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Abstract 
Recurrence prediction in well-differentiated thyroid cancer remains a clinical challenge, necessitating more accurate and 
interpretable predictive models. This study investigates the use of a supervised CatBoost classifier to predict recurrence in 
well-differentiated thyroid cancer patients, comparing its performance against other ensemble models and employing Shapley 
Additive Explanations (SHAP) to enhance interpretability. A dataset comprising 383 patients with diverse demographic, clinical, 
and pathological variables was utilized. Data preprocessing steps included handling values and encoding categorical features. 
The dataset was split into training and testing sets using a 70:30 ratio. Model performance was evaluated using accuracy and 
area under the receiver operating characteristic curve. A comparative analysis was conducted with other ensemble methods, 
such as Extra Trees, LightGBM, and XGBoost. SHAP analysis was employed to determine feature importance and assess 
model interpretability at both the global and local levels. The supervised CatBoost classifier demonstrated superior performance, 
achieving an accuracy of 97% and an area under the receiver operating characteristic curve of 0.99, outperforming competing 
models. SHAP analysis revealed that treatment response (SHAP value: 2.077), risk stratification (SHAP value: 0.859), and lymph 
node involvement (N) (SHAP value: 0.596) were the most influential predictors of recurrence. Local SHAP analyses provided 
insight into individual predictions, highlighting that misclassification often resulted from overemphasizing a single factor while 
overlooking other clinically relevant indicators. The supervised CatBoost classifier demonstrated high predictive performance and 
enhanced interpretability through SHAP analysis. These findings underscore the importance of incorporating multiple predictive 
factors to improve recurrence risk assessment. While the model shows promise in personalizing thyroid cancer management, 
further validation on larger, more diverse datasets is warranted to ensure robustness.

Abbreviations: AI = artificial intelligence, AUC = area under the receiver operating characteristic curve, FN = false negative, 
FP = false positive, RF = random forest, SHAP = Shapley Additive Explanations, TN = true negative, TP = true positive, WDTC = 
well-differentiated thyroid cancer.
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1. Introduction
The thyroid gland is a vital endocrine organ located in the ante-
rior part of the neck, and it is responsible for producing hor-
mones that regulate various metabolic processes in the body. 
It primarily secretes thyroxine (T4) and triiodothyronine (T3), 
which play critical roles in metabolism, growth, and develop-
ment. These hormones influence the metabolic rate of cells, 
affecting how energy is utilized and how tissues develop and 

function. The thyroid gland’s activity is regulated by the pitu-
itary gland through the secretion of the thyroid-stimulating hor-
mone, ensuring that hormone levels remain balanced to meet 
the body’s needs.

Thyroid diseases encompass a range of conditions that can 
disrupt the gland’s normal functioning, with thyroid cancer 
being a significant concern. Among the various types of thy-
roid cancer, well-differentiated thyroid cancer (WDTC) is the 
most common and includes papillary and follicular thyroid 
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carcinomas. These cancers typically have a good prognosis 
when detected early and treated appropriately, often involving 
surgical resection followed by radioactive iodine therapy and 
thyroid hormone suppression therapy. Despite the generally 
favorable outcomes, understanding the biological behavior and 
progression of WDTC remains crucial for improving patient 
management and long-term survival rates.

WDTC encompasses a group of malignancies originating 
from the thyroid follicular epithelium, predominantly including 
papillary, follicular, and Hurthle cell carcinomas. These cancers 
account for the vast majority (95–98%) of all thyroid malig-
nancies and are characterized by their ability to retain certain 
functional characteristics of normal thyroid cells, such as the 
production of thyroglobulin and the uptake of iodine. The inci-
dence of thyroid cancer has been on the rise globally, a trend 
attributed in part to enhanced diagnostic techniques, including 
high-resolution ultrasound imaging, although this alone does 
not fully explain the increasing rates observed across various 
demographics and tumor types.[1]

Management strategies for WDTC have been the subject of 
ongoing debate and evolution, with treatment typically involv-
ing a combination of surgical resection, radioactive iodine 
ablation, and thyroid-stimulating hormone suppression ther-
apy. The extent of thyroidectomy ranging from lobectomy to 
total thyroidectomy depends on factors such as tumor size, 
presence of nodal metastasis, and patient risk stratification.[2] 
Additionally, postoperative radioactive iodine treatment is 
used to eliminate residual thyroid tissue and to treat micro-
scopic disease, thereby reducing recurrence rates and improv-
ing locoregional control.[3]

Prognosis for patients with WDTC is generally favor-
able, with high survival rates, particularly when the disease is 
detected early and managed appropriately. Risk stratification 
is crucial in tailoring treatment plans and involves evaluating 
various clinicopathologic factors to categorize patients into 
low, intermediate, or high-risk groups. This stratification aids in  
decision-making regarding the need for additional treat-
ments such as radioactive iodine ablation and the intensity of  
follow-up regimens.[4]

Despite the overall good prognosis, certain subtypes and 
aggressive forms of WDTC present challenges in management 
due to variable responses to standard therapies. For instance, 
Hurthle cell carcinomas and some variants of follicular car-
cinomas may exhibit less predictable behavior and reduced 
iodine uptake, complicating treatment efforts.[5] Advances in 
molecular genetics and the application of machine learning 
algorithms in risk stratification and prognosis are emerg-
ing as valuable tools to enhance the precision of WDTC 
management.[1]

The recurrence of WDTC poses a significant challenge in the 
clinical setting, affecting a subset of patients even after initial 
successful treatment. Recurrence can occur locally in the neck or 
as distant metastases, with various factors influencing the like-
lihood of recurrence, including the initial tumor stage, lymph 
node involvement, and patient-specific genetic and molecu-
lar characteristics. Monitoring for recurrence involves regular  
follow-up with clinical examinations, imaging studies, and 
serum thyroglobulin measurements. Identifying and under-
standing the variables that contribute to cancer recurrence is 
essential for developing targeted interventions and improving 
prognostic models, ultimately enhancing patient outcomes and 
quality of life.

In parallel with advances in clinical diagnostics and treat-
ment, the use of artificial intelligence (AI) in healthcare has 
gained substantial momentum. AI methods, particularly those 
utilizing machine learning algorithms, are being increasingly 
applied to complex medical problems such as disease prediction, 
risk stratification, and personalized treatment planning. These 
approaches have demonstrated potential to complement clinical 
expertise by offering data-driven insights that are both accurate 

and scalable. Within the domain of oncology, AI has been partic-
ularly valuable in supporting early diagnosis, recurrence predic-
tion, and treatment response evaluation, laying the foundation 
for more precise and individualized care.

AI has increasingly become integral to healthcare, offering 
innovative solutions across various medical domains. Wang et al 
have contributed significantly to this field through multiple stud-
ies demonstrating the versatility of AI in clinical diagnostics. In 
the context of infectious diseases, Wang et al (2024) introduced 
a stacked deep learning approach for efficient SARS-CoV-2 
detection using blood sample analysis, showcasing how AI can 
enhance diagnostic accuracy during pandemic conditions.[6] In 
a separate study, Wang et al (2020) proposed a deep learning 
framework for the early detection of Parkinson disease, focus-
ing on the premotor phase to enable timely intervention.[7] Their 
model incorporated key clinical indicators such as rapid eye 
movement disturbances, olfactory dysfunction, cerebrospinal 
fluid biomarkers, and dopaminergic imaging data. Compared 
with twelve traditional machine learning and ensemble meth-
ods, their deep learning approach achieved superior diagnos-
tic accuracy. Moreover, by leveraging boosting techniques, they 
provided interpretability through feature importance analysis 
underscoring the growing emphasis on explainable AI in high-
stakes clinical decision-making. Together, these contributions 
highlight the impactful role of AI in both acute and chronic dis-
ease management.

In cardiovascular health, Donmez et al (2024) applied 
Shapley Additive Explanations (SHAP) and LIME to interpret 
hypertension risk predictions generated by an XGBoost model 
trained on clinical and laboratory data.[8] By revealing the influ-
ence of key biomarkers on model decisions, the study addressed 
the limitations of black box AI systems and highlighted the role 
of explainable machine learning in enhancing transparency. The 
findings support the use of interpretable AI models for early 
hypertension detection and more informed risk assessment in 
clinical practice.

In the field of hematology, Mahmud et al (2023) demon-
strated the feasibility of using machine learning for noninva-
sive anemia detection through lip mucosa image analysis.[9,10] By 
applying several ML algorithms to color and demographic fea-
tures, the study showed that anemia can be accurately predicted 
without the need for blood tests. This approach offers a practi-
cal and low-cost alternative for early screening, especially in set-
tings with limited medical resources, highlighting AI’s potential 
to improve diagnostic accessibility.

Mental health has also benefited from AI advancements. 
Hanani et al (2024) applied deep and machine learning tech-
niques such as deep neural networks, support vector machines, 
and random forests (RFs) to predict changes in key psycho-
logical indicators including depression, anxiety, and social 
dysfunction among Palestinian medical students during the 
COVID-19 pandemic.[11] Their study demonstrated that these 
models, particularly deep neural networks, could accurately 
forecast mental health outcomes based on survey data. The 
findings emphasize the potential of AI to support early identi-
fication of mental health risks and enable timely, data-driven 
interventions.

These studies collectively illustrate the expanding role of AI 
in healthcare, demonstrating its capacity to enhance diagnostic 
accuracy, provide interpretable insights, and support noninva-
sive and predictive health assessments across diverse medical 
fields. Building on this growing body of evidence, research on 
thyroid cancer WDTC has increasingly turned toward the use of 
AI-based models to address challenges in prognosis and recur-
rence prediction. These methods offer the potential to enhance 
traditional risk models by integrating diverse clinical, patho-
logical, and demographic variables into cohesive predictive 
frameworks.

Furthermore, identifying predictive factors for nodal recur-
rence is crucial for improving patient outcomes in WDTC. A 
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study by Kaur et al (2023) highlights that multifocality, extra-
thyroidal extension, and high-risk variants are significant pre-
dictors of central and lateral compartment nodal recurrence.[12] 
Their findings underscore the importance of comprehensive 
surgical and adjuvant treatment plans tailored to these risk fac-
tors to mitigate recurrence risks and enhance long-term disease 
management.

A detailed analysis of thyroid nodule risk assessment was 
conducted by Pozdeyev et al. Their research demonstrated that 
combining a deep learning Convolutional Neural Network 
classifier with a polygenic risk score improved the classifica-
tion accuracy of thyroid nodules as benign or malignant.[13] 
Specifically, the area under the receiver operating characteristic 
curve (AUC) increased from 0.83 to 0.89 (P = .007). The com-
bined classifier achieved a sensitivity of 0.95 (95 % confidence 
interval (CI) [0.88–0.99]), a specificity of 0.63 [0.55–0.70], and 
positive and negative predictive values of 0.47 [0.41–0.58] and 
0.97 [0.92–0.99], respectively. These findings underscore the 
enhanced diagnostic accuracy gained through the integration of 
genetic and ultrasound-based assessments.

The study by Lee et al utilized machine learning algorithms 
to analyze the complications of thyroid damage caused by 
radiotherapy in patients with head and neck cancer.[14] Their 
research demonstrated that using the RF algorithm yielded the 
highest predictive accuracy, with an Area under the AUC of 
0.827 and an accuracy of 82.4%. According to their findings, 
older age and larger thyroid volume were associated with a 
lower risk of thyroid damage, while higher mean dose, volume 
of structure (V50), and volume of structure (V60) were linked 
to an increased risk. These results underscore the significance of 
these factors in predicting hypothyroidism post-radiotherapy  
and suggest that the RF algorithm is a valuable tool for clin-
ical decision-making. This study involved 137 patients, and 
76.6% of them developed hypothyroidism, with the time range 
between radiotherapy and hypothyroidism occurrence span-
ning from 7.2 to 70 months, with a median of 29 months. 

These insights offer a deeper understanding of the predictors of 
thyroid dysfunction following radiotherapy in head and neck 
cancer patients.

In this study, a clinically relevant machine learning model was 
developed to aid in the prediction of thyroid cancer recurrence, 
addressing a persistent challenge in endocrine oncology. One of 
the key medical contributions of this work is its potential to 
enhance risk stratification, which remains a cornerstone in guid-
ing treatment decisions and follow up intensity for patients with 
WDTC. Unlike traditional black box algorithms, the integration 
of explainable AI enables clinicians to visualize and interpret the 
factors influencing each prediction such as treatment response 
or lymph node involvement thereby aligning with the growing 
demand for transparency in clinical decision-support systems. 
This interpretability is especially critical in oncology, where over 
or under treatment can significantly affect patient outcomes. By 
offering a tool that is not only accurate but also interpretable, 
the study contributes to the evolving field of personalized med-
icine, supports shared decision-making, and fills a gap in the 
existing literature where predictive performance often lacks 
clinical explainability.

2. Methodology
This research employs a structured and systematic methodology 
to investigate the potential of machine learning techniques in 
predicting differentiated thyroid cancer recurrence. The study 
utilizes a dataset published by Borzooei and Tarokhian (2023) 
through the UCI Machine Learning Repository, which provides 
comprehensive data on demographic, clinical, and pathological 
variables related to thyroid cancer.[15] The analysis follows a 
multi-phase process, including data acquisition, preprocessing, 
model development and training, validation, and interpretation 
of results.

The primary machine learning algorithm used in this research 
is the supervised CatBoost classifier, selected for its advanced 
handling of categorical variables and capability to manage intri-
cate dataset structures effectively. The model’s performance is 
rigorously evaluated using a suite of metrics, including accuracy, 
precision, recall, specificity, and F1-score, to ensure a holistic 
understanding of its effectiveness.

In this study, an Explainable Artificial Intelligence (XAI) 
approach was implemented using SHAP to interpret the 
predictions of machine learning models. The process began 
with data preprocessing, which involved data cleaning, fea-
ture selection, and splitting the dataset into training and test 
sets. Multiple machine learning algorithms were trained and 
evaluated, including Logistic Regression, Random Forest, 
XGBoost, CatBoost, etc. Based on performance metrics such 
as accuracy and AUC-ROC, CatBoost was selected as the 
optimal model for further interpretation due to its superior 
results (Fig. 1).

To enhance the interpretability of the predictive outcomes, 
SHAP values are employed. These values provide valuable 
insights into the importance of various features such as age, gen-
der, history of smoking, thyroid function, pathology, and staging 
in predicting the recurrence of thyroid cancer. This interpretive 
layer not only supports the model’s transparency but also high-
lights the critical factors influencing recurrence.

To explain the predictions of the selected a supervised 
CatBoost model, SHAP, a model-agnostic and game-theoretic  
method, was applied. SHAP values were computed using 
the Tree Explainer module, aligned with feature names, and 
stored for visualization. Several SHAP-based plots were gen-
erated, including summary, dependence, and force/waterfall 
plots, offering both global and local interpretability. These 
visualizations enabled the identification of the most influen-
tial features, providing deeper insight into model behavior 
and enhancing transparency. This workflow demonstrates 

Figure 1.  Study flow chart.
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a comprehensive and interpretable machine learning pipe-
line that supports trust and accountability in data-driven 
decision-making.

By adopting this methodical approach, the study aims to 
achieve its objectives with precision, contributing significantly 
to the understanding of thyroid cancer recurrence. It offers a 
meaningful advancement in personalized medicine, assisting 
clinicians in identifying high-risk cases and tailoring treatment 
strategies to improve patient outcomes.

2.1. Data acquisition

This study utilized publicly available datasets that do not con-
tain identifiable patient information. As per institutional guide-
lines and relevant regulations, ethical approval was not required. 
The foundational dataset for this study was selected from the 
“Differentiated Thyroid Cancer Recurrence” dataset curated 
by Borzooei and Tarokhian and hosted by the UCI Machine 
Learning Repository. This dataset serves as a vital resource for 
exploring the clinical and pathological factors influencing thy-
roid cancer recurrence. It comprises 383 cases, offering a robust 
basis for predictive modeling and recurrence analysis under-
taken in this research, with no missing values present in the 
dataset (Table 1).

A comprehensive breakdown of the dataset reveals the 
gender distribution and recurrence rates, providing a bal-
anced and representative demographic of individuals affected 
by differentiated thyroid cancer. This diversity supports 
the development and validation of models with increased 
generalizability.

The dataset selection criteria prioritized the inclusion of 
detailed clinical and demographic data, such as gender and 
recurrence status, to ensure robust and accurate analyses. By 
leveraging this well-structured dataset, the study aims to improve 
diagnostic precision and develop personalized treatment 
approaches in the management of thyroid cancer recurrence.

2.2. Data preprocessing

Upon securing the differentiated thyroid cancer dataset from 
the UCI Machine Learning Repository as curated by Borzooei 
and Tarokhian, an extensive data preprocessing phase was 
undertaken to ensure the dataset’s readiness for subsequent 
analysis. This phase was critical in maintaining data quality 
and uniformity, thereby underpinning the model’s predictive 
accuracy.

The preprocessing journey began with the identification and 
handling of values, a crucial step given the clinical nature of 
the dataset. To preserve the integrity of the analysis, statistical 
imputation techniques were employed where necessary, while 
records essential clinical information were excluded to maintain 
the robustness of the study.

The dataset prominently features categorical variables, 
including demographic information such as gender (encoded as 
0 for Female and 1 for Male) and recurrence status (encoded 
as 0 for No Recurrence and 1 for Recurrence). These variables 
were carefully encoded into a numerical format suitable for 
machine learning models, ensuring their clinical relevance was 
retained (Table 2).

Normalization was applied to continuous variables like age 
to mitigate scale and variance discrepancies, ensuring no feature 
disproportionately influenced the model due to its magnitude. 
This step enhanced the dataset’s balance and consistency across 
all variables.

Additionally, binary indicators for clinical and pathological 
features such as smoking history, history of radiotherapy, thy-
roid function, and other factors were included, providing a com-
prehensive dataset for analysis.

Finally, the dataset was partitioned into training and testing 
sets using a 70:30 ratio. This division was executed to ensure 
that both subsets accurately reflected the diversity within the 
dataset, encompassing demographic variations, clinical features, 
and recurrence status, thereby facilitating the model’s evalua-
tion on previously unseen data.

Table 1

Gender and recurrence information in the thyroid dataset.

Gender No recurrence Recurrence Total

Female 246 66 312
Male 29 42 71
Total 275 108 383

Table 2

Legend of the differentiated thyroid cancer dataset.

Description Variable name Value type

Gender Gender 0: Female, 1: Male
Age Age Continuous
Smoking status Smoking 0: nonsmoker, 1: Smoker
Smoking history Hx 0: No history, 1: History
History of radiotherapy Hx Radiotherapy Radiotherapy 0: No, 1: Yes
Thyroid function Thyroid Function Thyroid Function 0: Normal, 1: Abnormal Thyroid Function Thyroid Function 0: Normal, 1: Abnormal
Physical examination findings Physical Examination 0: No findings, 1: Findings present
Adenopathy Adenopathy 0: Absent, 1: Present
Pathology results Pathology Results 0: Negative, 1: Positive
Focality Focality 0: Unifocal, 1: Multifocal
Risk level Risk 0: Low, 1: Intermediate, 2: High
Tumor (T) T 0: T0, 1: T1, 2: T2, 3: T3, 4: T4
Node (N) N 0: N0, 1: N1, 2: N2, 3: N3
Metastasis (M) M 0: M0, 1: M1
Stage Stage 0: Stage 0, 1: Stage I, 2: Stage II, 3: Stage III, 4: Stage IV
Treatment response Response 0: No response, 1: Partial, 2: Stable disease, 3: Complete response
Recurrence Recurred 0: No recurrence, 1: Recurrence
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These meticulous preprocessing steps transformed the data-
set into an optimal format for high-quality machine learning 
analysis, laying a strong foundation for the development and 
evaluation of the predictive model.

2.3. Model development and training

Following the meticulous preprocessing of the differentiated 
thyroid cancer dataset, the focus shifted to model develop-
ment and training, with an emphasis on balancing predictive 
accuracy and interpretability. Among the various algorithms 
evaluated, a supervised CatBoost stood out for its superior 
handling of categorical variables and its compatibility with 
SHAP for interpreting predictions. Although not the most 
accurate model, supervised CatBoost was prioritized due to 
its ability to provide insights into the decision-making process 
(Table 3).

The supervised CatBoost classifier was initialized with hyper-
parameters designed to optimize its performance for predicting 
thyroid cancer recurrence. Despite its accuracy not being the 
highest among all models, careful tuning and the use of the eval-
uation metric “Accuracy” ensured a balance between computa-
tional efficiency and predictive reliability.

The training phase utilized 70% of the preprocessed dataset, 
allowing CatBoost to learn the relationships between clinical 
and demographic features and recurrence status. This phase 
emphasized computational efficiency while minimizing predic-
tion error, with verbose outputs suppressed to streamline the 
process.

SHAP values were integrated post-training to explain the con-
tributions of individual features to the model’s predictions. This 
step was critical not only for validating the utility of CatBoost 
but also for ensuring the model’s outputs were interpretable and 
clinically actionable. By leveraging SHAP, the study reinforced 
its commitment to transparency and the practical application of 
machine learning in thyroid cancer management.

Upon completion of the training, a supervised CatBoost 
demonstrated impressive performance, achieving metrics com-
parable to the most accurate models while offering superior 
interpretability. The table below highlights the comparative per-
formance of the evaluated models.

This balanced approach, emphasizing both performance and 
interpretability, provides a solid foundation for the validation 
phase. It ensures the model’s predictions are not only accurate 
but also understandable, aligning with the study’s goals of clini-
cal relevance and actionability.

2.4. Model validation

A portion of the dataset was reserved for validation to assess the 
model’s predictive performance critically. This validation phase 

employed a stratified sampling strategy to ensure a balanced 
representation of recurrence and non-recurrence cases across 
both genders. Key performance metrics, including accuracy, pre-
cision, recall, F1-score, and AUC, were calculated to evaluate 
the model’s effectiveness.

The supervised CatBoost classifier, a gradient boosting algo-
rithm specifically designed for categorical data, was highlighted 
for its efficient handling of these features. Unlike traditional 
methods, it eliminates the need for preprocessing steps like one-
hot encoding or label encoding, making it particularly suited for 
datasets with diverse categorical variables.[16]

The gradient boosting mechanism in a supervised CatBoost 
optimizes an objective function that combines a loss function 
and a regularization term:

L (y, F) =
N∑
i=1

l (yi, F (xi)) +
K∑

k=1

Ω (fk) ,

where y represents the true labels, F is the ensemble model, l is 
a differentiable convex loss function, fk are the individual trees, 
and Ω is the regularization term. The algorithm’s inherent sup-
port for categorical data and its integration with SHAP values 
for interpretability are key advantages.[17]

In addition to its explainability, the CatBoost model 
demonstrated strong performance during training and cross- 
validation. The 5-fold cross-validation yielded consistently 
high accuracy scores across all folds, with 97.40%, 94.81%, 
96.10%, 98.68%, and 94.74%, respectively. The mean accu-
racy was calculated as 96.35%, with a standard deviation of 
1.52%, highlighting the model’s stability and reliability in pre-
dicting outcomes.

During validation, the supervised CatBoost model demon-
strated strong classification capabilities, achieving an area under 
the ROC value of 0.97, showcasing its excellent discriminative 
power in distinguishing recurrence cases. The confusion matrix 
further supports these results, with the following values: true 
negatives (TN): 81, false positives (FP): 2, false negatives (FN): 
2, and true positives (TP): 30. These metrics underscore the 
model’s precision and reliability in predicting recurrence (Figs. 2 
and 3).

2.5. Model interpretation with SHAP

SHAP is a powerful framework designed to provide insights 
into the predictions of any machine learning model, enabling 
a deeper understanding of how features contribute to decision- 
making. Introduced in 2017, SHAP is grounded in cooper-
ative game theory and aims to unify diverse approaches to 
model interpretability under a single, consistent methodology. 
By assigning an “importance value” to each feature, SHAP 

Table 3

Model performance metrics.

Model Accuracy Precision Recall F1 score AUC Log loss

Explainable Boosting Machine 0.97 0.97 0.97 0.97 0.97 0.99 0.98
A supervised CatBoost 0.97 0.97 0.97 0.97 0.99 0.98
Extra Trees 0.96 0.96 0.96 0.96 0.99 0.97
LightGBM 0.96 0.96 0.96 0.96 0.99 0.99
Adaboost 0.96 0.96 0.96 0.96 0.99 0.97
XGBoost 0.96 0.96 0.96 0.96 0.99 0.99
Random Forest 0.96 0.96 0.96 0.96 0.99 0.98
Decision Tree 0.93 0.93 0.94 0.93 0.94 0.80
Logistic Regression 0.90 0.90 0.89 0.90 0.93 0.90
Naive Bayes 0.88 0.87 0.88 0.88 0.96 0.93
KNN 0.88 0.87 0.87 0.88 0.91 0.80
Support Vector Machine 0.79 0.74 0.84 0.79 0.91 0.80
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quantifies the impact of individual features on specific predic-
tions, offering a transparent and accurate explanation of model 
behavior.[18]

At the core of SHAP lies the concept of the Shapley value, a 
principle derived from cooperative game theory. Shapley values 
were originally developed to distribute gains or costs among 
participants in a cooperative setting. In the context of machine 
learning, SHAP leverages this concept to fairly attribute the con-
tribution of each feature to a model’s prediction. For a given 
feature, the SHAP value is calculated by considering all possi-
ble subsets of features that exclude the feature in question and 
comparing the model’s predictions with and without the feature 
included. The mathematical formulation for the SHAP value of 
a feature fi is expressed as:

fi =
∑

S⊆F\{i}

| S |! · (| F | − | S | −1)!
| F |!

[
fS∪{i}(xS∪{i})− fS(xS)

]

In this equation, F represents the set of all features, S denotes 
a subset of F that excludes the i th feature, fS∪{i} and fS corre-
spond to the model’s predictions using the feature sets S ∪ {i} 
and S, respectively, while xS∪{i} and xS represent the associated 
feature values.

Although the exact computation of SHAP values is theo-
retically sound, it is computationally expensive, especially for 
datasets with a large number of features. This computational 
complexity arises because the calculation involves evaluating 
the contribution of a feature across all possible subsets of fea-
tures, a process that grows exponentially with the number of 
features. To overcome this limitation, SHAP incorporates effi-
cient approximation techniques such as Shapley sampling and 
Shapley quantitative influence. These methods reduce the com-
putational burden while maintaining the interpretative power of 
the SHAP framework.

SHAP values can be interpreted from both a global and local 
perspective, offering versatility in analyzing model behavior. 
From a global viewpoint, SHAP provides an overview of fea-
ture importance across the entire dataset. Features with high 
absolute SHAP values across multiple samples are identified 
as having significant influence on the model’s predictions. This 
global analysis is instrumental in understanding the overall 
trends and key drivers in the dataset. Conversely, from a local 
perspective, SHAP values offer granular insights into individ-
ual predictions. By explaining how specific features contrib-
uted to a particular prediction, SHAP facilitates a transparent 
understanding of model decisions at the sample level. This dual 
perspective ensures that SHAP is not only useful for model 

interpretability but also for gaining actionable insights in real-
world applications.[19]

The SHAP framework’s ability to unify interpretability meth-
ods, its solid foundation in game theory, and its provision for 
both global and local analysis make it an indispensable tool 
in modern machine learning workflows. By bridging the gap 
between complex model outputs and human understanding, 
SHAP empowers data scientists and domain experts to build 
more reliable and transparent predictive models.

3. Results
The analysis within this section delves into the efficacy of the 
supervised CatBoost algorithm applied to the glioma data-
set, employing SHAP values to elucidate the model’s interpre-
tive capabilities and the influence of distinct features on its 
predictions.

3.1. Global SHAP values analysis

The TNM staging system is a globally recognized framework 
used to describe the extent and severity of cancer.[20] It comprises 
3 components: T (Tumor), N (Node), and M (Metastasis). The 
T category defines the size and extent of the primary tumor, 
ranging from T0 (no tumor evidence) to T4 (large tumor with 
significant invasion). The N category assesses lymph node 
involvement, with N0 indicating no lymph node metastasis and 
N3 representing extensive lymph node spread. Lastly, the M 
category describes the presence of distant metastases, with M0 
indicating no metastases and M1 denoting distant metastatic 
disease. The TNM staging system provides a standardized way 
to evaluate cancer progression, aiding clinicians in prognosis, 
treatment planning, and patient stratification.

The global SHAP analysis highlights the most influential 
features impacting the model’s predictions for thyroid cancer 
recurrence.[18] Response, representing the treatment outcome, 
is the most significant predictor, with a SHAP value of 2.077. 
This underscores its critical role in determining recurrence like-
lihood. Risk, a categorization of patients based on recurrence 
probability, follows with a SHAP value of 0.859, emphasizing 
its importance in risk assessment. N (lymph node involvement), 
with a SHAP value of 0.596, further highlights the impact of 
lymphatic spread on recurrence predictions.

T (tumor size) and age are also key contributors, with SHAP 
values of 0.342 and 0.304, respectively. These factors reflect the 
model’s ability to incorporate tumor dimensions and patient 

Figure 2.  Confusion matrix. Figure 3.  ROC curve.
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demographics into its predictions. Adenopathy, which identifies 
swollen lymph nodes, has a SHAP value of 0.271, while gender, 
representing biological sex, contributes with a value of 0.219. 
Stage, a comprehensive measure of disease progression, has a 
SHAP value of 0.149.

Other significant features include Physical Examination 
(0.121), indicating the role of clinical findings, and Focality 
(0.103), which differentiates between unifocal and multifo-
cal tumors. Thyroid Function (0.050), Pathology (0.048), and  
smoking-related variables (Smoking at 0.012 and Hx Smoking at 
0.008) provide additional context, though their contributions are 
less pronounced. Features such as M (distant metastases, 0.005) 
and Hx Radiotherapy (history of radiation treatment, 0.001) 
exhibit minimal influence.

The global SHAP values reveal the hierarchical importance 
of features in predicting recurrence. Response, Risk, and N 
emerge as the dominant predictors, while other variables con-
tribute nuanced insights into the recurrence process. This analy-
sis enhances the interpretability of the model, offering clinicians 
actionable insights for patient evaluation and treatment plan-
ning. The hierarchical importance of these features is illustrated 
in Figure 4.

3.2. Local SHAP values analysis

The granular analysis of local SHAP values for individual patient 
instances provides critical insights into the supervised CatBoost 
model’s interpretability and performance in predicting thyroid 
cancer recurrence. By examining specific cases categorized as 
TP, TN, and FP, we can better understand the contributions of 
key features to the model’s predictions. This level of analysis 
validates the model’s efficacy in correctly classifying cases while 
highlighting areas for refinement by identifying reasons behind 
any inaccuracies.

Table 4 presents a transposed view of feature values for 
selected patient instances. This format emphasizes the differ-
ences and similarities in clinical and demographic details across 
patients in different predictive categories (Table 4).

This transposed table provides a side-by-side comparison 
of selected instances, making it easier to identify patterns and 
differences in feature values across different predictive catego-
ries. By integrating this information with local SHAP analyses, 
we gain a clearer understanding of how individual features 
influence the model’s decisions. The analysis demonstrates the 
model’s capacity to correctly classify instances, as seen in TP 
and TN cases, while also revealing areas for improvement in 
false predictions like FP. This approach reinforces the value of 
explainable AI in clinical applications, enhancing transparency 
and trust in predictive models.[8]

3.3. TP case analysis: Instance 324

The examination of a TP instance, specifically patient index 324, 
provides a detailed understanding of the supervised CatBoost 
model’s decision-making process when correctly predicting 
recurrence. The local SHAP values reveal the contributions of 
specific features to the model’s prediction, offering a granular 
perspective on the factors driving its classification.

Interestingly, the Response feature, while indicative of posi-
tive outcomes, contributes minimally to the recurrence predic-
tion for this instance. This suggests that although the patient had 
a favorable treatment response, the model predicted recurrence 
correctly because other features presented substantial evidence 
indicative of recurrence risk. This highlights the model’s ability 
to integrate multiple features and balance their contributions 
effectively.

The Age feature emerges as the most significant contributor, 
with a SHAP value of 0.909, strongly influencing the model’s 
prediction towards recurrence. This underscores the critical 

role of patient age in identifying recurrence risk, highlighting its 
importance as a key demographic predictor.

Risk level follows closely with a SHAP value of 0.851, reflect-
ing the model’s reliance on stratified patient risk categories to 
inform its predictions. Similarly, the N (lymph node involve-
ment) feature has a SHAP value of 0.820, emphasizing the 
importance of lymphatic spread in recurrence prediction.

Additional influential features include Stage (0.640), 
Adenopathy (0.388), and Gender (0.280). These clinical and 
demographic factors collectively shape the model’s understand-
ing of recurrence likelihood. While T (tumor size, 0.116) and 
Focality (0.101) also contribute meaningfully, their impact is 
relatively smaller compared to the top predictors.

Interestingly, features like Smoking (0.068) and Thyroid 
Function (0.054) show lower SHAP values but still play a role 
in refining the model’s decision. These minor contributions illus-
trate the nuanced interplay of clinical and lifestyle factors in 
predicting recurrence.

The SHAP plot for instance 324, presented in Figure 5, visu-
alizes these feature contributions, clearly illustrating their rela-
tive impact on the model’s prediction. The correct classification 
of this instance as a recurrence case affirms the model’s capacity 
to integrate diverse features effectively, providing a robust and 
interpretable framework for clinical decision-making (Fig. 5).

This case analysis demonstrates the model’s ability to utilize 
a combination of demographic, clinical, and pathological fac-
tors to make accurate predictions. The inclusion of Response 
as a counterbalancing feature highlights the complexity of the 
decision-making process, where the model successfully identifies 
recurrence despite favorable individual factors. Understanding 
these contributions provides valuable insights for clinicians, 
paving the way for more targeted and personalized approaches 
in thyroid cancer management.

3.4. TN case analysis: Instance 210

The examination of a TN instance, specifically patient index 210, 
provides a detailed understanding of the supervised CatBoost 
model’s decision-making process when correctly predicting the 
absence of recurrence. The local SHAP values reveal the contri-
butions of individual features to the model’s prediction, offering 
insights into the factors that led to the correct classification.

The Response feature, with a significant SHAP value of 
-2.543, emerges as a dominant factor driving the prediction 
towards non-recurrence. This substantial negative SHAP value 
indicates that the patient’s favorable treatment response strongly 
influenced the model’s confidence in predicting the absence of 
recurrence. The inclusion of this feature highlights the model’s 
ability to effectively incorporate treatment outcomes into its 
predictions.

The N (lymph node involvement) feature is another major 
contributor, with a SHAP value of 1.199, pushing the model’s 
prediction towards the non-recurrence category. This under-
scores the critical role of lymph node status in the model’s  
decision-making process, aligning with its established impor-
tance in recurrence risk assessment.

The Risk level follows closely with a SHAP value of 1.182, 
indicating its significant influence in affirming the prediction 
of non-recurrence. This feature highlights the model’s reliance 
on stratified risk categories to guide its predictions effectively. 
Adenopathy (presence of swollen lymph nodes) also plays a 
meaningful role, contributing a SHAP value of 0.482 towards 
the prediction.

Other features, such as Focality (0.048), have smaller pos-
itive SHAP values, suggesting they contribute to refining the 
prediction but are less impactful compared to the top 3 fea-
tures. Conversely, features such as Hx Radiotherapy (-0.001), 
M (-0.004), and Smoking (-0.013) exert negative SHAP values, 
indicating they push the prediction slightly towards recurrence 
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but are overshadowed by the dominant positive contributions 
of Response, N, Risk, and Adenopathy.

The SHAP plot for instance 210, presented in Figure 6, visual-
izes these feature contributions, clearly illustrating their relative 
impact on the model’s prediction. This visualization underscores 
the model’s capability to leverage strong positive signals from 
critical features while mitigating the minor conflicting effects of 
less influential features (Fig. 6).

This case analysis demonstrates the model’s robustness in 
identifying the absence of recurrence by relying on key clini-
cal and pathological features. The strong contribution of the 
Response feature, combined with other critical variables like 
N, Risk, and Adenopathy, highlights the model’s capacity to 
integrate diverse factors into its predictions. By examining local 
SHAP values, clinicians can gain deeper insights into the factors 
influencing individual predictions, fostering transparency and 
trust in the model’s application to real-world scenarios.

3.5. False positive (FP) case analysis: Instance 285

The examination of a FP instance, specifically patient index 
285, offers critical insights into the supervised CatBoost mod-
el’s misclassification processes. In this case, the model incor-
rectly predicted recurrence for a patient who did not experience 
recurrence. The local SHAP values reveal the contributions of 

individual features to the prediction, highlighting the factors 
that led to this erroneous classification.

The Risk feature emerges as the most significant contributor, 
with a SHAP value of 1.363, heavily influencing the model’s pre-
diction toward recurrence. This high SHAP value suggests that 
the model overrelied on the patient’s risk category, potentially 
misjudging its impact in this specific instance.

Age is the second most influential feature, with a SHAP value 
of 0.942, further pushing the prediction toward recurrence. This 
demonstrates the model’s sensitivity to patient age, which, while 
generally important, may have been overestimated in this case. 
The Stage feature also plays a significant role, contributing a 
SHAP value of 0.896, further reinforcing the model’s confidence 
in predicting recurrence.

Additional features such as Physical Examination (0.201) 
and Response (0.130) provided moderate contributions to 
the recurrence prediction. Interestingly, Response, typically 
a counterbalancing feature favoring non-recurrence, contrib-
uted positively in this instance. This anomaly suggests that 
the model may have misinterpreted the relationship between 
treatment response and recurrence likelihood in this specific 
case.

On the other hand, features like Hx Radiotherapy (-0.000) 
and M (-0.002) provided negligible negative contributions, indi-
cating minimal influence in countering the strong positive sig-
nals from Risk, Age, and Stage.

The SHAP plot for instance 285, presented in Figure 7, visual-
izes these feature contributions, clearly illustrating their relative 
impact on the model’s prediction. This visualization underscores 
the overemphasis on certain features and the underutilization 
of counterbalancing factors, leading to the misclassification 
(Fig. 7).

This case analysis highlights the challenges faced by the 
model in balancing strong signals from key features like Risk, 
Age, and Stage with other contextual factors. The misclassifica-
tion underscores the need for further refinement in the model’s 
training process to better account for complex interactions and 
reduce the likelihood of FPs. Understanding such cases provides 
valuable insights into areas where the model can be improved, 
ultimately enhancing its reliability and applicability in clinical 
decision-making.

3.6. False negative (TN) case analysis: Instance 225

The examination of a FN instance, specifically patient index 
225, offers critical insights into the supervised CatBoost model’s 
failure to predict recurrence for a patient who actually expe-
rienced it. The local SHAP values reveal the contributions of 

Figure 4.  Global SHAP values showing the relative importance of features in 
predicting thyroid cancer recurrence.

Table 4

Actual values from dataset for selected patient instances.

Feature Patient 324 (TP) Patient 210 (FP) Patient 285 (TN) Patient 225 (TP)

Age 79 28 62 62
Gender 1 0 0 0
Smoking 1 0 0 0
Hx smoking 0 0 0 0
Hx radiotherapy 0 0 0 0
Thyroid function 0 0 0 2
Physical examination 2 2 1 2
Adenopathy 2 1 0 0
Pathology 0 0 3 0
Focality 1 0 1 0
Risk 1 1 1 0
T 3 2 3 2
N 2 2 0 0
M 0 0 0 0
Stage 1 0 1 0
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individual features to the prediction, highlighting the factors 
that led to this misclassification.

The Response feature emerges as the most significant 
contributor, with a SHAP value of 2.121, pushing the pre-
diction strongly toward non-recurrence. This indicates that 
the patient’s favorable treatment response heavily influenced 
the model’s confidence, ultimately overriding other features 
indicative of recurrence. This overreliance on Response 
underscores a potential area for refinement in the model’s 
training.

Risk, with a SHAP value of -0.814, strongly supported a 
recurrence prediction. As a critical variable in assessing the like-
lihood of recurrence, its significant negative SHAP value indi-
cates that the model correctly identified this as an important 
factor. However, its influence was insufficient to counteract the 
dominant positive contribution of Response.

Similarly, the N (lymph node involvement) feature, with a 
SHAP value of -0.517, also contributed toward recurrence pre-
diction. While this is an important factor in recurrence risk, its 
relatively weaker influence compared to Response limited its 
ability to shift the model’s prediction.

Age, with a SHAP value of 0.945, slightly pushed the predic-
tion toward recurrence but could not compensate for the strong 
positive contribution from Response. The Physical Examination 
feature, contributing a SHAP value of 0.314, further supported 
the recurrence prediction.

However, other features, such as Pathology (0.015), provided 
negligible positive contributions, while features like Thyroid 
Function (-0.086), Focality (-0.052), Smoking (-0.009), and Hx 
Smoking (-0.003) exerted minor negative contributions, collec-
tively tilting the prediction further toward non-recurrence.

The SHAP plot for instance 225, presented in Figure 8, visu-
alizes these feature contributions, illustrating how the dominant 
positive SHAP value for Response overshadowed the significant 
contributions from Risk and N, ultimately leading to the mis-
classification (Fig. 8).

This case analysis highlights the challenges faced by the 
model in correctly identifying recurrence when a single fea-
ture, such as Response, exerts a disproportionately strong 
influence. The misclassification underscores the importance 
of refining the model to better account for the interactions 
between features and to mitigate overreliance on dominant 
variables like Response. Understanding such cases pro-
vides valuable insights into areas where the model can be 
improved, ultimately enhancing its reliability and clinical 
applicability.

3.7. SHAP dependence plots for variables

The SHAP dependence plots for various features offer critical 
insights into how these features influence the model’s predic-
tions. These plots illustrate the relationship between each fea-
ture’s values and their corresponding SHAP values, providing 
an interpretable framework for understanding the model’s 
behavior.

The Response feature demonstrates the most substantial 
impact on the model’s predictions, with SHAP values ranging 
from -2.330 to 5.135 (Fig. 9a). A response value of 3, indicating 
complete recovery, does not contribute to recurrence predictions 
as it aligns with negative SHAP values. However, lower response 
values of 0 (no response), 1 (partial response), and 2 (stable dis-
ease) progressively contribute to recurrence, with SHAP values 
indicating that 2 has a stronger effect than 1, and 1 has a stron-
ger effect than 0.

The N (lymph node involvement) feature also shows a signif-
icant impact, with SHAP values ranging from -0.593 to 1.436 
(Fig. 9b). N0, indicating no lymph node involvement, does not 
contribute to recurrence predictions, aligning with negative 
SHAP values. However, values of N1, N2, and N3 progres-
sively increase recurrence predictions, with higher stages hav-
ing a greater positive impact on SHAP values and recurrence 
likelihood.

The Risk feature exhibits a wide range of SHAP values, from 
-0.894 to 1.558 (Fig. 9C). Patients classified as low risk (value 
0) have SHAP values aligned with non-recurrence predictions. 
However, medium risk (value 1) and high-risk (value 2) pro-
gressively contribute to recurrence, with high risk having the 
most pronounced positive SHAP values, emphasizing its role in 
recurrence stratification.

The T (tumor size) feature, with SHAP values ranging from 
-0.617 to 2.306 (Fig. 9D), shows that T0, T1, and T2 stages have 
little to no positive effect on recurrence predictions. However, 
higher stages such as T4, T5, and T6 are associated with positive 
SHAP values, indicating their contribution to recurrence likeli-
hood and reflecting the clinical understanding that larger tumor 
sizes are more likely to lead to recurrence.

The Focality feature shows SHAP values ranging from -0.190 
to 0.346 (Fig. 9E). Unifocal disease (value 0) does not contribute 
to recurrence predictions and aligns with negative SHAP values. 
Multifocal disease (value 1), on the other hand, contributes pos-
itively to recurrence predictions, reinforcing its association with 
higher recurrence risk.

Lastly, the Adenopathy feature has SHAP values ranging from 
-0.217 to 0.482 (Fig. 9F). The absence of adenopathy (value 0) 

Figure 5.  Local SHAP values for patient 324 (true positive), highlighting the 
contributions of key features to the prediction.

Figure 6.  Local SHAP values for patient 210 (true negative), highlighting the 
contributions of key features to the prediction.
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does not contribute to recurrence predictions. However, the 
presence of adenopathy (value 1) contributes positively to recur-
rence predictions, with its effect varying based on the severity of 
the condition.

In summary, the SHAP dependence plots provide valuable 
insights into the model’s behavior and the importance of key 
features in recurrence prediction. Response, Risk, N, and T 
have the most pronounced effects, aligning closely with clini-
cal expectations. Focality and Adenopathy also play significant 
roles, highlighting multifocal disease and adenopathy presence 
as factors increasing recurrence likelihood. These insights can 
guide clinical decision-making and treatment strategies, under-
scoring the interpretability and utility of SHAP analysis in pre-
dictive modeling (Fig. 9A–F).

4. Discussion
The growing potential of machine learning, particularly gra-
dient boosting algorithms like supervised CatBoost, in fore-
casting the risk of thyroid cancer recurrence is highlighted by 
this study’s findings. The model achieved an impressive 97% 
accuracy and an AUC of 0.99 on the test dataset, underscor-
ing its robust predictive capacity. This result aligns consistently 
with prior machine learning applications in oncology, where 
tree-based ensemble methods frequently deliver high accuracy 
and AUC values. Furthermore, the competitiveness of advanced 
tree-based methods in managing complex clinical datasets is 
demonstrated by the close performance alignment of supervised 
CatBoost with other top-performing models, such as Extra 
Trees, Light GBM, and XGBoost. Although these high-test set 
metrics suggest strong generalization, the possibility of over-
fitting was considered; however, as the reported success stems 
from the test dataset, the risk appears minimal, reinforcing the 
model’s reliability for clinical predictions, pending further vali-
dation on additional unseen data.

The integration of SHAP values for interpretability is pre-
sented as one of the distinctive advantages of this work. Although 
high accuracy is essential, a transparent understanding of the 
model’s rationale is also required for clinical decision-making. 
It was revealed by the global SHAP analysis that factors such 
as Response, Risk, and N (lymph node involvement) exert the 
greatest influence on recurrence predictions. Alignment with 
established clinical knowledge is indicated by these findings, 
which show that high-risk categories, lymph node metastasis, 
and suboptimal responses to therapy are strong indicators of 
disease relapse. Moreover, the nuanced ways in which varying 
degrees of treatment efficacy and risk stratification affect recur-
rence likelihood are specifically highlighted by the dependence 
plots for Response and Risk, thus offering clinicians actionable 
insights.

Further granularity is provided by local SHAP analyses 
by illustrating how specific features drive individual predic-
tions, whether correct or incorrect. The model’s capacity to 
synthesize multiple clinical and demographic variables such 
as tumor stage, age, and multifocality into a cohesive recur-
rence assessment is validated by the examination of TP and TN 
cases. Meanwhile, cautionary tales are provided by FP and FN 
instances. In some cases, other risk indicators were overshad-
owed by an overreliance on a single feature (e.g., an especially 
high weighting on Response), resulting in misclassification. 
The recognition of these pitfalls is crucial for model refinement 
and underscores the importance of a balanced, multi-feature 
approach.

From a clinical standpoint, paramount importance is ascribed 
to the interpretability of these results. The exact features that 
lead to a model’s prediction can be pinpointed, which allows the 
algorithm’s decision-making to be validated by healthcare pro-
viders in the context of individual patient profiles. For example, 
if a patient is flagged as high-risk predominantly due to Age 
and Risk category, other relevant clinical indicators such as 
imaging results and laboratory values can be double-checked 

Figure 7.  Local SHAP values for patient 285 (false positive), highlighting the contributions of key features to the incorrect prediction.
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by clinicians to either confirm or question the algorithm’s sug-
gestion. More personalized care pathways, better treatment 
planning, and potentially improved patient outcomes can be 
facilitated by this synergy between machine learning outputs 
and expert human interpretation.

An important advantage of our approach lies in its ability 
to combine predictive performance with clinical interpretabil-
ity addressing a common shortcoming of traditional black box 
models. Through SHAP analysis, each variable’s individual 
contribution to the model’s decision can be assessed, enabling 
clinicians to understand and trust the rationale behind recur-
rence predictions. This transparency is particularly valuable in 
oncology, where treatment decisions must be personalized and 
evidence based. However, 1 limitation stems from the relatively 
small sample size of 383 patients, which may restrict the gener-
alizability of findings to broader, more diverse populations. In 
datasets with class imbalance or limited representation of cer-
tain subgroups, SHAP derived feature importance values may 
reflect underlying distributional bias, potentially leading to 
misleading interpretations. Therefore, while the interpretability 
of our model is a clear strength, it also requires cautious appli-
cation and further validation using larger, multi-institutional 
datasets to ensure robustness and reduce the risk of biased 
conclusions.

Although categorical features are adeptly handled by a 
supervised CatBoost, and high accuracy was demonstrated, the 
potential benefits of an ensemble or hybrid approach could be 
overlooked by reliance on any single algorithm. Additionally, 
external validation on larger, more diverse cohorts is neces-
sary to assess generalizability, even though the dataset is rela-
tively comprehensive. The distribution of features such as age, 
gender, or specific tumor histological variants may differ in 
other populations, and model performance may potentially be 
affected. The evidence bases for adopting such models in rou-
tine clinical practice would be strengthened by further research 

incorporating multi-institutional or global datasets, as well as 
prospective trials.

Finally, the future trajectory of explainable AI in health-
care is situated in its capacity to combine predictive accuracy 
with clinically meaningful transparency. Both the precision 
and interpretability of these algorithms could be enhanced by 
advances in model-agnostic explanation tools and more refined 
data collection protocols. As molecular markers, genetic pro-
files, and real-time monitoring data become increasingly inte-
grated into patient records, the explanatory power of models 
like CatBoost can be expected to grow, thereby further revo-
lutionizing early detection and recurrence risk assessment in 
thyroid cancer.

5. Conclusion and future work
The present study has illustrated the effectiveness of leveraging 
a supervised CatBoost classifier for predicting thyroid cancer 
recurrence, underscoring the value of integrating clinical, demo-
graphic, and pathological variables. High predictive accuracy 
and robust performance metrics were achieved, thereby rein-
forcing the potential of machine learning in refining risk assess-
ments for WDTC. The incorporation of SHAP values yielded 
significant interpretive benefits, enabling a clearer understand-
ing of the rationale behind model predictions. By pinpointing 
dominant features such as Response, Risk, and N, it has been 
shown that the alignment between the model’s high-impact 
variables and established clinical knowledge is strong, further 
enhancing confidence in the model’s applicability. Moreover, 
local SHAP analyses have offered granular insights into individ-
ualized cases, thereby facilitating refined decision-making and 
targeted clinical interventions.

Despite these positive outcomes, certain limitations war-
rant further expansion. The reliance on a single algorithm, 
although effective, may not fully capture the advantages of 

Figure 8.  Local SHAP values for patient 225 (false negative), highlighting the contributions of key features to the incorrect prediction.
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ensemble or hybrid approaches, especially for complex dis-
ease presentations. Moreover, additional validation on large-
scale and diverse datasets is recommended to confirm the 
model’s generalizability beyond the current cohort. Future 
research should seek to integrate additional molecular and 
genetic data, aligning with the broader trend toward pre-
cision medicine. Ongoing improvements in model-agnostic 

explanation tools and more granular data collection pro-
tocols also hold promise for enhancing the accuracy and 
interpretability of predictive models. By addressing these 
directions, a more comprehensive and actionable frame-
work for thyroid cancer recurrence risk stratification can 
be developed, ultimately contributing to improved patient 
outcomes.

Figure 9.  SHAP dependence plots for key features. (A) Response dependence plot, (B) N dependence plot, (C) risk dependence plot, (D) T dependence plot, 
(E) focality dependence plot, (F) adenopathy dependence plot.
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