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 Channel propagation models are essential in developing efficient wireless 

communication networks. Indoor propagation relies on the nature of the 

surrounding environment. Therefore, many researchers have provided 

different ways for effective propagation modeling and received power 

prediction. In this paper, ray-tracing-based site-specific propagation models 

are presented. The actual measurements are obtained using many wireless 

access points (AP) based on IEEE 802.11 with different technologies a/b/g 

and n as transmitters and mobile phone with a proposed mobile application 

used as a receiver to collect the power at different locations called reference 

points (RPs), these measurements are done without the existence of people 

movement. The simulation results are obtained using wireless InSite 

simulator depends on 3D shoot and bounce ray (SBR) method. The 

simulation measurements are assessed by comparing it with the actual 

measurements and they analyze statistically such that the correlation 

coefficient R between them reaches up to 80% which is an indicator to an 

acceptable agreement. Path loss characteristic affected by the building 

materials and distance along the receiver’s route is evaluated. 
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1. INTRODUCTION 

The wireless communication systems depend on accurate propagation modeling to understand how 

radio signals behave in different environments. The complex nature of propagation channels, shaped by 

interactions between transmitted signals and surrounding objects, drives the need for efficient and reliable 

modeling techniques. A suitable method for propagation modelling must be specified for analyzing any 

wireless communication system, which encourages the researchers to develop many efficient ways for 

evaluating the radio propagation models in the indoor and outdoor environments. The propagation channel 

between two antennas is affected by a lot of interactions between the transmitted signals with the objects 

exist in the surrounding environment which can lead to path loss of the signals, where these interactions lead 

to define the pattern of path loss and shadowing in the field [1]. Commonly, there are many approaches used 
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for evaluating and describing the propagation channel. Stochastic models, which are considered preferential 

models when the propagation environment is unknown, the best cases to use these models, are in the radio 

channel modelling in an environment with just a general description like rural, urban and suburban 

environments. Statistical models, have several limitations, such that low accuracy and inapplicability in many 

emerging wireless systems like ultra-wide band (UWB) [2], [3]. Deterministic models which are performed 

by solving Maxwell equations. Ray tracing (RT) models are one of the most famous used models [4]–[6]. 

The shoot and bouncing rays (SBR) technique combined with the uniform theory of diffraction (UTD) form 

the RT propagation models which make the 3D SBR efficient propagation prediction tool for simulation [7]. 

In a lot of cases, especially in indoor environments, the accurate description of the propagation area 

is an evident need to avoid any confusion. RT methods for site-specific propagation modeling gives helped 

provide solutions for indoor propagation channel modeling and SBR method is considered a robust method 

for predicting the received signal strength indicator (RSSI) and path loss with defined parameters like the 

materials of the building and its geometry. The signal is launched from the transmitter (Tx) and received by 

a particular receiver (Rx), its quality is affected by the environmental architecture, and it is affected by 

people's movements and material types in the environment [8]–[10]. Path loss is formed due to the influence 

of the signal propagation characteristics by different factors like obstacles and wave reflection from objects 

[11]. SBR method gives accurate results when the interest environment is specified very well. 

There are many researchers who have discussed the 3D RT approach, see Table 1, because it is 

considered a very important topic. Table 1 shows various studies that discussed the 3D RT approach. In this 

paper, two proposed methods are used for the collection and prediction of the RSSI measurements, such that 

a proposed mobile application is used to collect real RSSI measurements. In addition, the simulation was 

performed through 3D SBR for indoor field signal strength prediction with 2.4 GHz and 5 GHz frequencies. 

The study area is a part of the second floor of the engineering college at An-Najah National University, 

Palestine. The simulation predictions are compared with the actual measurement values, and a sensible 

agreement is observed. 
 
 

Table 1. Recent studies on the 3D RT approach 

Ref. Year 
Indoor 

propagation model 
Environment area Method Data collection method 

Estimation 

error 

[4] 2022 RT model and 

multiwall model 

Three environments: sports 

hall, office building, and a 

long corridor 

Bluetooth Actual measurement, 

wireless InSite simulator 

N/A 

[12] 2023 Ray-based channel 

model 

Indoor industrial scenarios Tuning ray-

based model 

Measurement 

campaigns/simulations 

N/A 

[13] 2020 Ray-tracing 
approach 

University building Wi-Fi Wireless InSite simulator N/A 

[14] 2020 Ray-tracing 

approach 

Meeting room Radiation 

pattern of LEDs 

Actual measurement, 

OpticStudio 

MSE=2% 

 
 

The organization of this paper is as follows: in section 2 a review of the related work is introduced. 

Propagation channel characteristics are discussed in section 3. Section 4 introduces the proposed approaches 

for data collection for indoor radio signal prediction measurements. In section 5, the results and validation are 

discussed, and then conclusions are drawn in section 6. 

In recent years, radio frequency propagation models have been one of the major interesting research 

subjects due to the rapid development of new wireless communication systems. Therefore, many researchers 

have introduced various studies on this topic. Dama et al. [15] introduce the use of shoot-and-bounce ray-

tracing techniques for MIMO systems, specifically 2.4 GHz and 5 GHz indoor environments. A 3D SBR 

simulator was used to stimulate the received power in an indoor environment, in addition to introducing a 

comparison between the actual and simulation measurements, and a detailed explanation of the effects of the 

building materials on the signal strength was also introduced [16]. Moreover, according to Sheikh et al. [17], 

RT simulation was executed and the response of the spatial angular impulse of the channel in an indoor 

environment and the impact of transmitters location on the path loss were analyzed, their results showed a 

good agreement between the simulated and the measured path loss such that the root mean square error 

(RMSE) between them is around 2.6 dB and 2.9 dB. Besides, Manan et al. [18] used the 3D SBR method for 

line of sight (LOS) and non-line of sight (NLOS) simulation and investigated the effect of many different 

frequencies on Wi-Fi system performance in an indoor space, in addition, path loss and received power are 

used to evaluate the system performance such that path loss will increase in high frequencies whereas the 

received power drops. Bhatia et al. [12], discusses the RT technique in modeling indoor radio wave 

propagation and verifies the results by comparing the results with measurement data achieving a reduced 

RMSE. The investigation by Abdulwahid et al. [13], has been achieved by using ray-tracing approach-based 
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wireless InSite software and the effect of building material on the utilized 2.4 GHz. Recent studies have 

examined how human presence affects indoor radio wave propagation, with findings showing that even small 

movements can lead to significant variations in signal strength. These fluctuations are particularly important 

because they can cause errors in localization systems that depend on consistent signal measurements [19]. 

For example, the movement of people within a room can disrupt radio wave patterns, which can affect the 

accuracy of tracking or positioning technologies. To address these challenges, some researchers have turned 

to hybrid models that combine traditional RT methods with machine learning techniques. These models offer 

a promising way to enhance the accuracy of signal predictions while reducing the computational load. By 

integrating the detailed simulations of RT with the flexibility of machine learning algorithms, they provide a 

more adaptive approach to indoor positioning systems (IPS), which can adjust in real-time to changes in the 

environment [20]. Additionally, a well-specified area of interest is considered one of the most critical factors 

for an accurate propagation model for the location estimation process in an indoor environment. Liao [21], 

Mohammed et al. [22], provide a detailed explanation of the material and environmental effects on Wi-Fi 

received signal strength, concluding that metal is a significant contributor to signal strength fluctuations, 

while insulators like wood and plastic contribute to the reduction in signal strength. 

The earlier mentioned studies discuss the RT propagation model without introducing big attention to 

the actual measurements [15]-[18]. On the other hand, in this paper, the contributions in the followings: 

a. Two proposed data collection methods for indoor radio signal prediction as follow, 

− A proposed mobile application, such that by the development of information technology, the smartphone 

have become more and more popular and efficient to be used. 

− 3D SBR simulation method using the wireless InSite simulator. 

b. Evaluation of the received power and the path loss is introduced in terms of the building material type and 

distance in the receiver route. 

c. Achieve a good level for two of the most critical requirements in indoor radio signal prediction which are 

precision and speed. 

 

 

2. RELATED WORK 

2.1.  Overview 

IPS have become an essential aspect of modern wireless communication networks, particularly in the 

context of 5G and beyond. Numerous research efforts have been devoted to improving the accuracy and 

efficiency of these systems. This chapter reviews the relevant literature on indoor positioning and radio 

propagation modeling, focusing on recent advancements in methodologies such as RT, neural networks, and 

data-driven approaches. 

 

2.2.  Fingerprinting-based indoor positioning systems 

Fingerprinting techniques are widely used in indoor positioning due to their robustness in complex 

environments. Sulaiman et al. [10] explored radio map generation approaches for RSSI-based IPS using 

biharmonic spline interpolation (BSI) and the wireless InSite simulator. Their findings highlight the 

effectiveness of combining simulation-based methods with interpolation techniques to enhance radio map 

accuracy. Similarly, Kharmeh et al. [23] developed a Wi-Fi beacon dataset using autonomous robots for 3D 

location estimation, demonstrating the potential of robotic platforms in creating high-quality datasets for 

fingerprinting applications. Sulaiman et al. [24] further examined artificial neural networks (ANNs) for 

location estimation, leveraging semi-interpolated databases to address data sparsity. This study showcased 

the advantages of feed-forward backpropagation neural networks and generalized regression neural networks 

in improving fingerprinting performance. 

 

2.3.  Ray tracing for indoor propagation modeling 

RT has emerged as a powerful tool for simulating indoor radio propagation. Hossain et al. [25], 

Hossain et al. [26] conducted extensive studies on 3D RT methods for predicting radio propagation at 28 

GHz and 4.5 GHz, respectively. Their research validated the accuracy of RT models through empirical 

measurements, emphasizing their applicability in 5G networks. Zhang et al. [27] introduced WiSegRT, a 

dataset for site-specific indoor radio propagation modeling using 3D segmentation and differentiable RT. 

This approach integrates advanced data processing techniques with RT, providing a comprehensive 

framework for indoor radio modeling. Li et al. [28] proposed a dynamic 3D indoor radio propagation model 

incorporating wall obstructions. Their work demonstrated the flexibility of 3D RT in adapting to dynamic 

indoor environments. Additionally, Pyo et al. [29] leveraged deep learning techniques to enhance RT 

accuracy, bridging the gap between traditional modeling and machine learning. 
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2.4.  Enhancements in ray tracing algorithms 

Several studies have focused on optimizing RT algorithms for indoor environments. Rautiainen et 

al. [30] compared 3D and 2D RT schemes, highlighting the superior accuracy of 3D methods in channel 

characterization. Okamura et al. [31] utilized 3D point cloud data to reconstruct indoor models for RT 

simulations, emphasizing the importance of precise environment modeling. Zeng and Shi [32] investigated 

convergence analysis in 3D RT algorithms, proposing enhancements to improve computational efficiency. 

Similarly, Louro et al. [33] combined building information modeling (BIM) with RT for 5G indoor radio 

coverage planning, showcasing the potential of integrating architectural models with simulation tools. 

 

2.5.  Applications in 5G and beyond 

RT techniques have found extensive applications in 5G networks, particularly for millimeter-wave 

frequencies. Dong et al. [34] conducted simulations on 3D beamforming systems, addressing challenges 

related to co-channel interference and link blockages. Yuji et al. [35] explored millimeter-wave propagation 

in urban multi-cell scenarios, utilizing 3D RT for system-level simulations. In the context of MIMO systems, 

Kazemi et al. [36] modeled indoor propagation at 60 GHz using shoot-and-bounce RT techniques. Their 

results underscored the significance of precise modeling in achieving accurate MIMO channel 

characterizations. 

 

2.6.  Emerging trends and challenges 

Emerging research trends in IPS include integrating machine learning with RT, as demonstrated by 

Fathollahi et al [37], and developing datasets for specific applications, such as Zhang et al. [27]. However, 

challenges remain in balancing computational complexity with accuracy and scalability in large-scale indoor 

environments. 

 

2.7.  Summary 

This chapter reviewed the state-of-the-art in IPS and radio propagation modeling. From 

fingerprinting techniques to advanced RT methods and applications in 5G, the literature highlights the 

continuous evolution of methodologies to meet the demands of modern wireless communication networks. 

The next chapter will delve into the methodologies adopted for this study, building on the insights gained 

from this literature review. 

 

 

3. PROPAGATION CHANNEL CHARACTERISTICS 

There exist different reasons tha t  affect the radio signals in the indoor environment, like 

reflection, diffraction, the people's motion, and the material types of the objects in the surrounding. These 

reasons lead to a reduction in received power, which is called by path loss. Therefore, the received power and 

the path loss are very important characteristics to study. 

 

3.1.  Path loss models 

Path loss is a measure of the attenuation in the signals transmitted from the Tx to Rx. Log-distance path 

loss model [38], [39] is widely used since it covers the main propagation aspects and gives reasonable results: 
 

𝑃𝐿(𝑑)  =  𝑃𝐿0 +  10𝑛𝑙𝑜𝑔(𝑑) (1) 
 

where, PL is path loss at reference distance usually one meter, n is the path loss exponent, and d is the distance 

between Tx and Rx (m). To compute the reference path loss, apply the free space Friis formula [40] as shown in (2): 
 

𝑃𝐿𝑑0=20𝑙𝑜𝑔10(4𝜋𝑓/𝑐)+20𝑙𝑜𝑔10(𝑑0)−𝐺𝑇−𝐺𝑅 (2) 
 

where f is the frequency, c is the speed of light, GT is the transmitter gain, and Gr is the receiver gain. 

 

3.2.  Received power 

The received power is the amount of power received by a specific receiver from a transmitter; it 

can be computed as given in (3), such that it is the power for each ray path combined with the time average 

received power [18]. This parameter is used in a huge number of applications, such as in the indoor location 

estimation domains [41], [42], 
 

𝑃𝑅 =  𝛴𝑁𝑝 𝑃𝑖 (3) 
 

where 𝑁𝑝  is the number of paths and 𝑃𝑖  is the time average power for the 𝑖𝑡ℎ path. 
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4. PROPOSED APPROACH 

In this section, two different data collection approaches for indoor radio signal prediction 

measurements are introduced. 

 

4.1.  Actual measurements 

RSSI readings are used to derive an important propagation channel characteristic, which is the path 

loss, that determines the relationship between the received signal power and the distance. During the actual 

data collection phase, RSSI samples are collected at known positions in a duration of time and then saved in a 

radio map, these positions are named reference points (RPs). The actual measurements are performed on the 

2nd floor of the engineering college building at An-Najah National University. 

The physical model is carried out in a square corridor with four routes, divided into 1.35 m space, 

lead to 64 RP locations for covering all the area. Tx is located 1.5 m above the floor. A mobile phone is 

used as Rx, it is fixed on a one-meter stand and moved along the corridors. The used mobile phone collects 

the received power values using a proposed mobile application. Multiple copies of the RSSI sample are 

collected at each RP from the available access points (AP). The RSSI samples in (dBm) with other related 

data like section name which is the name of the area containing the RP. AP name is the name of the AP that 

transmits the power. AP mac address is a physical address used as a unique identifier for the AP. Time is the 

timestamp when each RSSI sample is collected. Sample number is the number of the recorded RSSI at a 

specific RP from reachable APs and (x, y) is the coordinates of the RPs are gathered to construct the radio 

map. Table 2 shows the structure of the recorded radio map. 
 

 

Table 2. Radio map structure 
Section 
name 

Point 
name 

RSSI 
value 

AP 
name 

AP mac address Time 
Sample 
number 

X-Y 
coordinates 

A a1 RSSIi,1 IndA 64:70:02:5d:c0:f5 1/25/2020 8:00:00 AM 1 (1, 1) 

 a2 RSSIi,2 IndB   2 (1, 4) 
 a3     3  

    64:70:02:5d:c1:c7 1/25/2020 11:23:00 AM   

 b1  OutA     
 b2    1/25/2020 12:10:00 PM 1  

    f0:5c:19:47:6e:d0  2  

   Extra C    (3, 1) 
    e8:de:27:bc:92:b0   (3, 4) 

        

    60:e3:27:7a:0b:7b  1  
D d1 RSSIi,n Tplink d     

 

 

The study area covers 37×32 m. There are seventeen AP based on IEEE 802.11 a, b, g, and n standards 

(three of them are dual-band) which are distributed in the study area. The number of RSSI samples can vary a lot 

between the RPs, such that the maximum number of RSSI samples at each RP is set to be 60 samples from each 

AP. The stronger RSSI value the more samples are received. Figure 1 shows the relation between the number of 

samples received from a specific Tx and the average signal strength received from it during a period of time. 
 
 

 
 

Figure 1. Relationship between the number of samples received from Tx and the average signal strength 

during a time period 
 

 

Some processing steps are executed for the radio map to be ready for use in different domains. The 

purpose of applying these steps is to mitigate the required storage memory of the radio map and to reduce the 

computational cost when using the radio map for any purpose. Storing only the mean of 𝑟𝑖𝑗 in the radio map 

is considered a very common way as a processing method [43]. 
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𝑟̅𝑖𝑗 =
1

|𝑟𝑖𝑗|
∑ 𝑟𝑖𝑗

𝑡|𝑟𝑖𝑗|

𝑡=1  (4) 

 

where 𝑟𝑖𝑗  is length (𝑟𝑖𝑗), 𝑟𝑡 is 𝑡𝑡ℎ the element of the list 𝑟𝑖𝑗 . 

Due to the possibility to appear some outliers in RSSI samples since it is not a typical environment. 

It is important to measure the variance of the RSSI samples at each RP. Variance is a statistical measurement 

that reflects the variation between the collected RSSI samples. Therefore, the radio map also can be extended 

to store the variance of the RSSI samples such that the variance of 𝑟𝑖𝑗 is given by (5). 
 

𝜎𝑖𝑗
2 =

1

|𝑟𝑖𝑗|
∑ (𝑟𝑖𝑗

𝑡 − 𝑟̅𝑖𝑗)2|𝑟𝑖𝑗|

𝑡=1  (5) 

 

4.2.  Simulation measurements 

Simulation is performed using 3D SBR technique using wireless InSite software [44] for the actual 

study area. The construction of the simulation model has the same physical characteristics as the actual case 

clarified in the previous section, as shown in Figure 2. Specification for the area of interest for an accurate 

indoor radio signal prediction, such that the effect of the building material is considered an important factor 

affecting the prediction results. Table 3 shows the properties and the types of the materials used in the 

simulation model [12]. 
 

 

 
 

Figure 2. 2D floor layout 
 

 

Table 3. The used materials in the simulation model 
Type Material Thickness (cm) Density (Kg/m3) Permittivity Conductivity 

Ceiling, floor Concrete 30 2400 5.31 0.066 

Walls Brick 28 1500-1800 3.75 0.038 

Door Wood 4.5 500-720 1.99 0.012 

Windows Glass 0.3 2500 6.27 0.012 

 

 

The receivers are set as a route in the four sections of the corridor (64 Rx), and 17 Tx (3 of them dual 

band (2.4 GHz and 5 GHz) are distributed as shown in Figure 2, red cubic represent the Rx and the green dots 

is Tx. The threshold for the receiver’s sensitivity is determined to be -250 dBm, the properties of Tx and Rx 

antenna are illustrated in Table 4. 
 
 

Table 4. Properties of Tx and Rx antenna 

Properties 
Omnidirectional 

Tx  Rx 

Waveform Sinusoid Sinusoid 
Input power (dBm) 20 - 

Temperature (K) 293 293 

Receiver threshold -250 -250 

Polarization Vertical Vertical 
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5. VALIDATIONS AND RESULTS 

After the processing steps are performed to the actual measurements, the average of the collected 

number of RSSI sample measurements for each RP from each Tx is obtained, and the resulting variance 

is in the range of (0-3), which is an indicator to the accurate aggregation process. The APs are used at 

different frequencies, 2.4 GHz and 5 GHz. The actual measurements are compared with the simulation 

measurements, and a good match between them is obtained. Figure 3 illustrates the relation between the actual 

and simulation measurements for five of the used APs. 

The graphs in Figures 3(a) to (d) are for four of the used APs with 2.4 GHz frequency. Figure 3(e) is for 

the AP with 5 GHz frequency. The relation between the results is analyzed statistically. The correlation coefficient 

(R) is a numerical measure of the strength of the relationship between two variables. R is computed as in (6): 
 

𝑅 =
𝑛 ∑ 𝑥𝑖𝑦𝑖−∑ 𝑥𝑖 ∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1

√(𝑛 ∑ 𝑥𝑖
2𝑛

𝑖=1 −(∑ 𝑥𝑖
𝑛
𝑖=1 )2)(𝑛 ∑ 𝑦𝑖

2𝑛
𝑖=1 −(∑ 𝑦𝑖

𝑛
𝑖=1 )2)

 (6) 

 

where x is the actual measurements, y is the simulation measurements, and n is the sample size. 
 
 

  

(a) (b) 
  

  
(c) (d) 

  

 
(e) 

 

Figure 3. The relation between the actual and the simulation measurements for; (a) AP 1, (b) AP2, (c) AP3,  

(d) AP 4, and (e) AP with 5 GHz frequency 

 

 

The correlation coefficient between the actual and simulation measurements in the four APs as 

shown in Figure 3 is 69%, 80%, 88%, 85%, and 80%, respectively, which is an indicator of an acceptable 

agreement between the real and simulation measurements. RT [45] and the different effects of the building 

materials, such that the glass has a small attenuation compared with concrete walls. Ray attenuation increases 

as wall thickness increases. Figure 4 illustrates the RT in the study area depending on using a Tx in the angle 

between sections B and C. 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 4, August 2025: 2935-2946 

2942 

It is obvious from the Figure 4 that the shorter paths tend to have higher signal strength, such that 

the paths with red colour tend to the strongest RSSI and the blue ones point to the longest paths, i.e., highest 

path loss, which leads to weak RSSI values. Transmitter location affects the received power value by the 

receiver, such that higher path loss will be generated with a large distance of Rx. small distances lead to 

reduce the path loss. Figure 5 illustrates the path losses against the distances along the four sections (A, B, 

C, and D) in the receiver's route. 
 

 

 
 

Figure 4. 3D SBR propagation model 
 

 

Figure 5(a) illustrates the path loss vs distance along route for 4 of the used APs placed in the 

corridor (section A), the lowest path loss is approximately from distance 0 to 20 m since the location of these 

Tx is the closest to the Rx points in this distance. Figure 5(b), shows the path loss in the indoor environment 

with 5 APs placed in the corridor (section B) such that the lowest path loss is approximately from distances 

20 to 40 m since the location of the transmitter B is closest to these points. In Figure 5(c) the distance from 

40 to 60 m has the minimum path loss since the points in this space is the closest to transmitters in section C. 

Finally, in Figure 5(d), the points have distances greater than 60, have the lowest path loss due to its 

closeness to the transmitters put in section D. 
 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 5. Path loss vs distance along route for; (a) 4 of the used APs placed in the corridor (section A), (b) 5 of 

the used APs placed in the corridor (section B), (c) 4 of the used APs placed in the corridor (section C), and  

(d) 4 of the used APs placed in the corridor (section C) 

 

 

A comparison between our approach and the different methods used in the state-of-the-art studies is 

conducted to justify the superiority of our proposed approach. 

− Study 1: according to Abdulwahid et al. [13], the investigation has been achieved by using ray-tracing 

approach-based wireless InSite software and the effect of building material on the utilized 2.4 GHz. On the 
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other hand, in this paper, the obtained simulation measurements were investigated by comparing them with 

the real measurements in addition to utilizing single-band and dual-band APs supported both 2.4 and 5 GHz. 

− Study 2: research by Bhatia et al. [12], presents tuning of a ray-based channel model for 5G indoor 

industrial scenarios, focusing on accurate propagation characterization. In contrast, this paper suggests 

our special mobile application to collect RSSI real measurements and used more than one frequency, 

which is 2.4 and 5 GHz, with obtaining accurate results as described before. 

Unlike other state of art studies, this paper introduces a proposed special mobile application for 

RSSI measurements collection using single-band and dual-band APs supported both 2.4 and 5 GHz and 

achieves a high correlation coefficient (R) reach to 80%, and evaluates the proposed simulation model by 

comparing it with the real measurements. 

 

 

6. CONCLUSION 

This paper introduces a mobile application designed to collect RSSI values and create a radio map with 

real-world RSSI measurements at different RPs within the study area. Additionally, a site-specific 3D SBR 

propagation model was implemented, offering a reliable estimation of channel propagation with an 

approximate error of 2.7. This method reduces computational effort, minimizes labor, and saves time in 

collecting and predicting RSSI measurements. To assess the accuracy of the model, a statistical analysis was 

conducted, showing a correlation coefficient (R) between 69% and 80%, which indicates a strong agreement 

between actual and simulated measurements. The study also examines how building materials and receiver 

distance affect received power values, contributing to path loss propagation. For future work, this approach 

could be extended to indoor positioning applications and tested in a larger study area. 
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