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ARTICLE INFO ABSTRACT
Keywords: The use of Radio map fingerprinting, which relies on a received signal strength indicator (RSSI), is a popular
Fingerprinting indoor positioning method that offers high accuracy and cost-effective deployment. However, the generation of
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an RSSI radio map requires significant time and effort. This paper presents three methods for generating radio
maps, with the aim of reducing the time required. The first method involves a dedicated mobile application
that collects experimental RSSI data, while the second method uses biharmonic spline interpolation (BSI) to
expand a prerecorded experimental radio map. The third method, the Wireless InSite simulator-based method,
generates a fully simulated radio map. All three methods are studied in detail to evaluate their effectiveness
in reducing the time required for radio map generation. Location estimation is then carried out based on the
prerecorded radio maps. The combined method presented in this study increases the efficiency of building
indoor positioning mobile applications. Experiments using combined real and simulated datasets collected at
An Najah National University and University of Dubai campuses demonstrate that the model outperforms
similar methods, improving the localization accuracy to approximately 0.45 meters. This level of accuracy is
suitable for a variety of location-based applications, including critical ones such as evacuating people from
buildings during emergencies.

1. Introduction Indoor positioning systems have used different wireless technologies

such as ultra-wideband (UWB), Bluetooth low energy (BLE), and Wi-

The rapid development of contemporary wireless sensor network
(WSN) applications has created an urgent need for accurate data collec-
tion and location specification. Position estimation is a critical require-
ment for many WSN applications, including vehicular networks where
location information is necessary for providing highly accurate and
reliable localization information anytime, anywhere [1]. In the health
sector, biomedical sensor nodes attached to a patient’s body are used to
monitor their activities [2]. Location information is also important for
several Internet of Things (IoT) applications, such as monitoring daily
activities in smart cities, municipal solid waste management [3], and
smart manufacturing [4]. It is essential to study various localization
methods while carefully addressing users’ privacy and security concerns
through appropriate techniques [5]. The Global Positioning System
(GPS) is a common outdoor positioning solution that achieves local-
ization accuracy within a few meters. However, its main disadvantage
is that it does not work efficiently in environments where the line of
sight is unavailable, such as indoor settings [6,7].
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Fi. Wi-Fi has become the simplest option for indoor environments due
to the widespread use of Wi-Fi access points in buildings [8]. Various
methods for measuring wireless signals [9], such as the angle of arrival
(AOA), time difference of arrival (TDOA), time of arrival (TOA), and
Received Signal Strength Indication (RSSI), are available. Among these
methods, RSSI-based localization systems are widely adopted due to
their high accuracy and the prevalence of wireless technologies. The
basic techniques used for RSSI-based localization are fingerprinting,
triangulation, and trilateration methods [10]. Fingerprinting is the
most commonly used technique due to its accuracy, robustness, and
simplicity, particularly in environments affected by factors such as
multipath [11].

The RSSI-based fingerprinting method involves two stages: the train-
ing and estimation stages. In the training stage, the RSSI data collection
process is performed to create a radio map that will be utilized in the es-
timation stage to estimate the user’s location using a specific positioning
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algorithm. Nonetheless, constructing an RSSI-based fingerprint radio
map in the training stage requires a considerable number of reference
points (RPs) to be surveyed to collect the RSSI fingerprint measure-
ments at each RP, which consumes a significant amount of time. Thus,
RSSI-based fingerprinting is a time-consuming and labor-intensive tech-
nique, necessitating the identification of methods to overcome the
drawbacks of the training stage. Moreover, the accuracy of the esti-
mated locations is the most crucial performance metric used to evaluate
any positioning system and can be evaluated using various performance
criteria [12].

Generating an RSSI-based fingerprint radio map is a critical step in
implementing the fingerprinting indoor positioning method. To miti-
gate the time required for radio map generation, various approaches
have been proposed in the literature. For example, Ni et al. [13]
proposed a semi-supervised self-adaptive local linear embedding algo-
rithm, which reduced the number of required RSSI values and achieved
a localization error of around 3 m. Crowdsourcing was used in [14],
while [15,16] discussed a path loss model-based approach. Addition-
ally, Zhou et al. [17] introduced some efficient interpolation methods
that significantly reduce the amount of labor required for the radio map
generation process.

Indoor positioning methods that rely on Radio map fingerprinting,
which utilizes a received signal strength indicator (RSSI), are commonly
used due to their high accuracy and cost-effective implementation.
Nonetheless, creating an RSSI radio map necessitates substantial time
and effort. To overcome this issues, this paper introduces three methods
for generating radio maps more efficiently. The first method involves
using a mobile application to collect experimental RSSI data, while the
second method expands a prerecorded experimental radio map using
biharmonic spline interpolation (BSI). The third method generates a
fully simulated radio map using the Wireless InSite simulator. Each
of these three methods is carefully analyzed to assess their effective-
ness in reducing the time required for radio map generation. The
resulting radio maps are then used for location estimation, which is
critical for building indoor positioning mobile applications. Moving
forward, the three methods are combined to create a more efficient
approach to building indoor positioning mobile applications. Using real
and simulated datasets collected from An Najah National University
and University of Dubai campuses, they conducted experiments that
demonstrated the superiority of their model over similar methods.
This model achieved a localization accuracy of approximately 0.45 m,
which is suitable for a variety of location-based applications, including
emergency evacuations. Overall, the main contributions of this study
can be summarized as follows:

» The proposed system is validated using actual location coordi-
nates and RSSI measurements collected at An-Najah National
University [18]. To gather accurate RSSI fingerprints values and
corresponding records (RSSI Fingerprint, SSID to the AP, Mac
address (MA) of the AP, etc.), a mobile application was developed
and verified at the University of Dubai [19].

Three different radio maps are introduced for the same indoor
environment: (i) an effective mobile application is developed to
collect RSSI values for generating an experimental radio map;
(ii) to reduce the complexity of the RSSI fingerprints radio map
generation during the Wi-Fi fingerprinting training stage, two
different solutions are introduced: (a) an efficient interpolation
method called BSI [20] to generate an efficient semi-interpolated
radio map, and (b)) a fully simulated radio map using Wireless
InSite Simulator [21] that takes into account the effect of building
materials.

A comprehensive comparison of the three radio map generation
methods is presented, including the advantages and disadvan-
tages of each one. The generated radio maps are also statistically
evaluated.

A tradeoff between the reduction in effort in terms of the
time required for the radio map generation process during the
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training stage and the desired accuracy in the estimation stage is
identified.

This paper is structured as follows: Section 2 presents previous
research related to this study. Section 3 outlines the approaches used
in the proposed indoor positioning system. The implementation of the
indoor positioning system is detailed in Section 4, followed by the
presentation of results and discussion in Section 5. The paper concludes
with Section 6.

2. Related works

Fingerprinting is widely used in RSSI-based indoor positioning tech-
niques due to the ubiquity of Wi-Fi infrastructure, the widespread
use of mobile devices, and its ability to achieve satisfactory accu-
racy [18]. Many research studies have focused on RSSI-based indoor
positioning techniques. For instance, one study provided an overview
of Wi-Fi fingerprinting-based indoor positioning, and another study
discussed the trilateration algorithm for RSSI-based indoor localiza-
tion [19,20]. Additionally, [21] conducted a comparative analysis of
different fingerprint-matching algorithms for Wi-Fi RSSI signal-based
localization systems.

To simplify the radio map generation process for indoor localization
systems, researchers have proposed various methods. For example, one
approach involved a probabilistic framework to analyze the perfor-
mance of Wi-Fi fingerprint-based localization and reduced the sampling
size from a theoretical perspective, in addition to using the crowd-
sourcing method [22-24], interpolation methods [8,25,26], and others.

To collect data during the training stage in the Wi-Fi fingerprinting
method, various techniques have been proposed in the literature. For
instance, the author in [27] used an RSSI prediction model for data
collection. In [28,29], different propagation models were proposed
to predict signal strength values and generate radio maps. A genetic
algorithm-based approach was used in [30] for indoor positioning,
which avoided explicit efforts for the deployment process, and the
median error of their system was 2 and 7 meters for small and large
environments, respectively. Similarly, the experiment in [31] was con-
ducted in an indoor environment, where a rank-based localization
method was used that relied only on the rankings of the RSSI values,
and the mean localization error was 4 m.

The primary contribution of our method is achieving a balance
between reducing the required effort, in terms of time, and achieving
desired localization accuracy. To accomplish this balance, we utilized
a radio map that consists of both real and interpolated values. The real
values were gathered using our specially designed mobile application,
while the interpolated values were generated using one of the most
advanced interpolation methods, BSI, which overcomes the limitations
of other interpolation methods. BSI uses a mathematical function that
minimizes overall surface curvature, resulting in a smooth surface that
passes exactly through the input points and produces a very small
prediction error. We analyzed the effect of the number of real mea-
surements used during the interpolation, which has been overlooked
in most existing studies. Furthermore, we introduced a simulated radio
map generated using the Wireless InSite simulator, and we conducted
a comprehensive and detailed analysis and comparison of the results.

3. Overview of the approaches used for the proposed indoor posi-
tioning system

This section gives an overview of the method used for indoor local-
ization systems: the fingerprinting method, the BSI, and the simulation
using the Wireless InSite simulator.

3.1. Fingerprinting localization method
The proposed localization method involves two main stages: the

fingerprinting training stage and the fingerprinting estimation stage, as
illustrated in Fig. 1.
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Fig. 1. Fingerprinting method.

section name | RP name | SSID AP RSSI MA time sample Number | RP [x,y]
a al ExtraB -49 64:70:02:5d:c0:f5 | 1/25/2020 8:00 1 [3,4]
a ag8 ExtraB -55 64:70:02:5d:c0:f5 | 1/25/2020 8:00 2 [3,16]
b b4 Najah -40 f0:5¢:19:47:6e:d0 | 1/25/202011:26 3 [2,7]
b b7 OutdoorD -94 e8:de:27:bc:ae:e2| 1/25/2020 11:26 5 [2,10]
b b13 OutdoorD -97 e8:de:27:bcae:e2| 1/25/2020 11:26 4 [2,16]
C c2 Tplink2GA -60 60:23:27:7a:0d:76 | 1/25/2020 11:26 6 [4,51]
C c8 IndoorA -76 64:70:02:5d:c2:aa | 1/25/2020 11:26 7 [8,51]
d d2 QOutdoorA -87 e8:de:27:bc:92:b0 | 1/25/2020 11:26 8 [49,49]
d ds Najah -77 f0:5¢:19:47:60:d0 | 1/25/2020 11:26 9 [49,46]
d dig Najah -30 f0:5c:19:47:60:d1 | 1/25/202011:26 10 [49,37]

Fig. 2. Sample of radio map training data.

3.1.1. Fingerprinting training stage

During the training stage of RSSI-based fingerprinting, RSSI samples
were collected at predefined points called reference points using a
mobile application installed on a device, in order to generate a radio
map. This involved scanning the area for access points (APs) based on
beacon frames periodically sent by the AP for synchronization, in order
to construct a database (radio map). To collect the RSSI samples, the
user was required to remain stationary at specific calibration points
(reference points) using the proposed mobile application. The mobile
application required the user to select the point name and the section
containing the reference point, and then choose the number of RSSI
samples to be gathered from each deployed AP at each reference point.
The radio map was generated on the server as a comma-separated
values (CSV) file. Fig. 3 provides a screenshot of the proposed mobile
application used to perform the data collection process.

Moreover, during the training phase, the RSSI samples in (dBm)
were collected along with other related information to construct the
radio map. The collected data consisted of the section name, which
is the area’s name that contains a given RP; the SSID to the AP,
where SSID is the network identifier; the AP MAC address, which
is a physical address used as a unique identifier for the AP; the time,
which is the timestamp when each RS.ST sample is collected; and the
sample number, which is the number of recorded RS SIs at a specific
RP from the detected APs, and (x,y) are the coordinates of the APs.
Table 1 illustrates the structure of the recorded radio map, and Fig. 2
displays a screenshot of a sample of radio map training data.

Averaging the samples of the RSSI values to store the average in the
radio map is a common processing step [32]. Eq. (1) is used to find the
average of the RSSI values from the j* AP to ith AP.

m
RSST, = - 3 RSSI], €))
t=1

where m is the number of RSS1/;; values read from a specific AP, and
RSSII.’j is the rth element from the RSS1;; radio map.

3.1.2. Fingerprinting estimation stage

In the location estimation process, the nearest neighbors algorithm
was employed to determine the distance between the received signal
strength indicator (RSSI) values of the reference points (RPs) and
the testing points. The nearest neighbor point was designated as the
estimated location. The mean square error (MSE) metric was used as the
distance measure, which estimated the desired location by finding the
nearest position based on the RSSI values that give the minimum MSE.
Alternatively, the Euclidean distance could be used in the fingerprinting
estimation stage, where it computes the distance between two points.
However, the MSE method is also a suitable choice because it calculates
the deviation between the pre-recorded RSSI at a specific RP and
the observed RSSI at the testing point [33]. Eq. (2) illustrates the
application of the MSE-fingerprinting method.

_ X/(RSSI,; ~ RSSI, ;)

n

MSE (2

where RSS1,; represents the prerecorded RSSI values stored in the
radio map. The RSS1,,, ; is the observed RSST value at i location, and
n is the number of the total RSSI measurements at i location, in other
words, the value that states the number of APs detected by the user
involved in the localization process.

3.2. Biharmonic spline interpolation method
This section provides an overview of one of the most advanced

and crucial interpolation methods, the biharmonic spline interpolation
method. As mentioned earlier, the first stage of fingerprinting involves
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Table 1

Radio map structure.
Section RP SSID  RSSI AP Time Sample X-Y

name name AP value Mac Address (MA) number coordinates
section P,_, AP,_, RSSI,; MA, day/month/year, 1 (xp,¥yp)

hour: minutes: seconds,
hour: (am/pm)

RSSI,

sitelD: Najah ~

University of Dubai IPS

MAC Address 02:00:00:00:00:00
sieD:  Najah . Numberorsemples il
section: Ml =
MAC Address:  02:00:00:00:00:00 10
SAVE 30
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200
Section:  section name
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Fig. 3. Mobile application interface.
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Fig. 4. Proposed indoor positioning system.
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collecting RSSI values at different reference points (RPs), while the
second stage (testing stage) involves applying the MSE-fingerprinting
localization method to estimate the user’s location. The accuracy of
the location estimation process is primarily influenced by the size of
the radio map. A larger radio map typically results in a more precise
positioning estimation [34]. However, creating a large radio map can
be time-consuming and is considered the primary drawback of the
fingerprinting training stage. To overcome this limitation, interpolation
methods are used to estimate a portion of the RSSI values, thereby
generating a larger radio map and improving the accuracy of the
location estimation process.

Several interpolation methods have been developed to generate a
smooth surface for predicting new data across various domains. MAT-
LAB software offers several interpolation methods, including nearest
neighbor, linear, cubic, and biharmonic spline. However, except for the
biharmonic spline, these methods have several drawbacks. For instance,
they often return NANs (Not-A-Number) for points located exactly on or
near the convex hull. Furthermore, the linear and nearest interpolation
methods exhibit discontinuities on the first and zeroth derivatives,
respectively [35,36]. Hence, the most suitable method for producing

accurate results is the biharmonic spline (BSI), which Sandwell and
David described as a linear combination of Green’s functions centered
at each data point [37]. Additionally, the BSI method is flexible and
can use both values and slopes to generate surfaces. Therefore, in the
fingerprinting training stage, the BSI was used as an efficient method
to create a denser radio map.

3.3. Wireless InSite Simulator

This section outlines the use of the Wireless InSite Simulator for
RSSI prediction in the study area. Wireless InSite is a powerful elec-
tromagnetic modeling tool that enables robust radio wave propagation
modeling at high speeds. It achieves this by combining 3D models with
propagation models, including empirical and deterministic models. The
tool is capable of predicting signal strength in both indoor and outdoor
spaces while accounting for the impact of building materials. With its
advanced plotting system, users can specify the locations of transmitters
and receivers, as well as the building design. The Wireless InSite
software output can be leveraged for localization purposes.

4. Implementation of the proposed indoor positioning system

This section outlines three different methods used for generating
radio maps in the fingerprinting training stage. The first method in-
volved conducting an experiment to gather actual RSSI measurements
using the proposed mobile application. The second method involved
using Wireless InSite 3D Wireless Prediction Software to simulate the
case study and generate a radio map containing simulated RSSI mea-
surements. The third method involved using the BSI method to predict
new RSSI values and expand the prerecorded radio map generated from
the experiment. The MSE-Fingerprinting Localization method was then
used in the estimation stage to predict the user’s location based on
the three radio maps. Finally, the localization accuracy was evaluated
by computing the estimated results. The proposed indoor localization
system is illustrated in Fig. 4.

4.1. Experimental methodology

The used indoor environment was a part of the second floor in
the engineering college at An-Najah National University, which covers
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Fig. 7. (a) Actual and Simulation Measurement Results for AP;; (b) Actual and Simulation Measurement Results for AP,.

approximately 37 x 32 m?. Fig. 5 (a, b) show a section map and a
corridor photo of the area under study, respectively.

The study area was equipped with 17 access points that supported
various IEEE 802.11 standards, including a, b, g, and n, out of which
three access points supported dual-band at both 2.4 GHz and 5 GHz.
The map in Fig. 5(b) illustrates the placement of these access points,
with 14 of them supporting 2.4 GHz marked by red square symbols, and
the remaining three supporting dual-band marked by green triangles.
For the fingerprinting training stage, a mobile phone was used as a re-
ceiver to gather RSSI values at each of the 64 reference points (marked
by black dots on the map) along a specific route with a separation
of 1.35m between each point. Additionally, during the estimation stage,
16 testing points were randomly selected, and their RSSI values were
collected.

To construct the experimental radio map, 60 RSSI samples were
collected from each deployed access point at each of the reference and
testing points using the proposed mobile application. These samples
were averaged to generate the radio map, which consisted of the actual
RSSI measurements. The MSE-Fingerprinting method was then applied
to estimate the locations of the 16 testing points using the generated
radio map containing 64 RPs with their corresponding RSSI values from
the deployed access points. The minimum and maximum localization
errors were found to be 0 and 0.76 m, respectively.

4.2. Simulation method

A 3D Shoot and Bouncing Ray (3D SBR) technique was used to
perform a simulation model in the Wireless InSite Simulator, which
allowed for the evaluation of different types of building materials and
their impact on the RSSI values. Concrete material was found to have a
greater attenuation effect on the RSSI values than glass material, while
wooden and metal doors were also used in the simulation. The study
area was simulated with receivers (reference points) located in the same

positions as the APs in the experiment and transmitters (access points)
represented by red and green points, respectively, as shown in Fig. 6.

To generate an accurate simulated radio map, the simulation was
run five times to provide a stable prediction of the performance [38],
and the average RSSI values from each run were collected at each
receiver from each detected transmitter. A comparison was then made
between the radio maps consisting of the actual and simulated mea-
surements. For simplicity, two random APs were selected to describe
the RSSI behavior in the simulation and actual cases, as shown in Fig. 7.

To determine the strength of the relationship between the simulated
and actual measurements, the Pearson correlation coefficient (R) was
used, as shown in Eq. (3). A high value of R close to 1 indicates a good
fit. In this case, the value of R was found to be 80

. WS B~ S S B
VO ZL, 7 = (S 20 T, 5~ (Eiy )

where p represents the actual RSSI measurements, p represents the
simulated RSSI measurements, and » is the total number of RSSI values.

R 3)

4.3. BSI method

This section presents an efficient BSI method to reduce the required
time and effort in generating radio maps during the fingerprinting
training stage, while also producing accurate estimated locations during
the fingerprinting estimation stage. Interpolation is a crucial technique
for predicting values of a surface at unsampled points and optimizing
the size of the radio map. By using the experimental RS.ST values at
each RP from the detected AP, a surface was generated to predict new
RS ST values for new RPs in the area of interest. The BSI method was
used to form an expanded radio map, consisting of both actual and
interpolated RSSI measurements.
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Fig. 8. The interpolated surfaces of the RSSI values generated by the BSI method based on the corresponding APs. a—d The interpolated surfaces generated using 50% of the
original RPs based on AP, AP,, AP;, and AP,, respectively. e-h The interpolated surfaces generated using 100% of the original RPs based on AP, AP,, AP;, and AP,, respectively.

The BSI method was applied to two different numbers of actual
RSSI measurements. In the first case, approximately 50% of the RPs
were removed from the experimental radio map generated using the
proposed mobile application in Section 4.1. The remaining 50% of
actual RSSI measurements were used to plot a BSI surface for each
deployed AP. Fig. 8(a—d) shows the interpolated surfaces using the
RSSI values corresponding to 50% of the original RPs for four different
deployed APs, for the sake of simplicity.

The results obtained from the interpolated surfaces led to the gen-
eration of the first semi-interpolated radio map, consisting of part of
the experimental RSST measurements. This radio map corresponded
to 50% of the original access points marked by black dots in Fig. 8,
with the remaining part being the interpolated measurement value.
The first semi-interpolated radio map was constructed by spacing 190
reference points at 0.45m intervals. Out of these, 32 reference points

corresponded to actual RS.ST values, while the other 158 corresponded
to interpolated RSST values.

Increasing the number of access points used to generate interpo-
lated surfaces resulted in a reduction in the interpolated error for
the BSI method. This is not always the case when using other in-
terpolation types, such as polynomial interpolation [39]. Therefore,
another semi-interpolated radio map was generated using more values
of experimental RS ST measurements than in the first semi-interpolated
radio map. The second semi-interpolated radio map was constructed
using BSI surfaces, and the experimental RS.SI values corresponded
to 100% of the original reference points, i.e., 64 reference points.
Fig. 8 (e-h) illustrates the generated BSI surfaces with the RS.ST values
corresponding to 100% of the original reference points, marked by
black dots.
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5. Discussion and results

The accuracy of the location estimation process was evaluated using
three radio maps: the experimental, simulated, and semi-interpolated
radio maps. The estimation error (¢) was measured as the distance
between the actual and estimated locations, which was calculated using
Eq. (4):

e=Vx-%+u -2 4

where x, y are the actual coordinates, and %, y are the estimated coor-
dinates.

+ The location estimation process based on the experimental radio
map: The MSE-Fingerprinting method was based on the experi-
mental radio map consisting of 64 RPs with their corresponding
RSSI values. The obtained results had minimum and maximum
localization errors equal to 0 and 0.76 m, respectively, and the
average error for all the testing points was 0.084375 m.

The location estimation process based on the simulated radio
map: The MSE was used to estimate the locations. For instance,
38%, of the testing points had an error in the range (0, 2.7)m with
an average of 1.65m, while 37% of the testing points had an esti-
mation error higher than 2.7m up to 7m with an average of 5.2m,
and the remaining 25% of the testing points were estimated with
an error up to approximately 13.5m. The cumulative distribution
function (CDF) of the simulated positioning error is shown in
Fig. 9(a), and a comparison between the estimated location for
the testing points obtained from the simulated and experimental
radio map is illustrated in Fig. 10(a). The location estimation was
performed using MSE, and the resulting errors were analyzed.
Specifically, the analysis revealed that for 38% of the testing
points, the estimation error was within the range of (0,2.7)m with
an average error of 1.65m. For 37% of the testing points, the
estimation error was higher than 2.7m up to 7m with an average
of 5.2m. The remaining 25% of the testing points were estimated
with an error of approximately 13.5m or less. The cumulative
distribution function (CDF) of the simulated positioning error
is shown in Fig. 9(a), while Fig. 10(a) compares the estimated
location for the testing points obtained from the simulated and
experimental radio maps. As seen from Fig. 10(a), the simulation

error for the testing points was higher than the experimental
error, meaning there was no tradeoff between the required effort
and the desired accuracy when the localization system was based
on the simulated radio map.

The location estimation process based on the semi-interpolated
radio map.

1. The first semi-interpolated radio map, with 50% of the
original RPs: The MSE method was utilized to estimate the
positions of 16 testing points, with the outcomes indicating
that 50% of these points had a localization error ranging
from (0,0.45)m, with an average of 0.28m. The remaining
50% of points had an error range of (0.9 — 3.2)m, with
an average of around 1.8m. The cumulative distribution
function (CDF) of the first semi-interpolated positioning
error can be found in Fig. 9(b), while a comparison of
the estimated locations for the 16 testing points based
on the first semi-interpolated and the experimental radio
maps is illustrated in Fig. 10(b). Fig. 10(b) demonstrates
that the localization error dependent on the first semi-
interpolated radio map increased when compared to the
experimental error, but still remained within an acceptable
range. Specifically, ten testing points exhibited an error of
less than 1m, while the other six testing points resulted in
a low-accuracy localization.

2. The second semi-interpolated radio map: The process of
estimating the locations of 16 testing points resulted in
exact estimation for 94% of the points, with a localization
error of Om. For the remaining 6%, the localization error
was 0.45m. The cumulative distribution function (CDF) of
the second semi-interpolated positioning error is presented
in Fig. 9(c), while a comparison between the estimated
locations for the 16 testing points using the first semi-
interpolated and experimental radio maps is depicted in
Fig. 10(c). The results obtained from the second expanded
semi-interpolated radio map provided more precise mea-
sures for location estimation. When compared to the re-
sults obtained from the experimental radio map, 13 testing
points exhibited identical localization errors in both cases.
Additionally, two testing points demonstrated a reduction
in localization error when compared to the actual scenario.



B. Sulaiman et al.

Systems and Soft Computing 5 (2023) 200054

15 T T T T T
—
E -Locallzanon error depend on
~ the experimental radio map.
B Localization error depend on
El‘:) 10+ the simulated radio map.
[
9
©
N 5S¢
©
[&]

oLl i
1 2 3 4 5

6 7

8 9 10 11 12 13 14 15 16

Testing Points index

(a)

—_
Localization error depend on the
é 3r -experimental radio map.
P
[e) L Localization error depend on the
g 2.5 -ﬂrst semi-interpolated radio map.
c 2
ﬁ 1.5
c—o“ 1
o 05
-
0
1 2 3 4 5 6 7
08 ! 1 1 1 1 1 1

Localization error depend on the
experimental radio map.
Localization error depend on the
second semi-interpolated radio map.

e
o)}

Localization error (m)
© o
N B
T T

o

1.2 3 4 5 6 7

8 9
Testing Points index

10 11 12 13 14 15 16

(b)

8 9

10 11
Testing Points index

(c)

12 13 14 15 16

Fig. 10. Localization errors for the testing points obtained from the three generated radio maps: (a) experimental radio map vs. the simulated radio map, (b) experimental radio
map vs. the first semi-interpolated radio map, (c) experimental radio vs. the second semi-interpolated radio map.

Lastly, it is worth noting that the BSI method optimized the accuracy
of localization by utilizing an adequate number of actual Received
Signal Strength Indicator (RSSI) measurements to form a dense radio
map consisting of both the experimental and interpolated RSSI values.
The map was then optimized through the BSI method to generate a
more intricate radio map, balancing the reduction in complexity during
the radio map generation process with the desired localization accu-
racy. In summary, Table 2 indicates that the BSI method outperformed
the other two methods by achieving a tradeoff between the required
time and effort with localization accuracy, as well as between the
minimization of effort and the desired accuracy. Therefore, it is evident
that the actual data collection process is a critical and efficient means
to construct the initial radio map. Based on our understanding, this
groundbreaking research successfully combined three distinct methods
to develop indoor localization systems based on RSSI values.

A comparison with different methods used in the state-of-the-art
studies was conducted to clarify the contribution of this study. Typ-
ically, linear interpolation methods were used in [40] to reduce the
time needed for radio map creation. An advantage of this method was
that there was no rounding error at the checkpoints. An increasing

Table 2
Comparison of the indoor localization system depending on the three radio map
generation methods.

Method Time and effort Localization accuracy
Experiment High Medium

BSI Medium High

Wireless InSite Simulator Low Low

number of the used checkpoints led to mitigating the interpolation error
value, which is not always true in other interpolation methods, such
as polynomial interpolation. On the other hand, the BSI method used
in this study found the smoothest surface passing through the data.
Therefore, in the offline fingerprint phase, the BSI is a suitable method
to construct a more dense database of RSSI fingerprints.

Moving on, in [14], the missing values in the fingerprint map were
reconstructed using two interpolation methods: the k-nearest neighbor
(KNN) interpolation method and the inverse distance weight (IDW)
interpolation. A comparison between the two methods was provided.
In contrast, this study introduced three distinct radio maps and utilized
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two different methods to interpolate the missing values of the RSSI
readings, ensuring accurate RSSI predicted values. The study provided a
comprehensive analysis of an advanced interpolation method, resulting
in more precise outcomes, and detailed comparisons for each case.

Compared to the aforementioned works, our proposed radio map
generation system comprehensively addresses several issues, exhibiting
superior performance in terms of localization accuracy, simplicity,
and effort. Moreover, the methods we introduced have the potential
to be employed in large-scale heterogeneous practical environments,
functioning as a reliable and efficient database for indoor localization
systems in future studies.

6. Conclusions

The BSI method was proposed as an improvement for indoor posi-
tioning systems by expanding an experimental radio map to generate
a more dense map with increased numbers of reference points for
efficient location estimation. Machine learning algorithms can be ap-
plied to further increase the size of the experiment environment and
generalize the proposed model to multi-floor buildings. In this paper,
three approaches were used to generate RSSI radio maps for indoor
localization: an experimental radio map generated by a mobile applica-
tion, a simulated radio map generated by the Wireless InSite Simulator,
and a semi-interpolated radio map generated by the biharmonic spline
interpolation method. The results demonstrated the effectiveness of the
proposed mobile application and the BSI method when a sufficient
number of RS ST values were used. Moreover, radio maps with larger
sizes were proven to be more efficient for indoor positioning systems.
The average localization accuracy was approximately 1.65 for 37%
based on the fully simulated radio map and less than 0.45 m for the
semi-interpolated radio map. A detailed comparison of the suggested
methods confirmed the superiority of the semi-interpolated radio map
using the BSI method with a sufficient number of reference points.
In future work, the three generated radio maps can be used to apply
indoor positioning systems using traditional localization methods.
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