. These models utilize statistical techniques and data mining to au-
tomatically identify patterns within data, enabling them to perform tasks like prediction
and classification. Each of these models is designed for particular tasks and can be cus-
tomized and fine-tuned according to specific requirements [17,18,28]. For more details on
the implementation and parameters of these models, see Appendix C.

Generative AI is a branch of artificial intelligence that produces human-like content
such as text, images, or code, based on patterns learned from large datasets by humans [20].
Recently, LLMs have demonstrated an extraordinary capacity in various NLP tasks, includ-
ing question answering, text generation, and language translation. Moreover, LLMs can
comprehend complex speech patterns and produce responses that are suitable and coherent
with given contexts [29]. LLMs were first introduced with GPT-1 in 2018 by OpenAI as
an initial prototype, demonstrating to us a new way for machines to comprehend and
produce human-like text. ML, using the transformer architecture of these models, can
learn from large amounts of available data to create coherent and contextually relevant
outputs. These models can be easily integrated into major AI frameworks such as [30]
and PyTorch 2.5.1. Furthermore, the development and economics of libraries, like those
provided by Hugging Face, have made transformers accessible to a broad community of
researchers and developers [31]. For more details about the models, see Appendix C.

3.4. Data Splitting

The dataset was split into 80% for training and 20% for testing, with 60% of the total
data allocated for training and 20% for validation. The validation set was used after each
epoch to monitor model performance and prevent overfitting. This consistent strategy
was applied in both traditional machine learning and LLM fine-tuning, ensuring reliable
results and improving prediction accuracy on unseen data. Figure 5 represents the dataset
splitting process used throughout the experiments.

Figure 5. Data Splitting Strategy: Training, Validation, and Testing Sets.

3.5. Evaluation Metrics

To evaluate the performance of the proposed models, a set of standard classification
metrics is used. These metrics are standard benchmarks accepted in natural language

Algorithms 2025, 18, 599 7 of 25

processing and machine learning for binary classification problems, such as distinguishing
phishing (negative) and legitimate (positive) email content. These include True Positives
(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN).

Accuracy is defined as the ratio of correctly predicted samples to all predictions made
by the model.

Balanced Accuracy =
TP + TN

TP + FN + TN + FP
(1)

Balanced Accuracy is the average of true positive and true negative rates, offering a
fair assessment in imbalanced classification tasks.

Balanced Accuracy =
1
2
×

(
TP

TP + FN
+

TN
TN + FP

)
(2)

Precision is the ratio of true positive predictions to the total predicted positives,
indicating how many of the model’s positive predictions were correct.

Precision =
TP

TP + FP
(3)

Recall is the ratio of true positives to all actual positive data and indicates the model’s
ability to retrieve all of the positive samples.

Recall =
TP

TP + FN
(4)

F1 Score combines both precision and recall into a single metric, offering a balanced
evaluation of a model’s performance, especially on imbalanced datasets.

F1 Score
2 × TP

2 × TP + FP + FN
(5)

3.6. Experimental Configuration

In this study, phishing email detection was examined by analyzing email content
that may include URLs, using both ML models and fine-tuned lightweight LLMs. The
traditional ML models applied include Decision Tree, Logistic Regression, Random Forest,
Naive Bayes, Gradient Boosting, K-Nearest Neighbors (KNN), and Support Vector Ma-
chine. For transformer-based approaches, several efficient and compact models were
fine-tuned, including ALBERT, BERT-Tiny, DistilBERT, ELECTRA-Tiny, MiniLM, and
RoBERTa. The primary objective of this work is to evaluate and compare their perfor-
mance based on classification accuracy and other relevant metrics to see whether ML
models or transformer-based architectures LLMs work better for phishing email detec-
tion. The ML models were configured using text vectorization and feature extraction,
while the LLMs relied on specialized text tokenization. These configurations are explained
in Sections 3.6.1 and 3.6.2, respectively.

3.6.1. ML Model Training Configuration

Text Cleaning: This included removing unnecessary symbols, non-alphabetic values,
and special characters. All of the characters in the text were also converted to lowercase in
order to standardize it.

Vectorization: After the cleaning stage, the email content was tokenized, breaking
down all email messages into their respective words or sub-word units so that meaningful
patterns could be recognized during encoding. These tokens were then converted into
numerical representations that ML algorithms can understand using TF-IDF [23], which
represents text as weighted feature vectors. The vectorizer was configured with:

• max_features = 20,000
• ngram_range = (1, 2)

Algorithms 2025, 18, 599 8 of 25

URL Extraction feature: URL content was represented using 30 structural and lexical
features (e.g., length, special characters, keywords, entropy) and normalized to a [0, 1]
range using MinMaxScaler. The Bernoulli Naive Bayes (BernoulliNB) algorithm was used
due to the binary nature of many features. Classifier Parameter Configuration: Specific
hyperparameters were set for each traditional ML model to enhance performance. The
configurations used in this study are shown in Table 1.

Table 1. Hyperparameter Settings for ML.

Model Name Configuration

Logistic Regression (LR) max_iter = 2000, random_state = 42, class_weight = ‘balanced’

Random Forest (RF) n_estimators = 100, random_state = 42, max_features = ‘sqrt’

Gradient Boosting (GB) n_estimators = 150, learning_rate = 0.1, max_depth = 3

Support Vector Machine (SVM) kernel = ‘linear’, C = 10, Gamma = 0.01, Probability = True, random_state = 42

K-Nearest Neighbors (KNN) n_neighbors = 5

3.6.2. LLM Training Configuration

Text tokenization [32] is a crucial preprocessing step that converts raw text into smaller
units called tokens, which the model can then process. LLMs utilize a method according to
subword tokenization, including WordPiece, Byte Pair Encoding (BPE), and SentencePiece,
to break words into subwords and meaningful units for the model to allow for handling of
rare, compound, or misspelled words. The architecture of the model determines differences
between tokenization methods. In practice implementations, tokenization is handled by
widely used libraries and frameworks made for large language models. The HuggingFace
Transformers library includes the useful AutoTokenizer class, allowing users to load the
appropriate pre-trained tokenizer for a model architecture directly (i.e., BERT, RoBERTa).
These tools make the tokenization easier, maintain alignment with the model’s training
vocabulary, and support productive batching and preprocessing [33]. Training was per-
formed using the Adam optimizer by default. Each model was fine-tuned separately on
the email and URL datasets, using consistent parameters, as illustrated in Table 2.

Table 2. Hyperparameter Settings for LLMs.

Dataset Configuration

Email Dataset
Num_train_epochs = 3,Weigh_dcay = 0.01,
Learning_rate = 2 × 10−5, Batch_size = 8,
Max_seq_length = 256,

URL Dataset
Num_train_epochs = 2, Weigh_decay = 0.01,
Learning_rate = 2 × 10−5, Batch_size = 16,
Max_seq_length = 128,

3.7. A Pipeline for Phishing Email Detection Using Vectorization and Tokenization

A complete overview of the pipeline used for classifying email messages as either
phishing or legitimate is presented in Figure 6, based on two parallel approaches: traditional
ML and transformer LLMs. When a user enters email text through a web interface, the
system first pre-processes the text to enable classification through both methods. In the
ML pipeline, the raw text is transformed into numerical vectors using approaches like
TF-IDF vectorization, which captures the frequency and significance of words within the
document corpus. These vectors are then passed to classifiers such as Random Forest (RF),
Support Vector Machine (SVM), and other models used in this study to generate predictions.

Algorithms 2025, 18, 599 9 of 25

Concurrently, transformer-based models follow a tokenization process, in which the input
text is split into subword tokens, mapped to token IDs, and supplemented with special
tokens like [CLS] and [SEP]. The sequences are padded or truncated to a fixed length
of tokens and then processed through transformer architectures (e.g., BERT) to classify
the email. In the end, the predictions from both approaches are returned to the frontend
interface and displayed to the user. The ML models and LLMs were applied to a dataset of
26,365 emails and 67,391 URLs.

User Input
Write your email /URL here

Front-End
Sends Request

Back-End
Receives Input

Processing

Vectorizer (e.g., TF-IDF)
 Convert text into a numeric vector
 Click to confirm ==>
 Text cleaning (lowercase, remove punctuation)
 Tokenization and vocabulary building
 Calculate TF-IDF scores for each term
 Output: Sparse vector [0.18, 0.43, 0.0, 0.063...]

Tokenizer (e.g., BERT)

 Convert text into tokens, then token IDs
 Click on to confirm ==>
 Split ["click" "on", "to", "confirm"]
 Add token IDs: 205463, 98765, 33654...
 Add special tokens: [CLS], [SEP]

ML models (e.g., Random Forest) LLMs (e.g., DistilBERT)

Return Prediction to Front-End

Phishing

Legitimate

Figure 6. Email Prediction Workflow.

4. Results
The results in this section cover both traditional ML and LLMs. Results include

evaluations on both email and URL datasets under balanced and imbalanced conditions.

4.1. Results for ML Approaches
4.1.1. Email Content Analysis Using ML

The evaluation results, as shown in Table 3, indicate that Random Forest achieved
the best performance on both imbalanced and balanced email datasets, with the highest
accuracies of 0.9947 and 0.9959, respectively. Support Vector Machine (SVM) followed
closely, with substantial precision and recall values and a balanced accuracy of 0.9954 on the
balanced dataset. Logistic Regression also showed competitive results, particularly in the
balanced dataset with an accuracy of 0.9846. While Decision Tree and K-Nearest Neighbors
(KNN) demonstrated solid performance, Naïve Bayes and Gradient Boosting recorded
lower accuracy and recall, making them less suitable for phishing email detection in this
context. Overall, Random Forest proved to be the most effective and reliable traditional
ML model across both dataset distributions.

Algorithms 2025, 18, 599 10 of 25

Table 3. Comparison of ML Results for Email Dataset (Balanced vs. Imbalanced).

Imbalanced Email Dataset

Model Name Accuracy Precision Recall F1 Score Balanced-Accuracy

Decision Tree 0.9884 0.9749 0.9850 0.9799 0.9874

Gradient Boosting 0.9498 0.9667 0.8554 0.9077 0.9217

K-Nearest Neighbors 0.9722 0.9581 0.9448 0.9514 0.9640

Logistic Regression 0.9747 0.9802 0.9311 0.9550 0.9617

Naïve Bayes 0.9521 0.9631 0.8672 0.9126 0.9269

Random Forest 0.9947 0.9926 0.9890 0.9908 0.9930

Support Vector Machine 0.9935 0.9842 0.9934 0.9888 0.9935

Balanced Email Dataset

Model Name Accuracy Precision Recall F1 Score Balanced-Accuracy

Decision Tree 0.9896 0.9848 0.9946 0.9897 0.9896

Gradient Boosting 0.9545 0.9333 0.9875 0.9596 0.9545

K-Nearest Neighbors 0.9755 0.9743 0.9769 0.9756 0.9755

Logistic Regression 0.9846 0.9774 0.9921 0.9847 0.9846

Naïve Bayes 0.9584 0.9823 0.9257 0.9531 0.9584

Random Forest 0.9959 0.9943 0.9976 0.9959 0.9959

Support Vector Machine 0.9954 0.9943 0.9964 0.9954 0.9954
Note: The best results across all models are highlighted in bold.

4.1.2. URL Content Model Analysis Using ML

Random Forest consistently delivered the highest performance across imbalanced and
balanced datasets. It achieved a good accuracy of 0.9947 and 0.9959, respectively, along
with consistently high precision and recall, as shown in Table 4. In contrast, SVM achieved
accuracies of 0.9935 on the imbalanced set and 0.9954 on the balanced set. Gradient Boosting
had the lowest performance in both datasets, despite an improvement being noticeable
with balancing.

4.1.3. ROC Curves of ML Models on Email and URL Data

There was not a significant difference among the models, as shown in Figure 7, as
all of them showed a high ability to distinguish between phishing and non-phishing
emails. Logistic Regression, Random Forest, and Support Vector Machine all displayed
comparable results. The ROC curve for email classifiers illustrates that all models performed
exceptionally well, with AUC values above 0.96. Support Vector Machine (AUC: 0.9979),
Random Forest (AUC: 0.9989), and Logistic Regression (AUC: 0.9972) achieved the highest
scores, while Naïve Bayes and Gradient Boosting also performed well; Decision Tree had
the lowest score (AUC: 0.9695). Overall, SVC and Random Forest were the most reliable for
phishing email classification.

In contrast, the ROC curve for URL classifiers demonstrated strong performance in
most models, with Random Forest (AUC: 0.9931) and Gradient Boosting (AUC: 0.9923)
leading. K-NN and SVC also performed well, demonstrating high sensitivity and low false
positive rates. Logistic Regression had the lowest (AUC: 0.8584), indicating challenges in
distinguishing between classes. Naïve Bayes performs less effectively. Overall, ensemble
models like Random Forest and Gradient Boosting are the most reliable for URL-based
phishing detection.

Algorithms 2025, 18, 599 11 of 25

Table 4. Comparison of ML Results for URL Dataset (Balanced vs. Imbalanced).

Imbalanced URL Dataset

Model Name Accuracy Precision Recall F1 Score Balanced-Accuracy

Decision Tree 0.9837 0.9606 0.9690 0.9648 0.9785

Gradient Boosting 0.9738 0.9338 0.9537 0.9437 0.9667

K-Nearest Neighbors 0.9761 0.9387 0.9591 0.9488 0.9702

Logistic Regression 0.8147 0.5619 0.8921 0.6895 0.8418

Naïve Bayes 0.8726 0.6817 0.8396 0.7525 0.8611

Random Forest 0.9881 0.9668 0.9822 0.9745 0.9861

Support Vector Machine 0.9601 0.8895 0.9442 0.9160 0.9545

Balanced URL Dataset

Model Name Accuracy Precision Recall F1 Score Balanced-Accuracy

Decision Tree 0.9843 0.9829 0.9857 0.9843 0.9843

Gradient Boosting 0.9713 0.9662 0.9767 0.9741 0.9713

K-Nearest Neighbors 0.9748 0.9692 0.9807 0.9749 0.9748

Logistic Regression 0.8415 0.8111 0.8905 0.8489 0.8415

Naïve Bayes 0.8835 0.8767 0.8925 0.8846 0.8835

Random Forest 0.9984 0.9855 0.9915 0.9885 0.9884

Support Vector Machine 0.9619 0.9605 0.9634 0.9620 0.9619

Note: The best results across all models are highlighted in bold.

(a)

(b)

Figure 7. (a) ROC curve for Email Classifiers in ML; (b) ROC curve for URL Classifiers in ML.

Algorithms 2025, 18, 599 12 of 25

4.2. Results for LLMs Approaches
4.2.1. Email Content Analysis Using LLMs

LLMs demonstrated exceptional performance across both imbalanced and balanced
datasets. DistilBERT achieved the highest accuracy at 0.9844 on the imbalanced dataset and
0.9835 on the balanced dataset, followed closely by ALBERT and MiniLM. RoBERTa and
ELECTRA-Tiny also performed well, with accuracy above 0.95. Although BERT-Tiny had
the lowest accuracy at 0.9203 on the imbalanced dataset and 0.9198 on the balanced data, it
still performed reasonably well considering its smaller size and faster inference speed, as
shown in Table 5.

Table 5. Comparison of LLMs Results for Email Dataset (Balanced vs. Imbalanced).

Imbalanced Email Dataset

Model Name Accuracy Precision Recall F1 Score Balanced-Accuracy

ALBERT 0.9797 0.9621 0.9678 0.9650 0.9762

BERT-Tiny 0.9203 0.8530 0.8719 0.8623 0.9055

DistilBERT 0.9844 0.9771 0.9686 0.9728 0.9797

ELECTRA-Tiny 0.9704 0.9632 0.9331 0.9480 0.9593

MiniLM 0.9769 0.9750 0.9442 0.9594 0.9672

RoBERTa 0.9743 0.9657 0.9446 0.9550 0.9655

Balanced Email Dataset

Model Name Accuracy Precision Recall F1 Score Balanced-Accuracy

ALBERT 0.9782 0.9775 0.9789 0.9782 0.9782

BERT-Tiny 0.9198 0.9143 0.9264 0.9203 0.9198

DistilBERT 0.9835 0.9846 0.9823 0.9835 0.9835

ELECTRA-Tiny 0.9632 0.9614 0.9653 0.9653 0.9632

MiniLM 0.9741 0.9743 0.9738 0.9740 0.9741

RoBERTa 0.9708 0.9809 0.9604 0.9705 0.9708

Note: The best results across all models are highlighted in bold.

4.2.2. URL Content Analysis Using LLMs

Models exhibited excellent performance on both imbalanced and balanced datasets.
All models achieved an accuracy above 0.9960, indicating a strong ability to capture struc-
tural and lexical patterns in URLs. DistilBERT achieved the best accuracy of 0.9979 on
the imbalanced dataset and 0.9971 on the balanced dataset. MiniLM and ELEC-TRA-Tiny
achieved identical accuracy scores, and the dataset has strong competitors as well. Even
BERT-Tiny, despite being the smallest model, remained competitive with 0.9965 on the
imbalanced dataset and 0.9947 on the balanced dataset as a good option for lightweight
applications. Overall, all LLMs offered both accuracy and reliability across different data
distributions, as detailed in Table 6.

4.2.3. ROC Curves of LLMs on Email and URL Data

The ROC curve comparison, illustrated in Figure 8, shows that all transformer models
exhibited strong performance on email phishing detection, achieving AUC scores close to 1.
DistilBERT had the highest (AUC: 0.9972) while those of ALBERT, MiniML, and RoBERTa
were also very close. Even though BERT-Tiny had lower discrimination power (AUC:
0.9655), it still showed good performance for this task. Overall, the ROC curves indicate
that all the models had strong classification skills with a low rate of false positives and a
high rate of true positives.

Algorithms 2025, 18, 599 13 of 25

Table 6. Comparison of LLMs Results for URL Dataset (Balanced vs. Imbalanced).

Imbalanced URL Dataset

Model Name Accuracy Precision Recall F1 Score Balanced-Accuracy

ALBERT 0.9974 0.9967 0.9922 0.9945 0.9956

BERT-Tiny 0.9965 0.9916 0.9932 0.9924 0.9953

DistilBERT 0.9979 0.9970 0.9938 0.9954 0.9965

ELECTRA-Tiny 0.9975 0.9967 0.9926 0.9947 0.9958

MiniLM 0.9975 0.9961 0.9933 0.9947 0.9960

RoBERTa 0.9977 0.9977 0.9926 0.9952 0.9960

Balanced URL Dataset

Model Name Accuracy Precision Recall F1 Score Balanced-Accuracy

ALBERT 0.9961 0.9964 0.9958 0.9961 0.9961

BERT-Tiny 0.9947 0.9966 0.9927 0.9947 0.9947

DistilBERT 0.9971 0.9979 0.9963 0.9971 0.9971

ELECTRA-Tiny 0.9963 0.9967 0.9959 0.9963 0.9993

MiniLM 0.9963 99.81 99.46 99.63 99.63

RoBERTa 0.9968 0.9979 0.9957 0.9968 0.9968

Note: The best results across all models are highlighted in bold.

(a)

(b)

Figure 8. (a) ROC curve for Email Dataset in LLMs; (b) ROC curve for URL Dataset in LLMs.

Algorithms 2025, 18, 599 14 of 25

In URL, the ROC curve demonstrates strong performance across all transformer
models. DistilBERT again leads with the highest score (AUC: 0.9972), followed closely
by MiniLM, ELECTRA-Tiny, ALBERT, and RoBERTa. BERT-Tiny showed relatively lower
performance (AUC: 0.9191) but still maintained acceptable classification ability.

4.3. Analysis of Misclassifications

Figure 9 presents the quantitative values of misclassification counts for each model
during the evaluation phase, providing a clear basis for comparing model performance. The
analysis was conducted using the cleaned emails.csv dataset, which contains 26,365 record
samples. Both ML algorithms and LLMs were evaluated to determine their total number of
incorrect classifications.

(a)

(b)

Figure 9. (a) LLM Misclassified Instances; (b) ML Misclassified Instances.

This analysis and results provide quantitative measures of the accuracy and reliability
of each model in detecting phishing emails. Moreover, the GUI was developed to support
batch predictions through an Excel file. Users can upload two Excel files: one containing
labeled email samples for evaluation, and another containing unlabeled samples for pre-
diction. The system allows the user to select either ML models or LLMs to perform the
classification. After prediction, the accuracy is displayed as a percentage by comparing
the predicted and actual labels. Additionally, it provides an option to download the full
prediction results as an Excel sheet file.

Algorithms 2025, 18, 599 15 of 25

The findings reveal that ML models averaged 550 misclassifications, while LLMs
averaged only 263. An ensemble method was employed to aggregate predictions from
all LLMs by averaging their outputs. These results indicate that LLMs achieved a 52.18%
reduction in misclassifications, calculated using the following formula:

Reduction Percentage =
ML errors − LLMs errors

ML errors
× 100 (6)

To evaluate the benefit of using an ensemble strategy with LLMs, the number of mis-
classified samples produced by the ensemble model was used from the total of 26,365 email
samples; the ensemble model misclassified only 162 instances. The misclassification rate
was calculated using the formula:

Misclassification Rate =
Misclasified Instance

Total Samples
× 100 (7)

This low misclassification rate (approximately 0.61%) illustrates the strength of the
ensemble method, which combines predictions from all individual LLMs by averaging
their outputs.

4.4. Prediction Error Analysis
4.4.1. Prediction Error in ML Models

Upon reviewing the failed email classification predictions, several patterns were
identified that impacted the model’s accuracy. Correspondence that contained grammatical
or informal writing styles was commonly misclassified as phishing. This is probably
due to the ML models’ low weighting of these terms, misspellings, and their inability to
comprehend context.

Detecting email content formatted in HTML poses another challenge for ML models,
which often misclassifies it as legitimate due to the scarcity of such examples in the training
data. This scarcity makes it difficult for the model to accurately determine if a phishing
attempt is using HTML or malicious scripts. In addition, some misclassifications were
related to mixed language content, in which an email comprising English in addition to
one or more other languages, making it difficult for the model to understand the message
and classify it accurately. As shown in Table 7, traditional machine learning models often
underperform when handling emails with grammatical errors, multilingual text, or HTML-
formatted content.

Table 7. Examples of Misclassified Emails by ML Models.

Text Actual Label Predict Label Model

Grammatical Errors

Dear user, ur accnt info is missing plz verify fast. legitimate phishing DT, LG, RF, SVC, KNN

HTML-format

You are a winner, your phone is not among the
<200> lucky winners’ code
Call Michael JOHN on: <08167566152> for a claim

phishing legitimate LG, GB

Multilingual Text

Hello,
Por favor, update your password to keep your
account secure. Gracias.

phishing legitimate DT, NB, GD

4.4.2. Prediction Errors in LLMs

Even though LLMs generally outperform traditional classifiers in contextual under-
standing, they still struggle with a noticeable number of misclassified emails. This is

Algorithms 2025, 18, 599 16 of 25

especially evident in cases where emails containing common phrases like ‘password’,
‘login’, or ‘click the link’ were incorrectly classified as phishing. As shown in Table 8,
the issue appears to be misclassified. Emails with formal or lengthy formats, including
multiple line breaks, are often misclassified as phishing. This suggests the model may be
focusing on the structure or formatting of the email, rather than its actual content, leading
to misclassification.

Table 8. Examples of Misclassified Emails by LLMs.

Text Actual Label Predict Label Model

Common words

Subject: Password Reset Request—University Portal
Dear Student,
We received your request to reset the password for your University Portal
login account.
To proceed, please click the link below to create a new password:
https://example.com/university/reset-password?token=SIM-2025-EMAIL
(accessed 23 September 2025)
If you did not request this change, please ignore this email or contact IT
Support immediately.
Sincerely,
University IT Support Team
it-support@university.edu

legitimate phishing

ALBERT,
ELECTRA,
MiniLM,
RoBERTa

Punctuations Marks

Welcome!
Ready to code with fresh updates from Tech Insight?
Doesn’t look right? Just click here! Courses, Tools, Tutorials. . .

legitimate phishing
DistilBERT,
ELECTRA,

MiniML

Formal or Lengthy Formats

I saw your advertisement and I must say, the item looks exactly like what I’ve
been looking for. The pictures are clear and the description is satisfactory.
Please send me the exact current condition, any issues I should be aware of,
and the final asking price.
Regarding payment, I would prefer to use PayPal, as it is quick and secure for
both of us. Once I make the payment, I will arrange for a private courier
service to come to your location for pickup. They will handle everything
signing any documents and collecting the item.
There’s no need for you to worry about shipping or extra costs. Just let me
know your PayPal email address so I can proceed immediately. If you’re not
already using PayPal, you can easily register at www.paypal.com it
takes a minute.
Please also include your full name and pickup address in your reply so my
courier can coordinate properly.
Looking forward to your response.
Kind regards,
Derek Mason

phishing legitimate BERT-Tiny,
RoBERTa

4.5. Impact of Dataset Balancing on Accuracy

After performing the balancing, there was a small increase in accuracy and balanced
accuracy for the traditional machine learning models when classifying both emails and
URLs. The slight improvements were likely due to the fact that traditional ML models are
more significantly impacted by class imbalance. By balancing the dataset, the models were
able to learn more equally from examples of phishing and legitimate, as opposed to only
learning more from the majority class. In contrast, LLMs showed a slight accuracy decline.
As shown in this study, “Understanding the Effects of Language-Specific Class Imbalance in
Multilingual Fine-Tuning” [34], LLMs may overfit on added synthetic or underrepresented
samples due to their sensitivity to nuanced patterns, leading to a small drop in raw accuracy.

https://example.com/university/reset-password?token=SIM-2025-EMAIL
www.paypal.com

Algorithms 2025, 18, 599 17 of 25

It is noticeable that the values of accuracy and balanced accuracy become identical.
This is because both classes, phishing and legitimate, are equally represented, eliminating
any bias toward a majority class. This alignment indicates that the evaluation is fair and
not influenced by class imbalance.

4.6. Impact of Dataset Size on Real-Time

A significant limitation of this research is that both the initial email and URL datasets
were heavily reduced to fit within local computational resource limits. While this allowed
us to train and evaluate the models effectively, it likely restricted the diversity and repre-
sentativeness of our training data. Consequently, the results should be interpreted with
caution when applying them to real-world scenarios that involve much larger and more
diverse datasets. Models trained on such extensive data could potentially be more robust
and better at capturing the full range of variability in both phishing attacks and legitimate
communication patterns. Future research will build on this work by incorporating larger
datasets and utilizing more powerful computing resources further to assess the scalability
and real-world relevance of the approach. Prior studies, such as [35], have demonstrated
that scalable machine learning approaches trained on larger datasets can achieve improved
robustness and real-time detection capabilities

5. Discussion
5.1. Comparative the Effectiveness of ML and LLMs

The study indicated that LLMs like DistilBERT (accuracy: 0.9844) and ALBERT (ac-
curacy: 0.9797) performed strongly. However, ML models like Random Forest (accu-
racy: 0.9947) and SVM (accuracy: 0.9935) slightly outperformed them in raw accuracy
on email and an imbalanced dataset. Despite this, LLMs demonstrated superior perfor-
mance on semantically complex emails, particularly in handling language variations and
contextual cues.

5.2. Computational Training Demands ML vs. LLMs

ML models like Logistic Regression and Random Forest trained quickly with minimal
resources, LLMs such as ALBERT and DistilBERT required more time and computational
resources due to their complex architectures. As shown in Table 9, ML models completed
training in under 10 min, while LLMs required several hours to days, depending on the
dataset and balance. These results emphasize the actual trade-off between performance and
resource requirements when deploying phishing detection systems. All models were fine-
tuned locally on a personal machine rather than using cloud platforms like Google Colab,
due to frequent session runtime interruptions and limitations. This ensured stable training
for large language models and avoided disruptions that could compromise performance
or reproducibility.

5.3. Handling Complexity Content

LLMs can accurately classify valid emails with complex structures and different
language patterns, even when URLs are embedded. Valid emails of this sort often resemble
phishing attempts due to their length, formal tone, or external links. These factors usually
lead ML models to misclassify them. The following is an example of a complex, well-
structured but legitimate message containing an embedded URL (Box 1). Most LLMs
correctly identified it as legitimate, such as DistilBERT. Meanwhile, models like BERT-
Tiny and RoBERTa misclassified it as phishing, demonstrating their stronger contextual
understanding and ability to handle nuanced email content.

Algorithms 2025, 18, 599 18 of 25

Table 9. Training Duration for ML models and LLMs (Before and after Balancing).

Models Name
Training Time (hh: mm: ss)

Imbalanced Set Balanced Set

ML models

LR, RF, SVC, DT, Naïve Bayes, Gradient
Boosting, K-NN. 00:09:33 00:05:19

LLMs/Email Dataset

ALBERT 36:07:01 21:35:14

BERT-Tiny 00:18:11 00:22:13

DistilBERT 26:54:40 19:10:18

ELECTRA-Tiny 07:41:02 14:38:43

MiniLM 13:35:01 12:47:20

RoBERTa 08:37:39 09:25:17

Total Time required 3 d 21 h 13 m 34 s 3 d 5 h 59 m 5 s

LLMs/URL Dataset

ALBERT 36:35:29 18:32:08

BERT-Tiny 00:14:58 00:48:46

DistilBERT 10:04:18 14:56:19

ELECTRA-Tiny 05:08:03 04:32:46

MiniLM 22:49:26 06:42:32

RoBERTa 06:31:53 07:17:41

Total Time required 3 d 9 h 24 m 7 s 2 d 4 h 50 m 12 s

Box 1. Example of an Email Order Confirmation.

Dear Robert Smith,
We’re excited to let you know that your recent order with NovaTech Electronics has been shipped
and is on its way to you! Your order number is 847291037, placed on 21 June 2025, and includes a
Logitech MX Master 3S Wireless Mouse—Graphite and an Anker 737 Power Bank (PowerCore 24K).
Your shipment is via Express (2–3 Business Days) with an estimated arrival on 26 June 2025. You
can track your package anytime here: https://www.amazon.com/progress-tracker/package/ref=
ppx_yo_mob_b_track_package?orderId=847291037 (accessed 23 September 2025).
Your payment method is Visa ending in 3129, and the total charged is $189.47. To download your
invoice, visit your account dashboard on NovaTech Electronics. If you have any questions or
concerns, please visit our Support Center or contact us at support@novatechelectronics.com.
Thank you for shopping with NovaTech Electronics—we appreciate your business and hope you
enjoy your new tech!

5.4. Distribution Error

This section analyzes misclassification patterns by reviewing the errors from the
top-performing models. The misclassification rate was calculated by the formula:

Error Distribution (%) = (1 − Accuracy) × 100 (8)

Applying this equation, the Random Forest classifier achieved the highest accuracy
of 99.59%, corresponding to an error rate of approximately 0.41%. While the SVM clas-
sifier performed similarly, attaining 99.54% accuracy (0.46% error rate). In contrast, the
DistilBERT model reached a slightly lower accuracy of 98.44%, equating to an error rate of
1.56% this higher error rate reflects the increased complexity of LLMs in handling nuanced
language structures. Figure 10 illustrates the distribution of errors across classes the green

https://www.amazon.com/progress-tracker/package/ref=ppx_yo_mob_b_track_package?orderId=847291037
https://www.amazon.com/progress-tracker/package/ref=ppx_yo_mob_b_track_package?orderId=847291037

Algorithms 2025, 18, 599 19 of 25

bars show correct predictions at high confidence levels. In contrast, red bars indicate
misclassified cases.

(a)

(b)

Figure 10. (a) Error Distribution for Top ML (RF); (b) Error Distribution for Top LLMs (DistilBERT).

6. Conclusions and Future Research Suggestions
6.1. Conclusions

This study investigated phishing email detection using standard ML models and
transformer-based-architecture LLMs. A combined dataset of 26,365 emails and 449,271 URLs,
collected from publicly available sources, was used to test both balanced and imbalanced
cases. The results reported here are based on imbalanced datasets, which reflect real-world
scenarios. Email and URL models were trained and fine-tuned separately to ensure accurate
evaluation and specialization. The investigation involved a comparison of several ML
models (Decision Tree, Random Forest, SVM, and Naïve Bayes) with lightweight LLMs
(DistilBERT, ALBERT, MiniLM, and RoBERTa). The models were evaluated based on pre-
cision, recall, F1 score, balanced accuracy, and overall accuracy. DistilBERT and ALBERT

Algorithms 2025, 18, 599 20 of 25

demonstrate strong performance among the LLMs, with accuracies of 0.9844 and 0.9797,
respectively. ML models like Random Forest and SVM had higher accuracies of 0.9947 and
0.9935 but were less effective in handling complex patterns in phishing emails. Naïve Bayes
had the lowest accuracy at 0.9521 and struggled with recall, misclassifying phishing emails.
These results were consistent across both email and URL datasets. Error analysis indicated
that ML models struggled with grammatical issues, mixed languages, and content with
HTML formatting. LLMs struggled with formal phrasing in their emails and common
phishing words, such as “password” and “click here.” However, URL-based phishing
detection was highly effective when the URLs could be extracted from the email content.
In conclusion, both approaches were practical, with LLMs having better context handling
and ML models providing high precision with lower computational demands.

6.2. Future Research Suggestions

Future work should focus on testing phishing detection models in real-time email sys-
tems. This study evaluated models offline using static datasets. Deploying and monitoring
models in live environments would help assess their actual effectiveness and speed. Com-
bining ML models with LLMs through ensemble techniques may also improve detection
accuracy by leveraging their strengths together. Furthermore, including multimodal data
such as text, images, and metadata could further boost detection performance by providing
a deeper understanding of email content.

Author Contributions: Conceptualization, L.A. and W.M.; methodology, L.A., O.M.; software, L.A.;
validation, S.T., S.A. and Y.H.; formal analysis, O.M., L.A.; investigation, O.M., Y.H.; re-sources,
S.A., S.T.; data curation, W.M.; writing—original draft preparation, L.A., O.M.; writing—review and
editing, O.M., S.A.; visualization, L.A., Y.H.; supervision, S.T., O.M.; project administration, S.T.;
funding acquisition, S.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The datasets used and analyzed during this study are publicly available
from multiple repositories. The curated phishing email datasets can be accessed via Zenodo: https:
//zenodo.org/records/8339691 (accessed on 21 September 2025). An alternative source for phishing
email datasets is provided on Hugging Face: https://huggingface.co/datasets/zefang-liu/phishing-
email-dataset. Additionally, Human-LLM generated phishing and legitimate emails are available
on Kaggle: https://www.kaggle.com/datasets/francescogreco97/human-llm-generated-phishing-
legitimate-emails?select=llm-generated. The phishing URL dataset can be accessed through Mendeley
Data: https://data.mendeley.com/datasets/vfszbj9b36/1. All datasets are openly available for
research purposes.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AOL America Online
AUC Area Under the Curve
APWG Anti-Phishing Working Group
CyBOK Cyber Security Body Of Knowledge
DL Deep Learning
DT Decision Trees
FBI Federal Bureau of Investigation’s
HTML Hyper Text Markup Language
IC3 Internet Crime Complaint Center

https://zenodo.org/records/8339691
https://zenodo.org/records/8339691
https://huggingface.co/datasets/zefang-liu/phishing-email-dataset
https://huggingface.co/datasets/zefang-liu/phishing-email-dataset
https://www.kaggle.com/datasets/francescogreco97/human-llm-generated-phishing-legitimate-emails?select=llm-generated
https://www.kaggle.com/datasets/francescogreco97/human-llm-generated-phishing-legitimate-emails?select=llm-generated
https://data.mendeley.com/datasets/vfszbj9b36/1

Algorithms 2025, 18, 599 21 of 25

GPU Graphics Processing Unit
GUI Graphical User Interface
K-NN K-Nearest Neighbors
LLMs Large Language models
LR Logistic Regression
ML Machine Learning
NLP Natural Language Processing
RF Random Forest
ROC Receiver Operating Characteristic

Appendix A
This research used various publicly available datasets to detect phishing and legiti-

mate content. The datasets were sourced from trusted open-access repositories, including
Zenodo, Kaggle, Hugging Face, and Mendeley Data. Below is a summary of the datasets
analyzed. Email Datasets: Contain email texts labeled as either phishing or legitimate.

Table A1. Email Datasets from public resources.

No. Dataset Name Phishing Legitimate Total File Size

Zenodo

1 Enron 17,171 16,545 33,716 44.8 MB

2 Nigerian_Fraud 5186 6742 11,928 9.2 MB

3 LingSpam 481 2412 2893 9.3 MB

4 Nazario 1561 1454 3015 7.8 MB

5 SpamAssassin 1662 1135 2797 14.9 MB

6 TREC-06 3988 12,393 16,381 41.9 MB

Hugging Face

1 Phishing-huggingface 32,702 44,975 77,677 5.71 MB

Kaggle

1 LLMs-Generated Emails 1000 1000 2000 1.28 MB
Zenodo link: Phishing Email Curated Datasets (https://zenodo.org/records/8339691, accessed
21 September 2025). Hugging Face link: zefang-liu/phishing-email-dataset·Datasets at Hugging Face
(https://huggingface.co/datasets/zefang-liu/phishing-email-dataset). Kaggle link: Human-LLM generated
phishing-legitimate emails (https://www.kaggle.com/datasets/francescogreco97/human-llm-generated-
phishing-legitimate-emails?select=llm-generated).

URL dataset: Contains website URLs labeled as either phishing or legitimate.

Table A2. URL Dataset from public resources.

No. Dataset Name Phishing Legitimate Total File Size

Mendeley Repository

1 URL Dataset 104,438 345,738 450,176 8.79 MB
Mendeley Repository link: Phishing URL dataset-Mendeley Data (https://data.mendeley.com/datasets/vfszbj9b36/1).

Appendix B
Feature extraction converts raw data into meaningful representations that machine

learning models can use effectively. By identifying key patterns while minimizing noise
and redundancy, well-designed features enhance model accuracy and interpretability. In
phishing detection, extracting structured features from unstructured emails or URLs, such
as lexical, syntactic, and semantic attributes, helps models better distinguish between

https://zenodo.org/records/8339691
https://huggingface.co/datasets/zefang-liu/phishing-email-dataset
https://www.kaggle.com/datasets/francescogreco97/human-llm-generated-phishing-legitimate-emails?select=llm-generated
https://www.kaggle.com/datasets/francescogreco97/human-llm-generated-phishing-legitimate-emails?select=llm-generated
https://data.mendeley.com/datasets/vfszbj9b36/1

Algorithms 2025, 18, 599 22 of 25

legitimate and malicious content. All features used for phishing detection in this study are
summarized in the table below.

Table A3. Feature Categories for Email Classification.

No. Feature Description

1 Length of URL Total length of the URL string.

2 Number of dots in the URL Counts the number of periods in the URL that might indicate subdomains
or unusual domain names.

3 Number of slashes in the URL The count of slashes in the URL, excluding the protocol
(http://or https://).

4 Presence of ‘www’ Checks whether “www” is present in the domain.

5 Presence of HTTP/HTTPS Identifies if the URL starts with “http” or “https”.

6 Presence of a query string (?) Checks for a query string in the URL, which indicates phishing
attempt parameters.

7 Presence of a fragment (#) Indicates if the URL contains a fragment, which is often used in phishing
attempts to confuse users.

8 Number of query parameters Counts the number of query parameters in the URL (indicated by ? and &).

9 Domain name length Length of the domain name (excluding protocol and path).

10 Number of subdomains Counts the number of subdomains in the URL’s domain. More
subdomains might suggest a suspicious URL.

11 Presence of a port number Indicates if the domain contains a port number (e.g., example.com:8080).

12 Presence of an IP address Detects if the domain is an IP address rather than a domain name, which is
often used in phishing.

13 Number of uppercase letters Counts the uppercase letters in the URL, as phishing URLs sometimes use
unusual capitalization.

14 Number of digits Counts the number of digits in the URL, often used in phishing attempts to
mimic legitimate URLs.

15 Presence of special characters Counts the special characters, which could be used to mislead
or confuse users.

16 Top-level domain (TLD) length The length of the top-level domain (e.g., .com, .org) can be indicative of
domain legitimacy.

17 Length of the domain name Length of the domain name without subdomains.

18 Length of the path The length of the URL path after the domain.

19 Number of parameters in the path Counts how many parameters are in the URL path, often used in phishing
to mask malicious content?

20 Number of subdirectories in the path Identifies how many subdirectories are in the URL path, often a
characteristic of phishing sites.

21 Presence of a secure connection Checks if the URL uses HTTPS, indicating a secure connection
(or lack thereof).

22 Presence of login/register keyword Detects if the URL contains “login” or “register”, which might be used for
phishing login pages.

23 Number of underscores Counts the number of underscores in the URL, as phishing URLs may
contain underscores to imitate legitimate domains.

24 Presence of specific keywords
(login, admin, secure)

Flags URLs containing specific keywords often found in phishing attempts,
like “admin” or “login”.

25 Presence of file extensions Checks if the URL ends with specific file extensions (e.g., .php, .html),
common in phishing pages.

26 Presence of a session ID Detects the presence of session identifiers in the URL, which could be used
in phishing attacks.

Algorithms 2025, 18, 599 23 of 25

Table A3. Cont.

No. Feature Description

27 Ratio of digits to characters Measures the ratio of digits to other characters in the URL, which can help
identify irregular or suspicious URLs.

28 Ratio of uppercase to lowercase letters Measures the ratio of uppercase to lowercase letters, as phishing URLs
often use odd capitalization patterns.

29 URL entropy (complexity) Measures the entropy (complexity) of the URL, which can indicate whether
the URL is randomly generated or suspiciously complex.

30 Presence of an email address Checks if the URL contains an email address, which is often seen in
phishing URLs to capture user data.

Appendix C
This study used a variety of traditional machine learning classifiers, each with different

learning strategies and strengths. By applying this range of models, we aimed to capture
different perspectives in classification, evaluate their suitability for phishing detection
tasks, and establish reliable baselines for comparison with advanced methods such as large
language models.

Table A4. Description of ML Models.

ML Models Description

Decision Tree (DT) A nonparametric model that classifies data by recursively splitting it into nodes based
on impurity measures, ending with tree building and pruning phases.

Logistic Regression (LR) A simple, widely used model for binary classification based on the logit function.

Random Forest (RF) An ensemble model of multiple decision trees, where each tree votes for the most
common class using randomly selected data and attributes.

Naïve Bayes (NB) A probabilistic classifier based on Bayes’ theorem, assuming that all features are
independent. It is efficient, especially with large datasets.

Gradient Boosting (GB) An ensemble model that builds predictors sequentially, with each new model correcting
errors from the previous ones. It is powerful but sensitive to overfitting.

K-Nearest Neighbors (KNN) A distance-based classifier that labels data using the majority vote of the K nearest
neighbors, known for its simplicity and efficiency.

Support Vector Machine (SVM) A supervised ML algorithm that finds the optimal hyperplane to classify data points by
maximizing the margin between different classes.

Appendix D
This appendix provides a summary of transformer-based LLMs used in phishing

email detection studies. The models vary in size and architecture: some are smaller and
faster, while others are larger and more effective at capturing contextual information. The
table below outlines each model’s main features and includes links to its official Hugging
Face page for further details.

Table A5. LLM Architecture Details.

Model Name Size Architecture Details Hugging Face References

ALBERT ~12 M parameters
Shares parameters across all 12 layers and uses
factorized embeddings (128 embedding size, 768
hidden size). Reduces redundancy and model size.

albert/albert-base-v2·Hugging Face
(https://huggingface.co/albert/
albert-base-v2)

BERT-Tiny ~4 M parameters
Minimal BERT variant with only 2 layers, 128
hidden size, and 2 attention heads. Designed for
extremely lightweight tasks

prajjwal1/bert-tiny·Hugging Face
(https://huggingface.co/prajjwal1
/bert-tiny)

https://huggingface.co/albert/albert-base-v2
https://huggingface.co/albert/albert-base-v2
https://huggingface.co/prajjwal1/bert-tiny
https://huggingface.co/prajjwal1/bert-tiny

Algorithms 2025, 18, 599 24 of 25

Table A5. Cont.

Model Name Size Architecture Details Hugging Face References

DistilBERT ~66 M parameters

6-layer transformer distilled from BERT base (12
layers), with 768 hidden size. Offers ~97% of
BERT’s performance with a smaller size
and faster inference.

distilbert/distilbert-base-
uncased·Hugging Face
(https://huggingface.co/distilbert/
distilbert-base-uncased)

ELECTRA ~14 M parameters

12-layer transformer with 256 hidden size. Uses
replaced token detection (generator/discriminator
setup) for more sample-efficient
training than BERT.

google/electra-small-
generator·Hugging Face
(https://huggingface.co/google/
electra-small-generator)

MiniLM ~33 M parameters

12-layer transformer with a smaller hidden size
(384). Trained using knowledge distillation from
larger models. Balances speed
and performance well.

microsoft/MiniLM-L12-H384-
uncased·Hugging Face
(https://huggingface.co/microsoft/
MiniLM-L12-H384-uncased)

RoBERTa ~4 M parameters

A tiny version of RoBERTa trained on the IMDB
dataset. Consists of 2 transformer layers, 128
hidden size and is designed for fast and
lightweight tasks.

AntoineB/roberta-tiny-
imdb·Hugging Face
(https://huggingface.co/AntoineB/
roberta-tiny-imdb)

References
1. Ripa, S.P.; Islam, F.; Arifuzzaman, M. The emergence threat of phishing attack and the detection techniques using machine

learning models. In Proceedings of the 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0
(ACMI), Online, 8–9 July 2021; pp. 8–9.

2. Rashed, S.; Ozcan, C. A Comprehensive Review of Machine and Deep Learning Approaches for Cyber Security Phishing Email
Detection. Al-Iraqia J. Sci. Eng. Res. 2024, 3, 1–12. [CrossRef]

3. Mittal, K.; Gill, K.S.; Chauhan, R.; Joshi, K.; Banerjee, D. Blockage of Phishing Attacks Through Machine Learning Classification
Techniques and Fine Tuning its Accuracy. In Proceedings of the 2023 3rd International Conference on Smart Generation
Computing, Communication and Networking (SMART GENCON), Bangalore, India, 29–31 December 2023; pp. 1–5.

4. Kaddoura, S.; Alfandi, O.; Dahmani, N. A Spam Email Detection Mechanism for English Language Text Emails Using Deep
Learning Approach. In Proceedings of the 2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), Bayonne, French, 10–12 June 2020; pp. 193–198.

5. Koide, T.; Fukushi, N.; Nakano, H.; Chiba, D. Detecting Phishing Sites Using ChatGPT. arXiv 2023, arXiv:2306.05816. [CrossRef]
6. Franchina, L.; Ferracci, S.; Palmaro, F. Detecting phishing e-mails using text mining and features analysis. CEUR Workshop Proc.

2021, 2940, 106–119.
7. Salloum, S.; Gaber, T.; Vadera, S.; Shaalan, K. A Systematic Literature Review on Phishing Email Detection Using Natural

Language Processing Techniques. IEEE Access 2022, 10, 65703–65727. [CrossRef]
8. CyBOK. University of Bristol. The Cyber Security Body of Knowledge (Version 1.1). 2021. Available online: https://www.cybok.

org/knowledgebase1_1/ (accessed on 30 May 2025).
9. Chanti, S.; Chithralekha, T. A literature review on classification of phishing attacks. Int. J. Adv. Technol. Eng. Explor. 2022, 9,

446–476. [CrossRef]
10. Do, N.Q.; Selamat, A.; Krejcar, O.; Herrera-Viedma, E.; Fujita, H. Deep Learning for Phishing Detection: Taxonomy, Current

Challenges and Future Directions. IEEE Access 2022, 10, 36429–36463. [CrossRef]
11. Aljofey, A.; Jiang, Q.; Qu, Q.; Huang, M.; Niyigena, J.P. An effective phishing detection model based on character level

convolutional neural network from URL. Electronics 2020, 9, 1514. [CrossRef]
12. Al-Subaiey, A.; Al-Thani, M.; Abdullah Alam, N.; Antora, K.F.; Khandakar, A.; Uz Zaman, S.A. Novel interpretable and robust

web-based AI platform for phishing email detection. Comput. Electr. Eng. 2024, 120, 109625. [CrossRef]
13. Anti-Phishing Working Group. Phishing Activity Trends Report 4th Quarter 2023. 2023. Available online: https://docs.apwg.

org/reports/apwg_trends_report_q4_2023.pdf (accessed on 3 March 2025).
14. SLASHNEXT. The State of Phishing 2023. Available online: https://slashnext.com/wp-content/uploads/2023/10/SlashNext-

The-State-of-Phishing-Report-2023.pdf (accessed on 6 March 2025).
15. Jaya, T.; Kanyaharini, R.; Navaneesh, B. Appropriate Detection of HAM and Spam Emails Using Machine Learning Algorithm.

In Proceedings of the 2nd IEEE International Conference on Cognitive Informatics, ACCAI 2023, Washington, DC, USA,
18–20 August 2023.

https://huggingface.co/distilbert/distilbert-base-uncased
https://huggingface.co/distilbert/distilbert-base-uncased
https://huggingface.co/google/electra-small-generator
https://huggingface.co/google/electra-small-generator
https://huggingface.co/microsoft/MiniLM-L12-H384-uncased
https://huggingface.co/microsoft/MiniLM-L12-H384-uncased
https://huggingface.co/AntoineB/roberta-tiny-imdb
https://huggingface.co/AntoineB/roberta-tiny-imdb
https://doi.org/10.58564/ijser.3.3.2024.219
https://doi.org/10.48550/arXiv.2306.05816
https://doi.org/10.1109/ACCESS.2022.3183083
https://www.cybok.org/knowledgebase1_1/
https://www.cybok.org/knowledgebase1_1/
https://doi.org/10.19101/ijatee.2021.875031
https://doi.org/10.1109/ACCESS.2022.3151903
https://doi.org/10.3390/electronics9091514
https://doi.org/10.1016/j.compeleceng.2024.109625
https://docs.apwg.org/reports/apwg_trends_report_q4_2023.pdf
https://docs.apwg.org/reports/apwg_trends_report_q4_2023.pdf
https://slashnext.com/wp-content/uploads/2023/10/SlashNext-The-State-of-Phishing-Report-2023.pdf
https://slashnext.com/wp-content/uploads/2023/10/SlashNext-The-State-of-Phishing-Report-2023.pdf

Algorithms 2025, 18, 599 25 of 25

16. Khalid, A.; Hanif, M.; Hameed, A.; Smiee, Z.A.; Alnfiai, M.M.; Alnefaie, S.M.M. LogiTriBlend: A Novel Hybrid Stacking Approach
for Enhanced Phishing Email Detection Using ML Models and Vectorization Approach. IEEE Access 2024, 12, 193807–193821.
[CrossRef]

17. Bagui, S.; Nandi, D.; Bagui, S.; White, R.J. Machine Learning and Deep Learning for Phishing Email Classification using One-Hot
Encoding. J. Comput. Sci. 2021, 17, 610–623. [CrossRef]

18. An, P.; Shafi, R.; Mughogho, T.; Onyango, O.A. Multilingual Email Phishing Attacks Detection Using OSINT and Machine
Learning. arXiv 2025, arXiv:2501.08723. [CrossRef]

19. Sengar, S.S.; Hasan ABin Kumar, S.; Carroll, F. Generative artificial intelligence: A systematic review and applications. Multimed.
Tools Appl. 2024, 84, 23661–23700. [CrossRef]

20. Bengesi, S.; El-Sayed, H.; Sarker, M.K.; Houkpati, Y.; Irungu, J.; Oladunni, T. Advancements in Generative AI: A Comprehensive
Review of GANs, GPT, Autoencoders, Diffusion Model, and Transformers. IEEE Access 2024, 12, 69812–69837. [CrossRef]

21. Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A Survey on Vision Transformer.
IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 87–110. [CrossRef]

22. Ahmed, N.; Khomh, F. Data Cleaning and Machine Learning: A Systematic Literature Review. Autom. Softw. Eng. 2024, 31, 54.
[CrossRef]

23. Zhan, Z. Comparative Analysis of TF-IDF and Word2Vec in Sentiment Analysis: A Case of Food Reviews. In Proceedings of the
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024), Nanjing, China,
6–8 December 2024; p. 02013.

24. Elkholy, M.; Sabry, M.; Elbehiery, H. An Efficient Phishing Detection Framework Based on Hybrid. Sustain. Mach. Intell. J. 2025,
11, 11–19. [CrossRef]

25. Mahendru, S.; Networks, P.A. SecureNet: A Comparative Study of DeBERTa and Large Language Models for Phishing Detection.
In Proceedings of the 2024 IEEE 7th International Conference on Big Data and Artificial Intelligence (BDAI), Beijing, China,
5–7 July 2024; pp. 160–169.

26. Wood, T.; Basto-fernandes, V.; Boiten, E.; Yevseyeva, I. Systematic Literature Review: Anti-Phishing Defences and Their
Application to Before-the-Click Phishing Email Detection. arXiv 2022, arXiv:2204.13054. [CrossRef]

27. Jamal, S.; Wimmer, H.; Sarker, I.H. An improved transformer-based model for detecting phishing, spam and ham emails: A large
language model approach. Secur Priv. 2024, 7, e402. [CrossRef]

28. Karim, A.; Shahroz, M.; Mustofa, K.; Belhaouari, S.B.; Joga, S.R.K. Phishing Detection System Through Hybrid Machine Learning
Based on URL. IEEE Access 2023, 11, 36805–36822. [CrossRef]

29. Raiaan, M.A.K.; Mukta, M.S.H.; Fatema, K.; Fahad, N.M.; Sakib, S.; Mim, M.M.J.; Ahmad, J.; Ali, M.E.; Azam, S. A Review
on Large Language Models: Architectures, Applications, Taxonomies, Open Issues and Challenges. IEEE Access 2024, 12,
26839–26874. [CrossRef]

30. Khan, S.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in Vision: A Survey. ACM Comput. Surv. 2022, 54,
1–30. [CrossRef]

31. Naveed, H.; Khan, A.U.; Qiu, S.; Saqib, M.; Anwar, S.; Usman, M.; Akhtar, N.; Barnes, N.; Mian, A. A Comprehensive Overview
of Large Language Models. ACM Trans. Intell. Syst. Technol. 2025, 16, 1–72. [CrossRef]

32. Wang, D.; Li, Y.; Jiang, J.; Ding, Z.; Luo, Z.; Jiang, G.; Liang, J.; Yang, D. Tokenization Matters! Degrading Large Language Models
through Challenging Their Tokenization. arXiv 2025, arXiv:2405.17067. [CrossRef]

33. Lu, Y.; Ji, Z.; Du, J.; Shanqing, Y.; Xuan, Q.; Zhou, T. From LLM-anation to LLM-orchestrator: Coordinating Small Models for Data
Labeling. arXiv 2025, arXiv:2506.16393. [CrossRef]

34. Jung, V.; van der Plas, L. Understanding the effects of language-specific class imbalance in multilingual fine-tuning. In Proceedings
of the EACL 2024—18th Conference of the European Chapter of the Association for Computational Linguistics Find EACL 2024,
St. Julian’s, Malta, 17–22 March 2024; pp. 2368–2376.

35. Zia, M.F.; Heath, M.; Heath, M. Web Phishing Net (WPN): A scalable machine learning approach for real-time phishing campaign
detection. arXiv 2025, arXiv:2502.13171. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2024.3518923
https://doi.org/10.3844/jcssp.2021.610.623
https://doi.org/10.48550/arXiv.2501.08723
https://doi.org/10.1007/s11042-024-20016-1
https://doi.org/10.1109/ACCESS.2024.3397775
https://doi.org/10.1109/TPAMI.2022.3152247
https://doi.org/10.1007/s10515-024-00453-w
https://doi.org/10.61356/SMIJ.2025.11525
https://doi.org/10.48550/arXiv.2204.13054
https://doi.org/10.1002/spy2.402
https://doi.org/10.1109/ACCESS.2023.3252366
https://doi.org/10.1109/ACCESS.2024.3365742
https://doi.org/10.1145/3505244
https://doi.org/10.1145/3744746
https://doi.org/10.48550/arXiv.2405.17067
https://doi.org/10.48550/arXiv.2506.16393
https://doi.org/10.48550/arXiv.2502.13171

	Introduction
	Research Objectives
	Materials and Methods
	Overview of Dataset Collection
	Data Processing
	Text Cleaning and Normalization
	Data Preparation for ML
	Data Preparation for LLMs

	Model Selection for ML and LLMs
	Data Splitting
	Evaluation Metrics
	Experimental Configuration
	ML Model Training Configuration
	LLM Training Configuration

	A Pipeline for Phishing Email Detection Using Vectorization and Tokenization

	Results
	Results for ML Approaches
	Email Content Analysis Using ML
	URL Content Model Analysis Using ML
	ROC Curves of ML Models on Email and URL Data

	Results for LLMs Approaches
	Email Content Analysis Using LLMs
	URL Content Analysis Using LLMs
	ROC Curves of LLMs on Email and URL Data

	Analysis of Misclassifications
	Prediction Error Analysis
	Prediction Error in ML Models
	Prediction Errors in LLMs

	Impact of Dataset Balancing on Accuracy
	Impact of Dataset Size on Real-Time

	Discussion
	Comparative the Effectiveness of ML and LLMs
	Computational Training Demands ML vs. LLMs
	Handling Complexity Content
	Distribution Error

	Conclusions and Future Research Suggestions
	Conclusions
	Future Research Suggestions

	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

