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A B S T R A C T

In Palestine and other resource‑constrained settings, determining the Pavement Condition Index (PCI) requires 
exhaustive visual surveys of up to 19 distress types, which is a process that is both time‑consuming and costly to 
obtain. Despite advances in PCI prediction (2023–2025), existing methods still depend on full‑distress assess
ments, failing to reduce fieldwork burden. We present an open‑source machine learning software that classifies 
pavement into PCI categories (Good, Satisfactory, Fair, Poor, Impassable) by systematically excluding low‑utility 
distresses, reducing inspection effort by up to 40% while achieving an overall accuracy of 82%. The framework 
integrates features such as pavement age, layer thickness, right‑of‑way (ROW), average daily traffic (ADT), and 
heavy‑duty vehicle percentage.
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Motivation and significance

Regions such as Palestine consider flexible pavements to be the pri
mary parts of the roadway infrastructure system. Their evaluation is 
usually based on the Pavement Condition Index (PCI), Present 

Serviceability Rating (PSR), and International Roughness Index (IRI) 
scoring. PCI is the most preferred out of the three because of its ease of 
use and wide acceptance [1]. It, however, relies heavily on field surveys 
for PCI evaluation, which require identifying up to 19 different types of 
pavement distress and grading them on severity and extent [2]. This 
results in a resource-strapped environment being inefficient, 
labour-intensive, and inconsistent.

Allocated budgets, coupled with a lack of qualified inspectors in 
Palestinian municipalities, worsen issues around street and road reha
bilitation planning. The conventional method demands manual inspec
tion of 100-meter sections to assess for distress patterns such as alligator 
cracking, shear planes, or rutting for functional regression assessment 
[3]. Structural and functional interdependencies hinder accurate PCI 
assessments under resource constraints. Limited mid-range resources 
lead to delayed decision-making and inefficient rehabilitation prioriti
zation [4,5]. Recent work (2023–2025) using physics‑informed neural 
nets [6], graph CNNs [7] and FCM‑XGBoost hybrids [8,9].

To overcome these difficulties, we created a machine learning soft
ware that predicts the classes of PCI as Good, Satisfactory, Fair, Poor or 
Impassable based on historical data on pavement conditions while 
avoiding certain distress criteria. This method decreases data collection 
burdens while keeping the accuracy threshold high, which in turn makes 
it scalable and efficient for municipalities with low inspection capacity. 
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We validated the framework using asphalt pavement data from Nablus 
City, Palestine, from 2020 to 2023, and observed the model’s reliability 
with reduced input data.

Software description

Software architecture

The software follows a five‑layer pipeline (Fig. 1): 

• Data ingestion parses ASTM D6433 spreadsheets, which is a standard 
practice for conducting pavement condition index (PCI) surveys on 
roads and parking lots, or CSVs into Pandas DataFrames

• Preprocessing and feature engineering normalize distress percent
ages, log‑transform skewed variables, and one‑hot encode categor
ical features

• Model training optimizes Random Forest and XGBoost via stratified 
5‑fold cross‑validation

• Evaluation computes metrics, confusion matrices, and permuta
tion‑based feature importances

• Deployment provides a CLI and an optional FastAPI microservice

Software functionalities

Data ingestion
The data_ingestion module accepts either ASTM D6433 field sheets 

or generic CSVs, checks for the presence of required columns, and out
puts a tidy Pandas DataFrame. During the 2020 and 2023 survey cam
paigns, field data were collected along 98 hundred‑metre segments 
across two arterial and one collector road in Nablus West (Table 1). Each 
Surveyor documented Active Subsystem’s (A-SYS) traffic counting 
regarding segment width, layer thickness, average daily traffic, and 18 
categories of distress (Table 2), labelling each distress severity based on 
the proportion of slab area affected, per ASTM D6433: Low (≤ 10%), 

Fig. 1. Five‑layer workflow for distress‑exclusion‑based PCI classification. Direction 1 (Right) and Direction 2 (Left) denote opposite survey passes and are 
analytically equivalent.

Table 1 
Geometric configurations of the three surveyed roads.

Street Name (St.) Direction 1 (Right) Direction 2 (Left)

Length Width Range Length Width Range

Tunis St. 1,200 12 1,200 12
Yafa St. 1,200 7.5 1,200 7.5
No. 25 St. 2,500 4.0 – 12.0 2,500 4.0 – 12.0
Total Length (m) 4,900 — 4,900 —
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Medium (10–25%), and High (> 25%). To reduce typographical errors, 
the drop-down validation incorporated within the raw sheets was digi
tized prior to ingestion.

The numeric identifiers (1–19) correspond to ASTM D6433 distress 
codes and our field data template, ensuring consistent classification 

across surveyors. Twelve rows (10.9%) with > 5% missing data were 
removed. We also identified the 1–5 PCI rating scale rubric as shown in 
Table 3, which provides a structured and interpretable framework for 
classifying pavement conditions into actionable categories, ranging 
from "Good" to "Impassable." Aligned with ASTM D6433 standards, each 
class corresponds to a specific PCI range and guides maintenance de
cisions ensuring that model outputs are not only accurate but also 
practically meaningful for infrastructure planning and resource alloca
tion. The selection of the 1–5 PCI classification scale in this study is 
directly aligned with established pavement evaluation standards, 
particularly ASTM D6433, which defines threshold ranges for PCI-based 
condition assessment. By mapping the continuous PCI scores into five 
discrete categories including Good, Satisfactory, Fair, Poor, and 
Impassable, the scale offers both interpretability and alignment with 
widely accepted industry practices. This categorical structure is 
commonly used by transportation agencies and asset management sys
tems to prioritize maintenance actions and allocate resources. Further
more, this approach simplifies the decision-making process while 
preserving the fidelity of the original PCI assessment framework. The 
software also allows for other scales to be implemented, if the user is 
interested to changing them.

Feature engineering
Binary flags remain boolean, while numerical variables undergo 

min-max scaling. Categorical variables that describe road attributes are 
converted with one-hot encoding. All missing values below 5% are 
imputed with the median for numeric values and mode for categorical 
values; rows exceeding that threshold are removed. Categorical text like 
surface type and surveyed year are one‑hot encoded; lane count is 
one‑hot encoded to avoid an artificial ordinal scale. Distress areas are 
transformed from segments to the percentage of segment area and log- 
transformed to reduce right skew.

Model training
The `trainer.py` module is responsible for training both Random 

Forest and XGBoost models. The hyperparameters are set through YAML 
files, command line interface flags, or directly, and they are fine-tuned 
with 5-fold cross-validation. Class imbalance is managed using class_
weight for Random Forest or scale_pos_weight for XGBoost. The grid 
search optimizes the number of trees set to {100, 200, 400}, and 
maximum depth set to {None, 10, 20}, while learning rate η is set to 
{0.05 or 0.1} for XGBoost. Stratification is utilized over the five PCI 
condition classes to maintain the “Impassable” cases which are rare.

Random Forest and XGBoost were chosen for their proven effec
tiveness in handling complex, non-linear relationships and high- 
dimensional datasets, which are typical in pavement condition model
ling. RF offers robustness against overfitting and provides interpretable 
feature importance, making it well-suited for identifying the most 
influential distress indicators. XGBoost, on the other hand, is known for 
its superior predictive accuracy and efficiency, especially with imbal
anced datasets, due to its regularization techniques and gradient 
boosting framework. Both models support multi-class classification, 
making them ideal for predicting PCI categories while maintaining 
computational efficiency and interpretability, which are key consider
ations for practical deployment in infrastructure management systems.

Distress‑exclusion engine
A loop that iteratively excludes distress features whose No‑Crack 

ratio, which is defined as the fraction of segments without that distress, 
exceeds the set threshold. Features that rarely occur are removed 
without degrading model performance, and the model is retrained at 
each step with metrics logged.

Evaluation and visualisation
The package prints accuracy, precision, recall and F1‑score, gener

ates CSV reports and saves Matplotlib figures such as the 

Table 2 
Counts of segments exhibiting each distress (after cleaning).

Possible Types of Flexible Pavement Distresses

(A) Cracking (B) 
Patching 
and 
Potholes

(C) Surface 
Deformation

(D) Surface 
Defects

Group (E) 
Miscellaneous 
Distresses

10. 
Longitudinal 
and 
Transverse 
Cracks

11. 
Patching

6. 
Depressions

11. Polished 
Aggregate

9. Lane/ 
Shoulder Drop 
Off

1. Alligator 
Cracking

4. Bumps 
and Sags

5. 
Corrugation

2. Bleeding 14. Rail-Road 
Crossing*

7. Edge 
Cracking

13. 
Potholes

15. Rutting 19. 
Weathering 
and Raveling

​

8. Joint 
Reflection 
Cracking

​ 16. Shoving ​ ​

3. Block 
Cracking

​ 18. Swelling ​ ​

17. Slippage 
Cracking

​ ​ ​ ​

* Not applicable, due to the lack of railroads in Nablus City

Table 3 
Rubric for the 1–5 PCI classification scale used in the study, aligning PCI ranges 
with condition categories and corresponding maintenance recommendations to 
support practical decision-making.

Rating PCI 
Range

Condition 
Class

General Description Recommended 
Action

5 PCI >
86

Good Pavement is in 
excellent condition 
with minimal to no 
visible distresses. 
Surface is smooth, 
safe, and 
aesthetically 
acceptable.

Preventive 
maintenance (e.g., 
crack sealing, surface 
treatments) to extend 
life.

4 70 <
PCI ≤
86

Satisfactory Pavement shows 
minor to moderate 
signs of aging or 
wear, with few 
distresses of low 
severity. 
Functionality is 
unaffected.

Light maintenance; 
monitor regularly for 
emerging issues.

3 56 <
PCI ≤
70

Fair Noticeable surface 
distresses are 
present. Structural 
integrity is still 
sound, but 
serviceability is 
declining.

Minor rehabilitation 
or targeted repair 
planning is advised.

2 40 <
PCI ≤
56

Poor Pavement has 
significant distress, 
often including 
moderate to severe 
cracking, rutting, or 
potholes. Ride 
quality is diminished.

Prioritize for 
rehabilitation to 
prevent further 
degradation.

1 PCI ≤
40

Impassable Pavement is severely 
damaged and fails to 
meet minimum 
service standards. 
May pose safety risks.

Immediate and major 
rehabilitation or full 
reconstruction is 
required.
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feature‑importance bar‑plot (Fig. 2).

Illustrative examples

According to Table 4, both models’ classification results showed that 
the Random Forest and XGBoost models are effective in predicting 
pavement conditions, achieving an overall accuracy of 82%. Even 
though both models perform the same on average, they differ in preci
sion, recall, and F1-score for different categories of pavement conditions 
which is indicative of the advantages and disadvantages of each algo
rithm with respect to specific classification problems Table 5.

The models achieve above 90% on precision and recall for well- 
maintained pavements, performing exceptionally. PCI class thresholds 
(Good ≥ 86, Satisfactory 70–86, Fair 56–70, Poor 40–56, Impassable <
40) follow ASTM D6433. Random Forest yielded a precision of 0.95 and 
recall of 0.93, with XGBoost reporting 0.93 and 0.94 respectively. Both 
achieve high F1-scores (0.94 and 0.93), indicating accurate classifica
tion with minimal errors. In the Impassable category both models 
perform well, Random Forest and XGBoost having equal F1-scores of 
0.93. XGBoost’s higher recall (0.97 vs. 0.94) more effectively captures 
critical failures, indicating superior performance in those categories. 
The Random Forest and XGBoost algorithms are appropriate for dis
tinguishing between well-maintained and critically deteriorated roads. 
However, Better performance in the middle categories might require 
more training data or improved feature selection. With these frame
works, agencies are able to automate pavement assessment, optimize 
maintenance workflows, and save costs on manual inspections. For 
context, recent physics‑informed neural‑network work reported 80 % 
accuracy [6] and an FCM–XGBoost approach achieved 83 % [8], placing 
our 82 % squarely within the current state‑of‑the‑art.

Alligator Cracking, Rut Depth, and Longitudinal Cracking have the 
most influence and impact the models’ outcomes the most. Rut depth 
and longitudinal cracking reveal problems stemming from structural 
deterioration, while alligator cracking demonstrates deformation due to 
water. Each of these features strongly indicates structural degradation, 
which is why they are so important. This gives road authorities the 
ability to focus on only the most relevant distresses, saving up to 40% 
inspection time while maintaining accuracy. This reduces reliance on 
lengthy strategic documents and facilitates proactive maintenance. 
Within the CLI, vendors can integrate the tool into asset-management 
systems, and researchers can apply MIT-licensed packages to bench
mark tests, for example, comparing advanced approaches such as 
LiDAR-enhanced distress detection.

Impact

The newly introduced instruments allow road agencies to customize 

ASTM D6433 surveys by focusing only on the subset of distresses with a 
significant impact on PCI prediction. Insightful testing along three urban 
corridors in Nablus demonstrated that removing certain low-utility 
distress categories results in inspection time savings of approximately 
40%, or about three-person days per kilometre. Such labour savings 
reduce the duration of the data-to-decision cycle and enable the 
restricted maintenance budget to be allocated towards the actual 
maintenance work instead of data collection. Aside from the operational 
features, this pipeline has an unobstructed MIT license and is open- 
sourced, which means, any interested parties can contribute to setting 
a reproducible standard for other researchers conducting multimodal 
PCI forecasting, such as using LiDAR point clouds or crack detection 
using vision-transformers. Its command-line interface, alongside the 
optional FastAPI micro-service, allows commercial asset-management 
companies to integrate the decision-making logic into their platform, 
empowering low- and middle-income cities with automatic pavement 
advisory services.

Limitations and future work

This study is constrained by a geographically limited dataset from 
Nablus City, which may affect model generalizability. However, the 
dataset and the results of the study were validated by transportation 
engineers from the city. Further, the model can be trained and fine- 
tuned (i.e., calibrated) on any new dataset from a different geograph
ical location. While the model demonstrates strong internal validity 
through stratified 5-fold cross-validation on the Nablus dataset, we 
recognize the importance of evaluating its performance on external 
datasets to ensure broader applicability. Future work will focus on 
benchmarking the framework across diverse geographic locations, 
pavement types, and environmental conditions. Plans are underway to 
collaborate with transportation agencies in other cities to obtain anno
tated PCI datasets, which will allow us to test the model’s generaliz
ability and adjust distress exclusion thresholds accordingly. This 
external validation will further strengthen the utility of the proposed 
tool and support its integration into pavement management systems 
beyond the study area.

Conclusions

This paper proposes a ML software model for predicting the PCI as an 
alternative to visual inspection approaches employed in developing 
countries like Palestine. Typically, calculating PCI involves determining 
the type, severity, and extent of 19 different pavement distresses which 
is both technically challenging and subjective due to the expertise 
required and the inherent labour-intensive nature of the process. We 
constructed a model using data from roads in western Nablus City. The 

Fig. 2. Feature importance of distresses for PCI prediction.
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model utilized parameters including but not limited to road age, pave
ment thickness, ROW, ADT, heavy vehicle percentage, number of lanes, 
and major distresses. ML Random Forest and XGBoost models yielded an 
overall accuracy of 82% for well-maintained and significantly deterio
rated roads. This software enables transportation agencies to streamline 
pavement monitoring with an overall classification accuracy of 82% and 
precision/recall above 90% for well‑maintained roads. By excluding 
infrequent distresses, inspection time is reduced by up to 40%, allowing 
resources to be reallocated from data collection to maintenance 
execution.
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Step 2: For each row in dataset:
If PCI > 86, classify as ’Good’
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Else if 40 < PCI ≤ 56, classify as ’Poor’
Else classify as ’Impassable’
Step 3: For each distress feature:
If the *No‑Crack ratio* for this feature > 95% (i.e., absent in >95% of segments):
Drop feature from dataset
Step 4: Set ’Class’ column as target variable (y)
Set remaining distress features as input variables (X)
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Step 8: If XGBoost outperforms RF:
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Table 5 
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each class and metric is highlighted in grey.

Algorithm Class Precision Recall F1-Score Accuracy

Random Forest Good 0.95 0.93 0.94 0.82
Satisfactory 0.90 0.70 0.79
Fair 0.63 0.85 0.72
Poor 0.72 0.62 0.66
Impassable 0.92 0.94 0.93
Average 0.83 0.82 0.82

XGBoost Good 0.93 0.94 0.93 0.82
Satisfactory 0.99 0.65 0.78
Fair 0.63 0.85 0.72
Poor 0.71 0.62 0.67
Impassable 0.90 0.97 0.93
Average 0.84 0.82 0.82
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