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W N e

Abstract

Volatile Organic Compounds (VOCs) are important contributors to indoor and occupational
air pollution, such as environments involving the extensive use of paints and solvents. The
routine measurement of VOCs is often limited by resource constraints, creating a need for
indirect estimation techniques. This work presents the need for a predictive framework that
offers a practical, interpretable alternative to a full-spectrum chemical analysis and supports
early exposure detection in resource-limited settings, contributing to environmental health
monitoring and occupational risk assessment. This study explores the capability of machine
learning to simultaneously predict the concentrations of five paint-related VOCs using
other co-emitted VOCs along with demographic variables. Three models—Multi-Output
Gaussian Process Regression (MOGP), CatBoost Multi-Output Regressor, and Multi-Output
Neural Networks—were calibrated and each achieved a high predictive performance.
Further, a feature importance analysis is conducted and showed that certain VOCs and
some demographic variables consistently influenced the predictions across all models,
pointing to common exposure determinants for individuals, regardless of their specific
exposure setting. Additionally, a subgroup analysis identified the exposure disparities
across demographic groups, supporting targeted risk mitigation efforts.

Keywords: multi-output regression; CatBoost; neural networks; explainable Al; environmental
machine learning; volatile organic compounds (VOCs); indoor air quality; exposome; SDG
3—good health and well-being; SDG 11—sustainable cities and communities

1. Introduction

Volatile Organic Compounds (VOCs) are a diverse group of carbon-based compounds
that readily vaporize at room temperature [1]. Commonly emitted from paints, solvents,
adhesives, and industrial materials, VOCs are prevalent in both indoor and outdoor en-
vironments [2,3]. Exposure to VOCs such as toluene, xylene, and isocyanates has been
linked to adverse health outcomes, including respiratory irritation, neurological effects,
and carcinogenesis [4,5]. In small-scale occupational settings like carpentry workshops,
where ventilation is often inadequate, VOC accumulation poses a heightened risk to the
workers and surrounding communities [6,7].
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Even in the absence of direct chemical use, indoor environments, especially those
with inadequate ventilation, can show elevated levels of VOCs due to their proximity to
polluted microenvironments [8]. This problem is especially pronounced in confined spaces
like carpentry workshops, where volatile emissions from products such as wood coatings,
thinners, and adhesives tend to accumulate and linger, aggravated by a lack of proper
ventilation and insufficient environmental monitoring [9].

Monitoring VOC exposure is essential for occupational safety but remains a technical
and financial challenge. The standard method, active sampling, relies on mechanical
pumps to collect air samples onto sorbent tubes for analysis via gas chromatography—mass
spectrometry (GC-MS) [10]. Although highly accurate, this method is labor-intensive,
expensive, and impractical for widespread or continuous monitoring.

Alternative approaches have emerged to address these limitations. Passive sampling
techniques, which operate without pumps or electricity, allow for time-integrated exposure
measurement and are well-suited for field use [10,11]. Biomonitoring using biological
matrices such as hair, blood, or urine provides insights into internal and cumulative VOC
exposure. However, these methods also present drawbacks, including the variability among
individuals, invasive sampling procedures, and complex data interpretation [12].

The research consistently highlights the disparities in VOC exposure across occupa-
tional groups. For instance, Romieu et al. reported that service station workers in Mexico
City had benzene exposures more than seven times higher than office workers, despite
the low benzene concentrations in local fuels [13]. Elevated benzene levels in their blood
samples reflected long-term internal accumulation, underscoring how exposure can be
influenced by factors beyond direct chemical use, such as traffic-related pollution and
ineffective emission controls [14-16].

Recent technological advances have improved the accessibility of exposure monitoring.
Low-cost passive samplers and surrogate biological matrices are now helping to assess VOC
exposure in resource-limited settings and underserved populations [17-20]. Nevertheless,
comprehensive VOC profiling remains constrained by the need for specialized equipment
and trained analysts, making it infeasible for routine large-scale assessments [21-23].

Notably, many VOCs originate from shared sources or show correlated behavior in
the environment, creating opportunities for surrogate modeling, where harder-to-measure
VOCs are estimated using more accessible ones [24]. In this context, machine learning
(ML) has emerged as a powerful tool, enabling indirect predictions based on co-occurring
compounds. While early applications of ML in environmental science focused on single-
output predictions, recent advances in multi-output modeling offer improved accuracy by
capturing the relationships between multiple compounds [25].

Among these, Multi-Output Gaussian Process Regression (MOGP) stands out for com-
bining a high predictive performance with interpretability, a crucial feature for informing
environmental policy and health risk communication [26]. Studies have demonstrated
that ML models like Random Forest, LSSVM, and XGBoost can effectively predict VOC
concentrations in indoor settings based on variables such as occupancy, temperature, and
humidity [27,28]. Furthermore, ML and Al technologies are increasingly used in broader
environmental monitoring applications, including air quality forecasting and pollution
hotspot detection [29-32]. Integrating ML and Al into VOC prediction can significantly
enhance environmental decision-making. Accurate, data-driven predictions of VOC concen-
trations enable health agencies and policymakers to assess risks, guide interventions, and
develop targeted regulations [33,34]. These tools also optimize the allocation of monitoring
resources, especially in economically disadvantaged or under-monitored regions [35,36].

This study proposes a machine-learning-based framework to predict the concentra-
tions of five paint-related VOCs using co-occurring VOCs and demographic information. In
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contrast to traditional single-pollutant models, this work applies a multi-output regression
approach to capture compound interactions and enable joint predictions.

The objective is to evaluate the predictive performance of different ML models and
explore the environmental implications of the most informative predictors. By offering a
cost-effective and scalable alternative to conventional methods, this approach supports data-
driven environmental health management in resource-constrained settings. In addition, the
study interprets the most influential predictors through a feature importance analysis and
investigates subgroup-specific exposure patterns by identifying potential high-risk groups.
Together, these analyses enhance the practical relevance of the models for environmental
health management and targeted risk mitigation.

2. Literature Review

Recent developments in machine learning (ML) have introduced new approaches
to predicting multiple volatile organic compounds (VOCs) at the same time, offering a
broader and more integrated approach to modeling air quality. Unlike traditional models
that typically focus on one pollutant at a time, multi-output (multi-target) ML models take
advantage of the correlations that often exist between co-emitted VOCs, allowing for better
predictive performance and reduced processing complexity.

Masmoudi et al. (2020) proposed a multi-target regression framework that forecasts
several air pollutants simultaneously [22]. Their approach used ensembles of regressor
chains with random-forest base models and showed that accounting for dependencies
among the output variables improves accuracy compared with modeling each pollutant
separately [37]. Similarly, Ye et al. (2022) applied random forests, support-vector regression
(SVR), and XGBoost to estimate the concentrations of multiple VOCs released in a phar-
maceutical production line; they reported R? values from 0.40 to 0.93 and highlighted the
value of time-lagged variables for prediction [38].

Deep-learning models have also been explored. A convolutional neural network
coupled with an optical-absorption sensor predicted benzene, toluene, ethylbenzene, and
xylenes (BTEX) from composite spectral signals with R? > 0.96 for all targets [39]. Kang et al.
(2024) employed a multi-output neural network to predict several performance metrics of
a VOC-removal system, demonstrating the ability of NNs to capture complex nonlinear
dependencies between inputs and multiple VOC outputs [40].

Beyond sensor-level demonstrations, multi-output ML has also proved valuable in
real-world indoor environments. Liu et al. (2023) used random forests, AdaBoost, XGBoost,
and least-squares SVM to predict human-generated indoor VOCs (6-MHO and 4-OPA)
from occupancy and environmental parameters, achieving mean absolute percentage errors
below 5% [28]. Zhang et al. (2021) modeled emissions from coated wood furniture with
an artificial neural network approach, obtaining mean prediction errors below 10% and
outperforming traditional emission models [41].

Multi-output modeling offers clear advantages: it helps identify relationships among
pollutants that share sources or participate in the same chemistry, and it enables the
simultaneous prediction of several VOCs—useful for real-time monitoring and early-
warning systems in industrial and urban settings. Ye et al. (2022) noted that such models
can support more dynamic emission-control strategies in manufacturing [38]. In addition,
ensemble methods and Gaussian-process models provide feature-importance measures
and uncertainty estimates, adding interpretability crucial for health-risk assessment and
policy-making [37,42,43].
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Challenges remain. Multi-output models require large, diverse datasets and can be
computationally demanding and sensitive to hyper-parameter tuning. Masmoudi et al.
(2020) reported that their regressor-chain model needed considerable resources and was
sensitive to extreme events unless the data were transformed appropriately [22]. Although
interpretability tools such as SHAP values help explain individual predictors, complex
models still lack the transparency of simpler regressions. Generalization is another issue: a
model trained in one workshop or city may perform poorly in another setting with different
sources and materials, unless it is retrained or adapted [28].

3. Materials and Methods
3.1. Dataset

The dataset includes measurements of VOC concentrations obtained from blood
samples collected from individuals located in or near a carpentry workshop. This setting is
known for elevated levels of indoor pollutants due to the extensive use of paint-based and
related materials. The data were originally gathered as part of a previous biomonitoring
study [44]. The sampling effort aimed to capture variability in VOC exposure among
individuals working in or living close to the workshop. A total of 180 participants were
included in the study, consisting of both workshop employees and residents from the
surrounding community. For each participant, a single blood sample was collected and
analyzed using gas chromatography (GC) equipped with quadrupole mass spectrometry
(MS), as outlined in detail in the original study [44].

In total, 38 VOCs were identified and quantified. Additionally, demographic informa-
tion including age, gender, and smoking status was recorded to assess potential influences
on VOC levels. Each participant represents one observation in the dataset, resulting in
180 data entries. Each entry includes the concentrations of 38 VOCs and the 3 demographic
variables, yielding 41 variables in total. These variables were used as input features or pre-
diction targets, depending on the modeling approach. Figures 1 and 2 provide an overview
of the participant characteristics and the general VOC exposure profile in the dataset.

Participant Count by Gender, Smoking Status, Age
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Figure 1. The count of participants according to gender, smoking status, and age group.

The average concentration levels of the 38 quantified VOCs across all 180 partici-
pants are presented in Figure 2. This visualization shows the variability in VOC expo-
sure and provides important context for the subsequent modeling and interpretation of
multi-VOC predictions.
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Average VOC Concentration for the Participants
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Figure 2. The average concentrations of the 38 measured VOCs across the 180 participants.

3.2. Target VOCs

The selected target VOCs, presented in Table 1, are significant components of paint-
related emissions and were chosen due to their environmental persistence and potential
health hazards. Toluene, a common solvent, is commonly linked with risks to the central
nervous system with prolonged exposure [45]. Toluene 2,4-diisocyanate, widely utilized in
polyurethane-based coatings, is a highly reactive compound known as a potent respiratory
sensitizer and a major contributor to occupational asthma [46]. p-Xylene, frequently present
in varnishes and fuels, can irritate mucous membranes and neurotoxic effects [47]. n-Butyl
Acetate, found in lacquers, may lead to eye, skin, and respiratory irritation upon short-term
exposure [48]. Acetonitrile, though less frequently monitored, is relevant due to its use in
adhesives and its ability to metabolize into toxic cyanide compounds [49].

Table 1. Chemical structures and corresponding CAS numbers of selected paint-related VOCs.

Compound Structure CAS Number

Toluene ©/ 108-88-3

- /@i /C/O 584-84-9
Xy N

p-Xylene /©/ 106-42-3

n-Butyl Acetate )j\ PN 123-86-4
Acetonitrile N= 75-05-8

Toluene 2,4-diisocyanate °x
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As seen in Figure 3, a strong positive association among all five target VOCs. Such
high inter-correlations confirm that these compounds are typically co-emitted during paint
application and curing processes and subsequently co-accumulated in exposed individuals.
This covariance justifies the use of multi-output learners that explicitly model cross-target
dependence, because information gained from one compound can help refine predictions
for the others. Considering these shared exposure signatures is, therefore, expected to
improve accuracy, enhance the interpretability of common emission sources, and support
more reliable screening of occupational and environmental health risks.

Correlation Matrix of Target VOC Concentrations
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Figure 3. The correlation heatmap of the five target paint-related VOCs.

3.3. Predictors

The predictors combine the three demographic variables (age, gender, and smoking
status) with 33 co-occurring VOCs that typify a carpentry workshop where spray paints,
lacquers, cleaning solvents, and adhesives are used daily. These compounds span light
nitriles and aldehydes, oxygenated solvents such as ethyl and n-butyl acetate, high-volatility
aromatics like benzene, toluene, and the xylene isomers, and numerous chlorinated species
that originate from paint thinners and degreasers. Because many of these chemicals
evaporate together during sanding, spraying, and drying, their indoor air profiles are
strongly correlated, so considering this natural covariance allows the multi-output models
to borrow strength across targets and predict the target VOCs, at the same time, more
accurately than treating each in isolation. The chemical structures and systematic names,
as well as the corresponding CAS numbers of the 33 VOCs, are provided in Appendix A.

3.4. ML Models

Selecting suitable machine-learning models is very important for predicting multiple
correlated outputs in air quality and environmental datasets. In this research, Multi-Output
Gaussian Processes (MOGP), multi-output Neural Networks (NNs), and CatBoost were
selected to predict five VOCs simultaneously. MOGP was considered when modeling
the correlations between the multiple outputs. Neural networks were employed due to
their flexibility in capturing complex nonlinear relationships while considering output
correlations through shared hidden layers. CatBoost is preferred over traditional boosting
methods such as XGBoost because of its ability to handle the categorical features in our
dataset. Further, this method is highly effective for structured datasets such as VOC
measurements. Moreover, CatBoost’s use of ordered boosting reduces overfitting, which
enhances the model stability. Finally, CatBoost was adapted in this work for multi-output
prediction by employing a MultiOutputRegressor wrapper, allowing the simultaneous
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prediction of the five VOCs. Although CatBoost internally fits one model per output, this
approach enables handling all outputs together within a unified training and prediction
framework while preserving the model’s strong performance on categorical and numerical
inputs. All machine learning models were implemented using Python 3.10.6. CatBoost
version 1.2.2 and GPyTorch version 1.10 were used for CatBoost and MOGP, respectively.

3.4.1. Multi-Output Gaussian Process Regression (MOGP)

Gaussian Process (GP) regression is a non-parametric Bayesian approach for modeling
and predicting unknown functions [50]. In the standard setting, GP regression models a
single-output variable by assuming that the function values at any set of input points are
jointly Gaussian distributed. Given a set of inputs X = {x;}_, and corresponding scalar
outputs y = {y;},, where each y; € R, a GP defines the following:

y(x) ~ GP(m(x),K(x,x"))

where m(x) is the mean function, often assumed to be zero, and k(x, x’) is the covariance
function (kernel) that measures the similarity between input points.

However, many real-world problems involve multiple correlated outputs that should
be predicted together. Modeling each output separately using independent GPs ignores
the relationships between outputs and may lead to suboptimal predictions.

To address this, Multi-Output Gaussian Processes (MOGPs) extend the standard GP
framework to jointly model multiple outputs. In the MOGP setting, for vector-valued
outputs Y = {y;}"; where y; € RD, the assumption becomes the following:

y(x) ~ GP(m(x),K(x,x"))

where m(x) is a vector-valued mean function and K(x, x’) is a matrix-valued covariance
function that captures both input similarities and output correlations.

One widely used form for K(x, x’) is the Linear Model of Coregionalization (LMC),
where

K(x,x') = L0y Boky (x,%)
where By is a positive semi-definite matrix modeling the relationships between outputs,
and k;(x, x’) are standard kernels over the inputs [51,52].
MOGP can improve prediction accuracy by modeling multiple outputs jointly. In
this work, we apply MOGP to predict correlated VOCs to evaluate its ability to exploit
inter-task correlations for better generalization.

3.4.2. Neural Network Multi-Output Regression

Artificial Neural Networks (ANNSs) are a class of machine-learning models designed
to approximate complex nonlinear functions through layers of interconnected neurons.
Their expressive power enables them to represent a wide range of functional relationships
between inputs and outputs [53].

In the context of multi-output prediction, neural networks can be adapted to simultane-
ously forecast multiple target variables. This is achieved by designing a shared architecture
where the hidden layers learn common patterns across tasks, while each output neuron
corresponds to a distinct prediction. Mathematically, the output vector y can be described
as follows:

y=f(x;0)
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where x is the input vector, f(-) is the neural network function, and 6 are the learnable
model parameters such as weights and biases.
The standard operation of a fully connected feedforward layer is given by the following:

n0) — g(w(l)h(lfl) + b(l))

where h(!) is the activation at layer /, o is a nonlinear activation function, and W and b1
are the weight matrix and bias vector at layer /.

In the multi-output design, the final layer produces a vector output y € RP, where D
is the number of target variables to predict.

In previous work, the spatiotemporal neural network architecture proposed in [54]
demonstrated significant improvements in forecasting multiple air pollutants simulta-
neously compared to single-output models. Similarly, for this research, we employ a
multi-output neural network to predict correlated VOC levels based on input features in
order to study the ability of neural networks to capture complex dependencies among
multiple outputs and compare it to other ML models.

3.4.3. CatBoost Multi-Output Regression

This is a gradient-boosting algorithm developed to provide high performance with
minimal need for extensive data preprocessing [55]. Unlike many traditional boosting
methods, such as Gradient Boosting Machines [56], CatBoost is specifically designed to han-
dle categorical features natively without requiring manual encoding, making it particularly
attractive for structured datasets commonly used in scientific and industrial applications.

The general structure of a boosted model in CatBoost follows an additive formulation:

M
F(x) = Zl Ymhim (x)

where h;,,(x) are decision trees and 7, are their associated weights.

CatBoost’s main innovation, ordered boosting, modifies the standard boosting process
to prevent overfitting by calculating residuals without introducing target leakage. It
incrementally builds models using only information available at earlier stages, leading to
better generalization.

In this work, CatBoost is employed to predict multiple correlated VOCs individually
as a strong baseline method. Although it does not explicitly model the correlations among
outputs like MOGP, CatBoost provides robust and highly accurate single-task predictions.
Comparing CatBoost results with MOGP predictions allows for assessing the practical
benefits of modeling output correlations in multi-output regression settings.

3.5. Assessment of Predictive Performance

The accurate evaluation of the used prediction models in this study is an important step
to confirm their reliability in forecasting VOC concentrations. In this study, three standard
performance metrics were used to assess model accuracy: the coefficient of determination
(R?), the root mean square error (RMSE), and the mean absolute error (MAE).

3.5.1. Coefficient of Determination (R?)

It measures the proportion of the variance in the dependent variable that is predictable
from the independent variables. It is calculated using the following formula:

SSres

R*?=1-
SStot
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where 5SSy, is the sum of squares of residuals, and is the total sum of squares. R2 pro-
vides an indication of goodness of fit and is commonly used to evaluate model accuracy
in prediction.

3.5.2. Root Mean Square Error (RMSE)

It measures the square root of the average squared differences between predicted and
actual values. It is calculated as follows:

1 2
RMSE = \/nZ(]/pred - yuctual)

where Y14 is the observed value of VOC from the dataset, and y ., is the predicted value

generated by the model. RMSE penalizes large errors more heavily and is used to evaluate
the model’s prediction accuracy, with lower values indicating better performance.

3.5.3. Mean Absolute Error (MAE)

It calculates the average magnitude of errors in a set of predictions, without consider-
ing their direction. It is calculated as follows:

1
MAE = EZ’ (]/pred - yactual) ’

where Y ctyq1 is the observed value of VOC from the dataset, and y,.q is the predicted
value generated by the model. MAE is a straightforward metric to interpret and is used to
measure how far predictions are from actual values on average.

3.6. Feature Importance

Understanding the importance of each input VOC for prediction is essential for inter-
preting machine-learning models and understanding the relationships within the data. In
this work, feature importance analysis is conducted to identify which VOCs and categorical
variables most strongly influenced the prediction of the five target VOCs. Interpreting
feature contributions is particularly important in environmental modeling, as it helps to
identify potential interactions between pollutants, detect the predictive VOCs, and support
the development of more effective monitoring and control strategies.

Different methods are applied in this work to assess feature importance, including
native importance, permutation importance, and ARD kernel analysis. For the Multi-
Output Gaussian Process (MOGP) model, the Automatic Relevance Determination (ARD)
kernel parameters were analyzed, where lower-length-scale values correspond to more
influential features [57]. Permutation importance was used for the neural network model
by measuring the decrease in model performance when individual features were randomly
shuffled, indicating their influence on predictions [58]. Native feature importance was
obtained from the CatBoost model using its built-in method, which evaluates the average
contribution of each feature to the predictive performance [55].

4. Results
4.1. Evaluation of the Ability of Machine-Learning Models to Predict Multiple VOCs Simultaneously

The three proposed machine-learning models were employed to predict the concentra-
tions of five target VOCs simultaneously. Each model was trained using 33 VOC features
and 3 categorical variables as inputs. For MOGP, a Linear Coregionalization Model (LCM)
was combined with ARD-RBF kernels to capture both the correlations between outputs
and the feature relevance. Additionally, for CatBoost, the MultiOutputRegressor wrapper
from the scikit-learn library [59] was used to adapt CatBoostRegressor for multi-target
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prediction, enabling the simultaneous modeling of five VOC outputs. The CatBoost im-
plementation was based on the CatBoost open-source library [55]. Key hyperparameters
included 200 iterations, a learning rate of 0.05, a maximum tree depth of 6, and the use of
the RMSE loss function. While the RMSE loss function was specified, CatBoost internally
minimizes the Mean Squared Error (MSE) during training and reports the square root of
the loss for interpretability. Finally, for the neural network, a fully connected architecture
was applied with two hidden layers (64 and 32 units), ReLU activations, Adam optimizer,
and early stopping to prevent overfitting.

The models were evaluated based on the five-fold cross-validation for CatBoost and
MOGTP, and holdout validation for the neural network. The table below presents the model
performance using R?, RMSE, and MAE assessment metrics.

Table 2 presents a detailed evaluation using the model performance metrics (R?,
RMSE, and MAE) for each individual target VOC, along with the average values across the
five VOCs. The predictive performance of the three models presented in Table 2 indicates
that all models achieved high R? values, which reflects a strong predictive capability.
CatBoost achieved the highest R?, and also achieved the lowest RMSE (3.4788), as well as
the lowest MAE (2.4726), which demonstrates a superior predictive accuracy and a minimal
average error.

Table 2. Model evaluation results for multi-output VOC prediction using ML.

Model voC R? RMSE MAE
acetonitrile 0.9355 1.7313 1.1284
n-butyl acetate 0.9382 1.1103 0.7778
MOGP p-Xylene 0.7383 2.3193 1.5984
Toluene 2,4-diisocyanate 0.9643 14.4662 8.3748
Toluene 0.9032 1.805 1.0428
Average 0.8959 4.2864 2.5844
acetonitrile 0.9174 1.87 1.3776
n-butyl acetate 0.9469 1.0066 0.7956
p-Xylene 0.7618 2.1983 1.6079
CatBoost Toluene 2,4-diisocyanate 0.9788 10.7132 7.5046
Toluene 0.916 1.606 1.0772
Average 0.9042 3.4788 2.4726
acetonitrile 0.923 1.9324 1.5573
n-butyl acetate 0.9315 1.1845 0.9353
-Xylene 0.747 2.297 1.5694
Neural Network Toluenep2,4?,diisocyanate 0.9524 16.8162 13.4165
Toluene 0.8877 2.0589 1.4734
Average 0.8883 4.8578 3.7904

The result of Multi-Output Gaussian Process (MOGP) supports its ability to model
multiple outputs simultaneously with good generalization. The Multi-Output Neural
Network achieved a very close but weaker result. This could be justified by the model’s
sensitivity to data size and structure, as deep-learning models typically require larger
datasets for optimal performance.

Across the five target VOCs, the models generally achieved a strong predictive ac-
curacy for compounds such as Toluene 2,4-diisocyanate and n-butyl acetate, which con-
sistently yielded a high R? and low error metrics. In contrast, p-Xylene showed a lower
R? and slightly higher prediction errors across all models, indicating greater variability
or more complex relationships with the input features. These differences highlight that
some VOCs are more predictable based on the available co-occurring variables, while
others may require additional contextual or environmental data to improve the prediction
performance. These patterns may also reflect the characteristics of the study environment,
where compounds such as Toluene 2,4-diisocyanate and n-butyl acetate are directly linked
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H
=\

Metric Value

R2

to paint-related activities in the carpentry workshop, resulting in more consistent exposure
profiles, while compounds like p-Xylene may be influenced by a broader range of indoor
and outdoor sources affecting both workers and nearby residents.

Figure 4 illustrates how the three ML models performed across the five target VOCs.
As observed, Toluene 2,4-diisocyanate and n-butyl acetate were consistently well-predicted
by all models. Conversely, p-Xylene exhibited a lower R? and higher error values across
all models, confirming its relatively more challenging predictability. The plot also con-
firms that, while the models performed well overall, the prediction accuracy varied by
VOC, underscoring the value of multi-output modeling approaches that can account for
such variability. This visualization provides a clear, VOC-specific view of the models’
predictive ability.

Performance Metrics per VOC and Model

RMSE

Model
— MOGP
CatBoost
—— Neural Network

Figure 4. Performance of ML models on each of the five target VOCs.

Overfitting Evaluation

In this step, we verify that our machine-learning models do not suffer from overfitting
to ensure their ability to generalize well to unseen VOC data. It is known that overfitting
occurs when a model learns the training VOC data too closely, leading to poor performance
on new samples. To assess possible overfitting, learning curves were built and analyzed for
each model by plotting the training and test R? scores as a function of the training set size.
A consistent and stable convergence of training and test curves, in general, indicates a good
generalization of the model, while large gaps or instability between the two curves may
indicate overfitting or underfitting. Figure 1 presents the learning curves used to evaluate
the models in order to study the generalization behavior of them.

Based on Figure 5, as the training set size increases, the test R? scores improve and
stabilize, closely approaching the training R? scores. This indicates that all models achieved
good generalization without significant overfitting.

4.2. Results of Feature Importance Analysis

For each of the machine-learning models, the feature importance values were averaged
across the five VOC outputs to obtain a global ranking of the predictors. This allows us to
determine the most influential VOCs and categorical variables driving the multi-output
prediction, which identifies the pollutant relationships and provides recommendations for
future monitoring and control strategies.
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The Learning Curve (R?) - Multi-Output Gaussian Process Regression (MOGP)
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Figure 5. Learning curves for the MOGP, Neural Network, and CatBoost models, respectively from
left to right.

Notably, while several co-occurring VOCs, such as Trichloroethene, o-Xylene,
1,2-Dichlorobenzene, and 2,5-Dimethylfuran, were consistently identified as important
predictors across all models, Figure 6 shows that age emerged as the most influential
feature overall. This observation is particularly relevant given that the VOC concentrations
in this study were measured from blood samples, representing internal exposure. Unlike
environmental air monitoring, blood-based biomonitoring reflects both external exposure
and individual-level physiological and behavioral factors that influence the absorption,
distribution, metabolism, and excretion (ADME) of VOCs. Age is known to impact these
processes through changes in metabolic enzyme activity, body fat composition, and organ
function, potentially resulting in a slower VOC clearance or greater accumulation in older
individuals. Moreover, smoking status also played a significant role for the CatBoost
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predictive model, likely due to the presence of numerous VOCs in tobacco smoke, which
can elevate the baseline internal VOC levels. These findings suggest that demographic char-
acteristics, particularly, age, may have a stronger influence on blood VOC concentrations
than environmental co-exposures alone. This highlights the importance of considering
individual biological and lifestyle factors when interpreting VOC exposure models based
on internal biomarkers.

- MOGP

Age

Trichloroethene

1,2-Dichlorobenzene
2,5-Dimethylfuran
o-Xylene
1,1,1-Trichloroethane
1,2-Dichloropropane
Chlorobenzene
1,2-Dichloroethane

Methyl Propionate

0.10 015 0.20

Importance

CatBoost

0.00 0.05

Age

Trichloroethene
2,5-Dimethylfuran
1,2-Dichlorobenzene
o-Xylene

Smoking Status
1,1,1-Trichloroethane
1,2-Dichloropropane
Chlorobenzene

Gender

0.10 0.15 0.20 0.25
Importance

Neural Network

Age

2,5-Dimethylfuran

Trichloroethene
1,2-Dichlorobenzene
1,1,1-Trichloroethane
o-Xylene
1,2-Dichloropropane

Chlorobenzene

1,2-Dichloroethane

Methyl Propionate

0.10 015 0.20 0.25
Importance

Figure 6. Top 10 influential features identified by the three machine-learning models.
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Moreover, the consistency in identifying certain VOCs as influential predictors across
all three machine-learning models can be attributed to the characteristics of the collected
data and the study environment. Although not all of the measured 38 VOCs originated
directly from paint emissions, the environmental setting, the carpentry workshop, where
paint-related activities dominate, created a strong exposure signature. VOCs such as
Trichloroethene, o-Xylene, 1,2-Dichlorobenzene, and 2,5-Dimethylfuran, which are com-
monly associated with paint fumes and industrial solvents, appeared consistently among
the top influential features because they represent the core components of the air quality
profile in and around the carpentry workshop.

Furthermore, the fact that the data were collected from two distinct but environmen-
tally linked groups, workers inside the carpentry workshop and nearby residents, reinforces
this pattern. The workers, who were all adult males above 15 years old, experienced contin-
uous and direct exposure to paint-related VOCs. Meanwhile, residents included males and
females, smokers and non-smokers, and individuals both younger and older than 15 years.
Despite this demographic variability, the proximity to the carpentry workshop ensured
that paint-related VOCs remained dominant in shaping the VOC exposure profiles of both
groups. As a result, even features not exclusively emitted from paints still co-varied with
paint-related compounds due to the shared environmental conditions.

This environmental and demographic structure explains why the same VOCs were
consistently important for predicting the five target VOCs. It also shows the real-world
complexity captured by the models. Among all predictors, age consistently emerged as the
most influential factor across the three ML models. Additionally, smoking status and gender
were also ranked among the 10 important predictors, particularly in the CatBoost model,
which achieved the best overall performance. These findings highlight that demographic
characteristics, especially age, played a major role in shaping blood VOC concentrations,
likely reflecting the differences in occupational exposure between groups.

4.3. Identification of High-Risk Groups

Understanding how VOC exposure varies across population subgroups is important
for informing targeted risk mitigation strategies and occupational health interventions.
While Section 4.2 determines the most influential VOCs and categorical variables driving
the multi-output prediction overall, this section directly addresses an important gap. It
provides clear descriptive insights into which participant groups may experience higher
predicted VOC exposure levels. This is essential in order to explore the social usefulness
of the models by identifying potential high-risk groups. The objective of this section is
to stratify and compare the predicted concentrations of the five target VOCs across the
participant characteristics: gender, smoking status, and age group (<15 years vs. >15 years).
This subgroup analysis complements the model interpretability results and supports the
identification of groups that may benefit from targeted exposure reduction measures.

To achieve this, we used the predicted VOC concentrations obtained from the CatBoost
model, which demonstrated the best overall predictive performance in this study based
on five-fold cross-validation, as the five-fold cross-validation ensures that each of the
180 participants receives a predicted value from the fold where they were included in
the validation set. Accordingly, this analysis uses the complete set of 180 predicted VOC
values for each participant. Following, for each subgroup (male vs. female, smoker vs.
non-smoker, and age < 15 vs. >15), we calculated and compared the mean and standard
deviation of the predicted concentrations for each of the five target VOCs. The results of
this stratified analysis using the CatBoost model are presented in Table 3 below. The results
obtained using the other two ML models in this study are presented in Appendix A.
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Table 3. Comparison of mean and standard deviation of predicted concentrations (ng/L) for the five
target VOCs stratified by age group, gender, and smoking status based in CatBoost model.

Age Gender Smoking Status
<15 >15 Male Female Non-Smoker Smoker
VOC Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
acetonitrile 48.74 1.24 61.18 3.36 56.74 7.07 58.51 1.82 55.14 6.19 63.24 2.49
n-butyl acetate 32.37 0.67 40.46 2.42 37.65 4.71 38.33 0.92 36.37 3.91 42.35 1.49
Toluene 76.27 0.972 84.86 5.25 82.45 6.39 79.73 0.80 79.65 4.10 89.71 4.23
p-Xylene 62.16 1.81 68.76 2.74 66.60 4.29 66.34 1.69 65.19 3.35 71.07 2.07
Toluene 2 127.14 7.53 27406 3736 22234 82.66 23886 16.61 19956 67.75 30897 21.22

4-diisocyanate

According to Table 3, the results of the predicted VOC concentrations show how paint-
related VOC exposures vary across population subgroups within the study population.
Importantly, since all five target VOCs originate predominantly from paint emissions used
in the carpentry workshop, the differences observed across age, gender, and smoking status
reflect the combined effects of occupational exposure, environmental proximity to the
source, and individual characteristics.

The most prominent finding is the clear differentiation by age group. For all five VOCs,
participants older than 15 years showed higher predicted concentrations compared to those
aged 15 or younger. This pattern is fully consistent with the context of the study: all
workshop employees are male adults over 15 years old who experience regular and direct
exposure to paint-related VOCs through their work activities inside the carpentry workshop.
The elevated concentrations among this group strongly reflect their occupational role as
the primary factor driving exposure. Smoking status also showed a clear and consistent
pattern that aligns well with the study environment. Across multiple VOCs, smokers
exhibited higher predicted concentrations than non-smokers. This outcome reflects the
population structure of the study: the majority of smokers were male workers employed
inside the carpentry workshop, where they experienced regular and direct exposure to
paint-related emissions. In contrast, most non-smokers were residents living near the
workshop, including women and younger individuals, whose exposure was largely indirect
and lower in magnitude. These results highlight that occupational factors, rather than
smoking behavior per se, were the primary driver of elevated VOC exposures in this group.
This reinforces the broader observation that individuals working directly with paint-based
materials in such small-scale environments represent a particularly high-risk subgroup
requiring targeted occupational health interventions.

When considering the standard deviation (SD) values across subgroups, an important
additional insight emerges for age groups. Across all five target VOCs, participants older
than 15 years not only exhibited higher mean concentrations but also higher SD values
compared to those aged 15 or younger. This suggests a greater variability of exposure
within the >15 group, likely reflecting the differences in individual work tasks, duration of
exposure, and varying intensity of occupational activities inside the carpentry workshop.
In contrast, for gender and smoking status, the SD patterns are more VOC-specific and
less consistent across all compounds. This indicates that, while gender and smoking status
contribute to exposure differences, the degree of variability within these subgroups depends
on the particular VOC, possibly reflecting individual behavioral patterns, room occupancy,
and personal proximity to emission sources.

4.4. Study Limitations

While this study demonstrates the feasibility and scientific value of applying multi-
output machine-learning models to VOC exposure prediction, certain limitations must
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be acknowledged. First, the dataset was collected from a single occupational setting, a
carpentry workshop and its surrounding area, which may limit the generalizability of the
models to other environments with different VOC profiles or pollution sources. Second, the
relatively small sample size, 180 participants, may constrain the ability of machine-learning
and deep-learning models to fully capture the complex nonlinear relationships. Future
studies with larger and more diverse datasets could further enhance model robustness.
Third, although the multi-output approach effectively leverages the co-occurrence patterns
of VOCs, causality between the predictor and target compounds cannot be established from
this modeling framework. Finally, the demographic variables included in this study (age,
gender, and smoking status) offer only a limited representation of personal factors that may
influence VOC exposure. Incorporating additional behavioral covariates (such as time spent
indoors versus outdoors, use of personal protective equipment, and ventilation practices),
occupational covariates (such as job role, duration and frequency of exposure to paints
and solvents, and proximity to emission sources), and environmental covariates (such as
room ventilation rate, temperature, humidity, and background outdoor pollution levels)
could provide a more comprehensive understanding of the factors driving individual VOC
exposure. Including such variables in future studies may improve the model accuracy
and help better identify high-risk groups. Addressing these limitations in future work
will further improve the applicability and impact of machine-learning models for VOC
exposure assessment.

5. Conclusions

This study demonstrates that using multi-output regression ML models provides a
practical approach for predicting the concentrations of several VOCs based on co-occurring
compounds and basic participant characteristics. Through the application of MOGP, Cat-
Boost, and Neural Network models, the prediction accuracy was found to be consistently
high with all models. A learning curve analysis further confirmed that the models general-
ized well to unseen data indicating the robustness of the developed predictive frameworks.

A feature importance analysis shows that several VOCs consistently played a dom-
inant role in predicting the target VOCs across all models, which confirms the stability
of the identified predictors and reinforces the potential of leveraging a reduced set of
environmental and demographic variables for accurate exposure assessment.

The results of this work support the feasibility and scientific value of predicting
difficult-to-monitor paint-related VOCs using readily available environmental and par-
ticipant data. Although the predictor VOCs may originate from different sources, their
real-world co-occurrence patterns were effectively captured and utilized, enabling the
development of models that can serve as proxies for direct measurements. This offers
advantages for the early detection of hazardous exposures and for informing risk manage-
ment practices, especially in small-scale occupational environments where full chemical
monitoring may not be practical.

Moreover, this work addresses a gap in the existing VOC modeling literature by
employing a multi-output prediction strategy rather than focusing on single-pollutant
models. Further, the incorporation of model interpretability through a feature importance
analysis strengthens the applicability of the findings for real-world decision-making and
policy development. This research provides a useful solution to the challenge of VOC
exposure assessment. It reduces the reliance on expensive and labor-intensive chemical
monitoring, offers early warning capabilities, and empowers health and environmental
safety officers to make informed decisions. Indeed, this work is particularly helpful for
developing regions, where resources for comprehensive air quality monitoring are often
limited, and it contributes meaningfully to both the environmental sciences field and the
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advancement of applied machine learning for air quality management. Finally, the observed
influence of participant characteristics on VOC exposure, as demonstrated by both the
feature importance and subgroup analyses, supports the social usefulness of the proposed
models for identifying higher-risk groups and guiding occupational health intervention.
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Appendix A

Table Al. Analytical parameters for the determination of selected VOCS [44].

Analyte Structure CAS Number
acetonitrile N——— 75-05-8
O
ethyl acetate )J\ 141-78-6
o/\
1,1-Dichloroethene 75-35-4
Cl Cl
©)

2-propenal \V\ 107-02-8
Methylene chloride cl /\CI 75-09-2

Cl
Transe-1,2-Di Dichloroethene \/\CI 156-60-5

propanal

G 123-38-6
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Table Al. Cont.

Analyte Structure CAS Number
Methyl tert-butyl ether ~ 1634-04-4
(0]

0]
Methyl acetate )k 79-20-9
o/
Cl
cis-1,2-Dichloroethene 156-59-2
Cl /

Cl

chloroform )\ 67-66-3
Cl Cl
Cl
1,2-Dichloroethane V\ o 107-06-2
Cl
1,1,1-Trichloroethane Cl 71-55-6
Cl

Cl
Carbon tetrachloride C|4'7C| 56-23-5

Cl
Benzene O 71-43-2
Dibromomethane Br/\ Br 74-95-3

Cl

1,2-Dichloropropane 78-87-5
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Table Al. Cont.

Analyte Structure CAS Number
Cl
Trichloroethene )\/ cl 79-01-6
Cl
Br
Bromodichloromethane )\ 75-27-4
Cl Cl
(@]

Methyl proprionate \)J\ 554-12-1
o/

0]
2,5-Dimethylfuran \@/ 605.86.5
1,1,2-Trichloroethane )\/ Cl 79-00-5
Cl

n-butyl acetate 123-86-4

Toluene @/ 108-88-3

Dibromochloromethane )\ 124-48-1

Cl
Tetrachloroethene cl )ﬁ/ 127-18-4
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Table Al. Cont.

Analyte Structure CAS Number
Cl
Chlorobenzene ©/ 108-90-7
Ethylbenzene @\/ 100-41-4
P-Xylene /©/ 179601-23-1
Br
Bromoform )\ 75-25-2
Br Br
Styrene @\/ 100-42-5
Cl
Cl
1,1,2,2-Tetrachlroethane Cl 79-34-5
Cl
o- Xylene ©i 95-47-6
Cl Cl
1,3-Dichlorobenzene \©/ 541-73-1
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Table Al. Cont.

Analyte Structure CAS Number
Cl
1,2-Dichlorobenzene 95-50-1
Cl
Cl
1,4-Dichlorobenzene 106-46-7
Cl
- dii 0] 0] -84-
toluene 2,4- diisocyanate \C . / 584-84-9
AN =
N N
CI\ Cl
Hexachloroethane Cl / Cl 67-72-1

Table A2. Comparison of mean and standard deviation of predicted concentrations (ng/L) for the

five target VOCs stratified by age group, gender, and smoking status based in MOGP model.

Age Gender Smoking Status
<15 >15 Male Female Non-Smoker Smoker
VOC Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
acetonitrile 48.64 1.76 61.09 3.78 56.61 7.25 58.56 2.24 55.06 6.30 63.10 3.46
n-butyl acetate 32.50 1.00 40.44 2.64 37.69 4.75 38.31 1.06 36.45 4.03 42.23 1.67
Toluene 76.34 1.02 84.87 5.44 82.57 6.44 79.30 1.31 79.71 4.25 89.63 4.55
p-Xylene 62.44 2.42 68.81 2.93 66.73 4.33 66.46 2.57 65.42 3.65 70.84 2.27
Toluene 2 12393 1139 27535 3593 22202 8446 23915 1663 19936 7029 30873 19.89

4-diisocyanate

Table A3. Comparison of mean and standard deviation of predicted concentrations (ng/L) for the

five target VOCs stratified by age group, gender, and smoking status based in Neural Network model.

Age Gender Smoking Status
<15 >15 Male Female Non-Smoker Smoker
VOC Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
acetonitrile 49.46 1.30 60.71 3.13 56.67 6.434 58.42 1.760 55.28 5.65 62.50 2.55
n-butyl acetate 33.08 0.84 40.27 2.304 37.74 4.26 38.51 0.820 36.61 3.52 42.01 1.52
Toluene 77.10 0.783 84.66 4.79 82.58 5.70 79.95 1.166 80.08 3.68 88.92 4.07
p-Xylene 63.11 1.54 68.88 2.44 66.97 3.74 66.91 1.75 65.78 2.97 70.83 1.93
Toluene 2 135.69 993 27021 3336 22288 7558 237.83 1348 20213 6208 30173 18.86

4-diisocyanate
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