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a b s t r a c t

The Wi-Fi-fingerprinting positioning method is used widely in indoor positioning en-
vironments due to its simplicity and wide coverage. However, in the offline phase of
the method, the collection process is a fundamental and critical step that requires time
and effort. Moreover, the location estimation process, which is executed in the second
Wi-Fi-fingerprinting phase (online phase), needs to be accurate enough to guarantee
efficient indoor positioning. Hence, in this work, a novel indoor location-estimation
process based on a semi-interpolated radio map and artificial neural network (ANN) is
presented. A mobile application is built to gather the received signal strength indicator
(RSSI) fingerprinting to construct a radio map, which is then expanded with the bihar-
monic spline interpolation (BSI) method through the estimation of more RSSI values. A
feedforward back propagation (FFBP) neural network and generalised regression neural
network (GRNN) were built in the online phase for the location-estimation process. They
were trained using the expanded dataset by taking the reference point (X, Y) coordinates
as their desired output and using two different forms of the data as their inputs. The first
inputs are the RSSI values from the 17 access points (APs) – three of the APs have dual-
band i.e, support both 2.4 and 5 GHz – and the second input is based on a selected set of
APs, which produce a high level of acceptable RSSI and their coordinates. A comparison
between these two models was done. The results show that FFBP outperforms GRNNs
in terms of structure simplicity, while GRNNs achieved more accurate prediction results
with an average distance error of up to 0.48 m. Hence, our proposed methodology
leverages building a simple neural network topology that has good location estimation
results for indoor positioning in a low-cost localisation process.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

In several application domains, users’ location knowledge became a critical issue. Users’ locations are estimated
sing localisation systems categorised as indoor and outdoor systems. Various solutions, such as global positioning
ystems (GPSs), are adopted in outdoor environments; these are considered unreliable in indoor environments due to the
navailability of lines of sight and the existence of obstacles such as walls. As a result, several research studies have been
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conducted on location estimation in indoor environments to develop efficient and accurate indoor positioning systems
(IPSs).

IPSs can be classified based on the information acquired from the wireless signals with range-based and range-free
echniques. Range-free techniques are cost-effective because there is no need for additional hardware for the location-
stimation process, as the location is estimated based on distance-approximation algorithms [1]; among range-free
ocalisation algorithms, DV-Hop and centroid algorithms are considered important and popular. However, in range-based
echniques, the target location is determined using trilateration or triangulation approaches based on different geometric
ethods to measure the distance or angle between the transmitting and receiving nodes with a high level of accuracy and

obustness [1]. In fact, various methods are used to determine geometric information for range-based techniques, such
s received signal strength indicator (RSSI)-based and time-based methods, which are time difference of arrival (TDoA)
nd time of arrival (ToA) [2]. In time-based methods, the location estimation of TDoA measurements is estimated using
he cross-correlation technique, and the ToA-based method measures the propagation time from the transmitter to the
eceiver [2]. Generally, the emitted signals have poor penetration capabilities; as a result, to overcome this problem, a
ooperative localisation system that enables the exchange of the information ranged between the neighbouring nodes can
e used [3].
Over time, various range-based localisation techniques have been developed. For instance, GPS is one of the most

opular range-based localisation techniques using ToA and TDoA measurements but is considered an energy-consuming
echnique and inefficient in indoor environments. Another is the global system for mobile communications (GSM),
hich uses RSSI and angle of arrival (AoA) methods. Besides, the ultra-wideband (UWB) technique, which uses ToA
easurements and is able to provide highly accurate range measurements [4].
For accurate range measurement in time-based methods, synchronisation is an important and fundamental require-

ent; therefore, cooperative network synchronisation based on the UWB technique is currently one of the most attractive
opics, and rich literature is available on this topic. In [5], the authors introduce an asymptotic analysis for cooperative
etwork synchronisation and derive performance limits for both absolute and relative synchronisation problems. Some of
ime synchronisation protocols (TSPs) in wireless sensor networks are discussed in [6,7], such as reference broadcast syn-
hronisation (RBS), the time-synchronisation protocol for sensor networks (TPSNs) and the flooding time synchronisation
rotocol (FTSP). Moreover, localisation systems can have passive or active localisation; in [8], the author focuses on the
assive type based on ToA measurements constructed over a unified-factor graph-based framework, and the Cram’er–Rao
ound was derived to characterise localisation performance.
Owing to the wide range of devices equipped with a Wi-Fi adapter nowadays, Wi-Fi-based indoor localisation systems

re adopted based on RSSIs, so RSSI-based indoor localisation systems are more cost-effective and have less complexity
han time-based methods due to less demand for additional hardware [9]. Existing Wi-Fi-based localisation methods can
e put into two categories: Wi-Fi-fingerprinting and Wi-Fi-ranging [10]. The latter estimates the user’s location directly
sing distance to the access point (AP), which is inefficient and impractical in indoor environments like buildings because
f the influence of people, wall reflections and signal occlusions [11]. In Wi-Fi-fingerprinting methods, it is fundamental
o associate a fingerprint to a specific position to be able to use it later to identify the position. The Wi-Fi-fingerprinting
ethod consists of two phases: offline and online. The data-collection process is executed in the offline phase to build a

ingerprint database. The location-estimation process is executed in the online phase using various localisation algorithms.
i-Fi fingerprinting methods can be categorised into database-based [12] and neural network-based methods [12].

• Category #1 — Database-based approach: This type relies on the collection of RSSI values from different APs in
several locations named by reference points (RPs) and the saving of these in a database. Then, a target mobile collects
RSSI values at a random location and compares them to stored ones in the pre-recorded database to estimate the
coordinates of the user’s location.

• Category #2 — Neural network-based approach: The RSSI fingerprinting method, combined with machine-learning
algorithms, is a promising indoor localisation solution. Therefore, solutions based on machine-learning algorithms
are highly recommended in various localisation systems. In this approach, signal strength is recorded at each RP
and stored in a database called a radio map. Later, this training samples from this database are used for neural-
network models. Artificial neural networks (ANNs) are characterised by the capability to learn by themselves and
approximate highly nonlinear models to produce the desired outputs. Recently, various ANN-localisation solutions,
such as multilayer perceptrons (MLPs) [13], convolutional neural networks (CNNs) [14], recurrent neural networks
(RNNs) [15] and generalised regression neural networks [16], have been proposed in the indoor localisation field.

his study adopts the neural-network-based approach and aims to find an ANN model that is able to estimate accurate
ocations inside a university college; the availability of this positioning information means that students, staff and visitors
ill never get lost, as they only need to glance at their mobile phones to see their location, and it gives them the ability to
each their destination easily. The RSSI data-collection process from various RPs is critical in the localisation scenarios for
n ANN model to be an efficient IPS. Therefore, this paper introduces an RSSI-based IPS, located on the second floor of the
ngineering college at An-Najah National University [17], to generate a radio map consisting of real RSSI measurements,
sing the biharmonic spline interpolation (BSI) method, to expand the pre-recorded radio map. Then, two different ANNs,
hich are the feedforward neural network (FFNN) and generalised regression neural network (GRNN) models, are used
o estimate user location accurately with two different inputs. The results show that the proposed ANN models have low
2
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complexity and improved localisation accuracy. The positioning system presented in this paper can be applied in other
environments such as airports, indoor parking, hospitals and shopping malls.

This paper is organised as follows: Section 2 introduces the related works. Section 3 provides a detailed description
f the proposed system. Section 4 illustrates the methodology of the experiment. The results, discussion and comparison
etween this paper and some of the state-of-the-art studies are described in Section 5. Finally, in Section 6, a conclusion
s given.

. Related work

The main challenges in fingerprinting systems are the effort and time required to execute the data-collection process in
he offline phase in order to construct the radio map and the time-consuming procedure of searching through the stored
ingerprint samples in the database during the online fingerprinting phase to estimate user location. Recent literature
ntroduces different methods of mitigating the required effort and time of the offline phase. In [18], manual calibration
s avoided through the use of a collaborative approach that uses the collected RSSI values at fixed nodes to achieve 2.5 m
f indoor localisation accuracy. In [19], the author proposes an algorithm based on an improved double-peak Gaussian
istribution to generate Wi-Fi fingerprints. A new RSSI prediction model with a fingerprint calibration procedure is used
n [20]. In [21], the kriging interpolation method was used for database generation, which gives good estimation results.
he author of [22] proposes a crowdsourcing method to construct a manual radio map and uses the inverse distance
eighting (IDW) interpolation method to generate an interpolated radio map, and in [23], the simultaneous localisation
nd mapping (Wi-Fi SLAM) method is used although it suffers from a heavy computational load, it has an accurate result.
n [24], the author proposes a Htrack map-matching system based on a hidden Markov model (HMM) for the location
stimation process in two different indoor environments; in general, the map-matching method is computationally
xpensive. However, there are such methods that can run on a mobile device such as in [25], a mobile application
ased on Wi-Fi fingerprinting is proposed for user location estimation in an indoor environment, in addition, the author
n [26] introduces a Cost-effective Indoor Localisation that combines the benefits of two localisation techniques, WiFi
nd Kinect, into a single algorithm using low-cost sensors. In [27], the author considers the operationally deployed Live
abs server-side Wi-Fi localisation system which uses the classical RADAR algorithm tackle some limitations such as low
ardinality and outlier elimination and achieved 80+% reduction in the overall occupancy estimation error. In addition,
wo methods of localisation are presented in [28–31] that are static and dynamic methods. For the online fingerprinting
hase, traditional localisation algorithms are used in several studies; the author of [32] introduces a comprehensive study
f different traditional algorithms. The use of machine-learning algorithms for indoor localisation has been on the rise
ue to their efficient and accurate estimation results. Therefore, for the location-estimation process in the online phase,
ifferent kinds of ANN algorithms have been applied, such as FFNNs [33,34], CNNs [35], radial basis neural networks
RBNNs) [36] and deep neural networks (DNNs) [37]. The author of [38] uses CNN-based Wi-Fi fingerprinting for location
stimation in multi-storey buildings and compares it with DNNs — this resulted in higher accuracy with less data. In [39],
LPs and GRNNs are used to estimate user location through ToA measurements. Different machine-learning approaches
re used in [40]: ANNs and support-vector regression are used to locate APs rather than the mobile user. Table 1 shows
arts of recent works that use ANN in localisation. There are also machine-learning algorithms that have been used for
ndoor fingerprinting, such as the gauss process model [41] and nearest-neighbours [42], random-forest [43] and GD-based
ethods [44].
In the previously mentioned works, there is not a method that considers both the urgent need to reduce the time and

ffort of the offline phase and the use of an efficient machine-learning method with high location-estimation accuracy.
lso, the integration of real RSSI measurements, BSI-method measurements and FFNN or GRNN models was not adapted
or accurate localisation in Wi-Fi environments. A comparison between this paper and some of the related work is
iscussed in Section 5. The main contributions of this paper can be summarised as follows:

• The proposed system was verified with real location coordinates and RSSI data, which were collected from An-Najah
National University using a proposed mobile application, which has the ability to collect accurate RSSI fingerprint
values and corresponding records (RSSI fingerprint, name of AP, MAC address (MA) of AP, etc.)

• A comprehensive approach that considers the optimisation of the offline and online fingerprinting phases was
proposed.

◦ In the offline phase: The Wi-Fi-fingerprinting method was used to build a dataset, and BSI surfaces were
employed to estimate more fingerprint values and generate a denser database.

◦ In the online phase: Two neural-network algorithms, namely the feedforward back propagation (FFBP) neural
network and GRNN, were used for the location-estimation process. They were trained using a semi-simulated
dataset with two different input patterns.

• The deployed AP location and the valid received signal strength were taken into consideration during the neural-
network training process. In addition, the deployed single-band and dual-band APs supported both 2.4 and 5 GHz.

• We evaluated the positioning errors using different performance criteria, and accurate estimated locations with
average distance errors of up to 0.48 m were obtained.
3
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Table 1
Shows part of the recent existing works that use ANN to improve localisation.
References ANN Type Hidden Layer Input Output

[45] ANFIS 3 RSS, ZigBee Distance
[46] CNN 8 RSS map Room index and location
[47] CNN 3 RSS map Location
[48] CNN 8 AoA Location
[49] CNN 3 CIR Location
[50] CNN 2 RSS, photodiode Cell index
[51] CNN 10 Sound Region index
[52] CPN 2 RSS, WiFi Region index
[53] FFNN 1–3 RSS, WiFi Location
[54] FFNN 2 RSS, RFID Location
[55] GAN 3 RSS, WiFi Location
[56] RBNN 1 RSS, BLE Location
[57] RNN 10 CSI, WiFi NLoS identification
[58] SCG and RBP 2–4 RSS, WiFi Room index and location
[59] TDNN 3 Sound AoA

ANN types: ANFIS-adaptive neural fuzzy inference system; CNN-convolution neural network; CPN-counter-propagation
neural network; FFNN-feed-forward neural network; GAN-generative adversarial neural network; RBNN-radial basis
neural network; RNN-recurrent neural network; SCG-scaled conjugate gradient; RBP-resilient back propagation;
TDNN-time delay neural network.

3. Proposed system

This section introduces the indoor location-estimation process, which was used in four main phases:

• Phase #1: Online and offline Wi-Fi-fingerprinting
• Phase #2: Semi-interpolated database construction
• Phase #3: Neural-network selection
• Phase #4: Model evaluation

Fig. 1 shows the proposed system used for the indoor location-estimation process.

3.1. Location fingerprinting

The Wi-Fi fingerprinting localisation system is divided into two phases [12]. In the first phase (offline ‘training phase’),
the coordinates of the training points (reference points), with their corresponding RSSI values from the deployed APs, are
recorded and stored in a central database. In the second phase (online ‘estimation phase’), a specific algorithm is used to
estimate user location by matching the observed RSSI at its location with the RSSI values from the pre-recorded database
in the offline phase.

■ Fingerprint collection
Fingerprinting is a highly accurate localisation method that has low complexity and high applicability in many complex

indoor environments [60]. Fingerprint collection includes the scanning of APs within the vicinity based on the beacon
frames, and fingerprints are periodically sent through APs for synchronisation. This method involves collecting the RSSIs
for APs detected during the scanning phase. In this study, the fingerprint collection tool is a proposed mobile application
used to collect multiple RSSI samples at each RP from the deployed APs. Basically, by determining the RP name, name of
the section containing this RP and determining the number of RSSI samples to be collected at each RP from the deployed
AP, the database is stored as a comma-separated values (CSV) file on the server. A screenshot of the proposed mobile
application used to generate the database is shown in Fig. 2.

The recorded database consists of the RSSI values from the deployed APs as fingerprints for the RP. Other related
information saved in the database is the name of the region containing the RP, the name and the MA of the AP, which
transmits beacon frames periodically, the collection date and time for every RSSI sample and its number and the (X, Y)
coordinates of the RPs.

At each RP, the mobile application allows the user to choose the number of RSSI samples in the deployed scenarios;
60 samples are selected, and the total number of RSSI records is 67000. However, only the average values of the multiple
RSSI samples are stored in the database [61]. Eq. (1) shows how to find the mean of n RSSI values from the ithAP to the
jth RP.

RSSI =
1
n

n∑
t=1

RSSI tij (1)

Where, RSSI t is the tth element of the collected RSSI samples.
ij ij

4
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Fig. 1. Diagram of the proposed indoor location estimation system.

Fig. 2. Mobile application interface (a) main page (b) section input page (c) choosing number of sample page.
5
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3.2. The biharmonic spline interpolation method for database expansion

In this study, during the fingerprinting online phase, a neural-network model will be used as a localisation method
o estimate the unknown target location, depending on the generated database. Neural-network estimation accuracy
s affected by the size of the radio map — a larger radio map results in a more accurate location-estimation process.
oreover, a lot of effort and time is needed to build a database in the fingerprinting offline phase, which is considered a
rawback in the localisation process.
A suggested way to estimate more data using the data already available in the offline phase is the use of numerical

ethods. Different numerical methods have been introduced by researchers [62–64]; one of these is the BSI method [65].
his method is used to find the smoothest surface passes exactly through the input points. The interpolated surface
s described by Sandwell and David as a linear combination of Green’s functions. The solutions of Green’s function for
-dimension biharmonic operator imply that the surface f(u) can be expressed as in Eq. (2) [65]:

f (u) =

n∑
i=1

αiG(u, ui) (2)

where, G is the Green’s function, u is the output location, ui is the location of the ith data constraint, and αi are the
ssociated weights. A detailed description of the mathematical aspects of the BSI method can be found in [65].
An advantage of this method is that there are no rounding errors at the checkpoints. Moreover, the increasing number

f used checkpoints mitigates the interpolation error value, which is not true of all other interpolation methods, such
s polynomial interpolation. Therefore, in the fingerprint offline phase, BSI is a suitable method of constructing a denser
atabase of RSSI fingerprints, as illustrated in [66]; in fact, the author proves that there is a small difference between the
imulated and actual values

.3. Artificial neural network

An ANN is an information processing model that has learning ability and high prediction accuracy in different fields.
NN models consist of interconnected processing elements called neurons arranged in different layers. A training process
s used with the ANN model to find the relationships between the neural network inputs and targets. Among the existing
NN models, two efficient types are used in this paper: the FFBP neural network and GRNN.

■ Feedforward back propagation neural network
The FFBP neural network is an efficient and popular neural-network model used in many engineering applications.

FBP networks consist of neurons arranged in three layers: input, output and hidden layers between them. The main
esponsibility of the hidden layers is to execute intermediate computations such that the hidden neuron receives the
nput value directly from the input layer and associates it with a specific random weight, uniformly distributed inside
ange

(
−2.4
fi

, +2.4
fi

)
, where fi is the total number of inputs of neuron i in the network. With weighted linear summation

X), as shown in Eq. (2), each neuron in the hidden layer transforms the previous layer’s values, which are then evaluated
sing an activation function.

X =

∑
xiwi + bi (3)

Where, xi is the input values, wi is the corresponding weights and bi is the bias.
Each network’s layer has its own specific activation function; these limit the layer’s output values in a specific

nterval. A suitable choice of activation function improves the neural network’s results. Examples of these are the sigmoid,
yperbolic tangent (Tanh), rectified linear unit (ReLU) and linear function [67].
For efficient training, backpropagation must be based on training algorithms; their role is to iteratively adjust the

eights and bias throughout the training process in order for the network to improve its performance. Training algorithms,
uch as gradient descent (GD), are also called steepest descent [68]; GD is a simple iterative algorithm that requires many
terations, which leads to a slow training process. Conjugate gradient (CG) [69] is a line search algorithm, along with
onjugate direction, and has faster convergence than GD. Scaled conjugate gradient (SCG), developed by Moller [70], avoids
onsuming time since a line search is not performed at each iteration as with the CG algorithm. Bayesian regularisation
BR) [71] is considered a robust mathematical process and eliminates the need for a validation set. However, the FFBP
odel is difficult to overfit when using this type of training algorithm. The Levenberg–Marquardt (LM) [72] is one of the
ost robust and fastest training algorithms since it shortens the iteration process; it also balances training speed and
tability.
The FFBP model needs to determine the number of neurons and hidden layers, type of training algorithm and activation

unction. This depends on the relationship’s complexity between the inputs and target data. Section 3.2 illustrates the
athways for the model selection process.

■ Generalised regression neural network
GRNN is a probabilistic ANN model related to the RBNN that was introduced in 1991 by Specht [73]. GRNNs needs a

arger number of neurons than FFBP neural networks but require a fraction of the designing time to be constructed. In
6
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Fig. 3. GRNN structure.

the GRNN optimisation process, only one parameter needs to be determined, called the spread constant (σ ); no iterative
procedure is needed, and it is a fast and stable method [74]. During model construction, spread-constant selection is a
critical issue: If an appropriate value is not chosen for σ , the required training results will not be achieved. Fig. 3 illustrates
the architecture of the GRNN, which contains four components:

1. Input layer: contains the original data to be submitted to the next layer.
2. Hidden layer (pattern layer): The number of hidden neurons is equal to the number (n) of learning samples, such

that each hidden neuron corresponds to one learning sample. A radial basis function (gaussian transformation
function) is applied to the values received from the input layer, given by Eqs. (3) and (4). The weights (wij) between
the input and pattern layers are the values of the input parameters. The pattern layer is fully connected to the third
layer, and its output is the distance between the input and the stored patterns.

Pi = exp
[
−

D2
i

2σ 2

]
, i = 1, 2, . . . , n (4)

D2
i = (x − xi)T (x − xi) (5)

Where, Pi is the ith hidden neuron’s output, σ the spread constant, x the network input vector and xi the
corresponding learning sample for the ith neuron. Di is the Euclidean distance between the input vector and training
(learning) samples.

3. Summation layer: Each hidden neuron is fully linked to this layer (summation layer). It has two different types of
summation:

• The S-summation neuron, which determines the sum of the weighted outputs of the pattern layer.
• The D-summation neuron, which determines the unweighted outputs of the pattern neurons.

The value of target output yi, which corresponds to the ith input value, is considered the connection weight (ws)
between the ith hidden neuron and the S-summation neuron.

4. Output layer: The predicted result is derived from this layer by dividing the S-summation neuron’s (SN ) output by
the D-summation neuron’s (SD) output as in Eqs. (5) and (6):

SN =

n∑
i=1

yiPi (6)

SD =

n∑
i=1

Pi (7)
7
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3.4. Evaluation criteria

Different performance criteria [74–76] were applied to evaluate the estimated locations using the two ANN models as
iven in the following equations:

(a) The average distance error (AD): Distance error is a measure of how far apart the points are, and the AD is calculated
by averaging the distance errors between all the points, as in Eq. (7).

AD =

n∑
i=1

1
n

√
(x − x̂)2 + (y − ŷ)2 (8)

Where x and y is the actual coordinate, x̂ and ŷ is the estimated coordinates and n is the total number of data.
(b) Mean square error (MSE): Measures the average of the squares of the errors; its value indicates the difference

between the actual and predicted value. MSE is expressed in Eq. (8).

MSE =
1
n

n∑
i=1

(p − p̂)2 (9)

Where p is the actual value and p̂ is the predicted value and n is the total number of data.
(c) Root mean square error (RMSE): A quadratic score that measures the average magnitude of the error, as expressed

in Eq. (9).

RMSE =

√1
n

n∑
i=1

(p − p̂)2 (10)

Where p is the actual value and p̂ is the predicted value and n is the total number of data.
(d) Mean absolute error (MAE): The average magnitude of the differences between the actual and predicted values, as

in Eq. (10).

MAE =
1
n

n∑
i=1

⏐⏐p − p̂
⏐⏐ (11)

Where p is the actual value and p̂ is the predicted value and n is the total number of data.
(e) Correlation coefficient (R): A statistical measure that indicates the strength of a relationship between two variables;

a high R indicates a strong while a small R means a weak relationship. R is expressed in Eq. (11).

R =
n
∑n

i=1 pip̂i −
∑n

i=1 pi
∑n

i=1 p̂i√
(n

∑n
i=1 p

2
i − (

∑n
i=1 pi)2)(n

∑n
i=1 p̂

2
i − (

∑n
i=1 p̂i)2)

(12)

Where p is the actual value and p̂ is the predicted value and n is the total number of data.

The distance measurements (AD, MSE, RMSE and MAE) help determine the accuracy of the prediction values, compared
o the actual values, and small values mean the prediction model is close to the actual values.

. Experiment analysis

.1. Database generation

This subsection illustrates the indoor environment, which is on the secondfloor of the engineering college at An-Najah
ational University, which covers an area of approximately 37 × 32 m2. Fig. 4 (a and b) shows a map (2D and 3D) of the
tudy area. There are 17 APs (three are dual-band) distributed in the area, as illustrated in Fig. 4 with green symbols. The
ype of the deployed APs is TP-link and all the APs are installed with an approximate height of 2–3 m. For the training
hase, Samsung galaxy A70, android version 10 mobile phone is installed on a stand, is used as a receiver in the offline
ingerprinting phase and moves along a route of RPs 1.35 m apart, as illustrated in Fig. 4(c), to collect the RSSI readings
sing the installed mobile application to construct the database. Processing steps to find the average of the collected RSSI
alues at each RP from each AP are done, and the initial database is constructed. In the estimation phase, RSSI values
orrespond to 20 random testing points are gathered between the fixed RPs in the same manner as the data gathering
onducted in the training phase, 60 RSSI samples are gathered for each testing point from each installed APs, the sample
ize of the testing points is used as an out-of-sample data to check the accuracy of the proposed ANN models.
The resulting initial database obtained from the experiment is expanded using the BSI method to generate a denser

atabase and attain effective location estimation results using an ANN. The experimental RSSI values, which correspond
8
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Fig. 4. (a) 3D map of the study area (b) 2D map of the study area. The APs and RPs locations is showed in (a) and (b). (c) The used mobile phone
in the study area.

Fig. 5. (a) interpolated surface generated by BSI method for AP(1) (b) interpolated surface generated by BSI method for AP(2).

to 64 RPs from each AP, are used to generate the interpolated surfaces for each APs such that each surface meets one APs
and covers the region under study. Fig. 5 shows the generated surfaces for two of the deployed APs.

In Fig. 5, the black dots in the surfaces represent RPs that have actual RSSI values. Using these generated surfaces, the
values of the RSSI measurements at other points of the surface are gathered. As a result, an expanded semi-interpolated
database is constructed; it consists of 190 RPs, spaced 0.45 m apart such that 64 RPs have actual RSSI measurements, and
the remaining 126 have interpolated RSSI values obtained using the BSI surfaces. The database-generation flow is shown
in Fig. 6.
9
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Fig. 6. Database generation process.

.2. Model selection and evaluation

■ Feedforward back propagation neural network
To determine the best neural network configuration, several trials should be made by changing the number of hidden

ayers, number of neurons, activation function and training algorithm. Each trial should be repeated several times to obtain
he best training result. Furthermore, two different FFBP neural network structures are presented.

(1) Input pattern based on all the deployed APs

The first proposed structure is based on the use of all the RSSI values from all the deployed 17 APs (three are dual-band),
uch that each FFBP input neuron corresponds to one AP. Hence, this structure has 20 neurons in the input and two in
he output layer, which represent the (X,Y) coordinates. The input is RSSI [RSSIAP1, RSSIAP2, ... , RSSIAP20] and the output
s the location coordinates [XY]

T. Tables 2 and 3 show the executed trials used to select the best FFBP model for in-sample
nd out-of-sample data, respectively.
The determination of the optimal number of hidden neurons is a critical decision in the network-constructing phase. A

eural network with few hidden neuron numbers does not have the ability to model complicated data, so the generated
tructure has inefficient prediction results. Several hidden neurons provide the network with a good training process and
ood prediction results for the trained data (in-sample), but it loses the ability to give correct predictions for new data that
as not been trained previously (out-of-sample); its ability to generalise is badly affected. Therefore, a compromise must
e reached [77]. From Tables 2 and 3, the optimal number of hidden neurons was determined with network-performance
rials.

As shown in Tables 2 and 3, the best structure was obtained in trial 5, with one hidden layer with 20 neurons, Tansig
s the hidden activation function and LM as the training algorithm. As illustrated, in the in-sample phase, the MSE for
raining, validation and testing this structure is 1.17 × 10−22, 0.101 and 0.137, respectively. In the out-of-sample phase,
he AD, MSE, RMSE, MAE and R is 0.96, 2.52, 1.58, 1.18 and 0.996 m, respectively.

(2) Input pattern based on a selective set of APs, which produce a high level of acceptable RSSI and their coordinates.
The second proposed structure is based on a selective set of APs, which produce high-level, acceptable RSSIs of the

orresponding RPs. In such a structure, six APs generate more than −75 dbm in the reference-related points. The selective
ix APs and their coordinates are taken as input into the structure, which leads to 18 input and two output neurons, which
epresent the location coordinates. The input is [RSSIAP1, XAP1, YAP1, RSSIAP2, XAP2, YAP2, . . . , RSSIAP6, XAP6, YAP6]

T , and
the output is the [XY ]

T . Tables 4 and 5 show the executed trials used to select the best FFBP model for in-sample and
out-of-sample data, respectively.

In Table 4, the number of hidden layers and neurons is varied and the best one can be determined with the best
network performance, which has the minimum MSE value for the training, validation, and testing sets. Trials 4 and 18
have the minimum MSE values for the three sets. The parameters used in these trials are: Tansig as the hidden activation
function and LM as the training algorithm. However, in trial 4, the structure has a single hidden layer with 15 neurons,
but the network structure in trial 18 has two hidden layers with 25 neurons at each layer. In addition, in the results for
10
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Table 2
Trials to select the best FFBP (20 input) neural network structure.
FFBP with 20 inputs neurons

Trial Hidden
Neurons

Activation Function Training
Algorithm

MSE Training MSE
Validation

MSE
Testing

R Epoch Train, Valid, Test

1 5 Logsig LM 0.1584 1.3372 0.361 0.9994 9 60%, 20%, 20%
2 10 Tansig LM 0.4424 1.7067 1.0138 0.9991 10 60%, 20%, 20%
3 15 Tansig LM 0.029 0.5746 0.5403 0.99968 8 60%, 20%, 20%
4 15 Logsig LM 0.0774 0.2767 0.5729 0.99974 12 60%, 20%, 20%
5 20 Tansig LM 1.1779 × 10−22 0.1077 0.1373 0.99993 12 60%,20%,20%
6 20 Tansig BR 1.885 x10−15 NaN 0.0108 1 1849 70%, 30%
7 25 Logsig SCG 3.0234 5.105 8.0858 0.9945 38 70%, 15%, 15%
8 25 ReLU BR 0.0091 NaN 0.2507 0.99993 69 80%, 20%
9 30 Tansig BR 1.2825 × 10−19 NaN 0.0297 0.99999 1511 70%, 30%
10 30 Logsig SCG 2.2122 3.6466 5.6793 0.9958 87 60%, 20%, 20%
11 35 Tansig LM 1.0603 x10−9 0.0815 0.0489 1 6 80%, 10%, 10%
12 40 Tansig LM 0.0073 0.4325 0.4929 0.99975 4 70%, 15%, 15%
13 [10, 10] [ReLU, ReLU] LM 0.0122 0.1871 0.4302 0.99983 14 60%, 20%, 20%
14 [5, 5] [tansig, tansig] LM 0.003 0.2403 0.4485 0.99982 32 60%, 20%, 20%
15 [10, 5] [ReLU, tansig] BR 0.033 NaN 0.1323 0.99992 90 70%, 30%
16 [15 15] [tansig, tansig] LM 0.0039 0.337 0.2671 0.99984 6 60%, 20%, 20%
17 [25 25] [tansig, tansig] LM 1.132 x10−14 NaN 0.0253 0.99999 915 70%, 30%
18 [15 22] [logsig, logsig] SCG 0.2258 0.3628 0.7974 0.99956 232 70%, 15%, 15%
19 [10 10 10] [tansig, tansig, tansig] SCG 0.1918 0.4822 0.4355 0.99964 124 70%, 15%, 15%
20 [20 20 10] [tansig, tansig, tansig] LM 0.002 0.4672 0.1484 0.99984 6 60%, 20%, 20%

Activation Functions: tansig-Hyperbolic tangent sigmoid transfer function; logsig-Log sigmoid transfer function; ReLU-rectified linear unit activation.
raining Algorithms: LM-Levenberg Marquardt algorithm; BR-Bayesian regularisation; SCG-Scaled conjugate gradient.

Table 3
Out-of-sample testing points from FFBP (20input) neural network structures.
Out of sample testing points from FFBP (20input)

Trial AD (m) MSE (m) RMSE (m) MAE (m) R

1 1.3477 6.1601 2.482 1.632 0.99166
2 1.2612 4.815 2.1943 1.5179 0.9928
3 1.6078 7.7952 2.792 2.0543 0.99113
4 1.8934 11.85 3.4424 2.2718 0.98342
5 0.96662 2.5256 1.5892 1.1836 0.99668
6 1.1576 3.8537 1.9631 1.4929 0.99447
7 1.4252 5.6136 2.3693 1.7791 0.9916
8 1.3666 5.1466 2.2686 1.7878 0.99383
9 1.1701 4.2252 2.0555 1.4856 0.99369
10 1.256 4.3987 2.0973 1.582 0.9935
11 1.7062 8.2802 2.8775 2.2785 0.98834
12 1.6111 7.7739 2.7882 2.0841 0.989
13 1.4474 6.308 2.5116 1.5474 0.99074
14 2.1749 15.149 3.8921 2.2474 0.97633
15 1.6685 8.878 2.9796 1.7239 0.98774
16 1.2398 4.1956 2.0483 1.5224 0.99399
17 0.98608 3.1212 1.7667 1.1684 0.99532
18 0.96008 2.7576 1.6606 1.1521 0.99601
19 0.87186 2.29 1.5133 1.001 0.99695
20 1.0952 3.655 1.9118 1.2885 0.9945

the out-of-sample data from Table 5, trial 4 has better performance criteria. As a result, the best structure was obtained
in trial 4 due to its simplicity and superior generalisation.

■ Generalised regression neural network
Two different GRNN models were tried based on the number of APs used as inputs in the neural network.

(1) Input pattern based on the deployed APs

This neural network structure depends on the RSSI values obtained from the 17 APs. Hence, as with the FFBP, the input
s RSSI [RSSIAP1, RSSIAP2, ... , RSSIAP20] and the output is [XY ]

T .
The spread constant affects the network’s degree of generalisation. Therefore, it is important to determine its optimal

alue in order to generate an efficient network. Using the split-sample cross-validation method, the optimal spread-
onstant value was selected such that the database was split into two sets: 75% of the data used a training set, the other
11
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Table 4
Trials to select the best FFBP (18 input) neural network structure.
FFBP with 18 inputs neurons

Trial Hidden
Neurons

Activation Function Training
Algorithm

MSE Training MSE
Validation

MSE
Testing

R Epoch Train, Valid, Test

1 5 Logsig LM 2.5408 2.7222 3.949 0.9962 7 60%, 20%, 20%
2 10 Tansig LM 0.3289 0.6578 1.5588 0.9991 41 60%, 20%, 20%
3 10 ReLU LM 0.7106 1.4479 2.6811 0.9983 19 60%, 20%, 20%
4 15 Tansig LM 0.1645 0.8624 0.701 0.9995 43 70%,15%,15%
5 15 Logsig LM 0.1476 1.5994 0.9151 0.9992 11 60%, 20%, 20%
6 15 Tansig SCG 1.78 3.19 2.01 0.9973 92 70%, 15%, 15%
7 20 Logsig SCG 2.8813 4.19 4.6848 0.9953 66 60%, 20%, 20%
8 25 Tansig LM 0.0117 1.9246 2.0996 0.9989 11 60%, 20%, 20%
9 25 ReLU BR 1.5184 NAN 3.8957 0.9972 85 70%, 30%
10 25 Tansig BR 2.56 × 10−7 NAN 1.6069 0.9994 1000 70%, 30%
11 30 Tansig LM 5.65 × 10−2 2.6799 2.6667 0.9986 17 60%, 20%, 20%
12 [10, 10] [ReLU, ReLU] LM 0.8509 2.8353 4.9989 0.9972 16 60%, 20%, 20%
13 [10, 10] [tansig, tansig] BR 6.63 × 10−6 NAN 1.6293 0.9995 1000 60%, 20%, 20%
14 [5, 5] [tansig, tansig] LM 1.3484 3.9539 2.8053 0.9971 23 60%, 20%, 20%
15 [10, 5] [ReLU, tansig] BR 0.9453 NaN 1.6344 0.9985 100 60%, 20%, 20%
16 [10, 5] [tansig, tansig] LM 0.0237 1.2761 0.8583 0.9995 46 60%, 20%, 20%
17 [20 15] [tansig, tansig] LM 0.0014 1.613 1.4815 0.9992 13 60%, 20%, 20%
18 [25 25] [tansig, tansig] LM 5.60 × 10 −3 0.7645 0.5519 0.9996 10 60%,20%,20%
19 [15 22] [logsig, logsig] SCG 2.4642 2.3744 3.9888 0.9964 105 70%, 15%, 15%
20 [10 5 10] [tansig, tansig, logsig] LM 3.57 × 10−2 2.0069 1.042 0.9994 31 70%, 15%, 15%

Table 5
Outsample testing points from FFBP (18 input) neural network structure.
Out-of-sample testing points from FFBP (18 input)

Trial AD (m) MSE (m) RMSE (m) MAE (m) R

1 1.0915 3.9826 1.9956 1.3012 0.9937
2 1.0864 4.5412 2.131 1.1306 0.99357
3 1.1627 4.9769 2.2309 1.3695 0.99244
4 0.97448 2.9855 1.7279 1.1641 0.99572
5 1.6707 8.6255 2.9369 1.8408 0.98685
6 1.0632 3.7107 1.9263 1.2042 0.99426
7 1.2311 4.8345 2.1988 1.4265 0.99289
8 1.2339 5.2326 2.2875 1.5254 0.99215
9 1.0418 3.6516 1.9109 1.2826 0.99449
10 1.2613 6.5464 2.5586 1.4911 0.99067
11 1.5064 6.9754 2.6411 1.763 0.98963
12 1.1654 4.4546 2.1106 1.2825 0.99346
13 1.2892 7.4662 2.7324 1.308 0.98865
14 1.1018 3.8617 1.9651 1.2387 0.99426
15 1.0229 3.1515 1.7753 1.0697 0.99534
16 1.0248 3.385 1.8398 1.0711 0.99493
17 1.195 5.4845 2.3419 1.3589 0.99177
18 1.145 5.2814 2.2981 1.3475 0.99174
19 1.1152 3.7534 1.9374 1.3051 0.99423
20 1.2429 4.6971 2.1673 1.2833 0.99275

Table 6
The performance criteria for the 20 input GRNN neural network structure.
Out-of-sample

Spread Constant AD (m) MSE (m) RMSE (m) MAE (m) R

0.5 0.60638 1.7215 1.3121 0.60638 0.9975

25% a testing set. The spread value was varied in the range of [0.01- 2] with a step distance of 0.01. Fig. 7 shows the
effects of the spread parameter on the network’s performance.

After the GRNN was trained using the optimal value of σ = 0.5, seventy testing points were used to verify its efficiency.
Table 6 illustrates the different performance criteria of the tested structure.

(2) Input pattern based on a selective set of APs, which produce a high-level, acceptable RSSI and their coordinates.
This neural network structure depends on the APs that produce high-level, acceptable RSSIs of the corresponding RPs.

Hence, in our case, as with the FFBP, the input is [RSSIAP1, XAP1, YAP1, RSSIAP2, XAP2, YAP2, . . . , RSSIAP6, XAP6, YAP6]
T and the

output is [XY ]
T .
12
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Fig. 7. The effect of spread parameter on the GRNN performance.

Fig. 8. Spread parameter.

Table 7
The performance criteria for the 18 input GRNN neural network structure.
Out-of-sample

Spread Constant AD (m) MSE (m) RMSE (m) MAE (m) R

0.16 0.48374 0.74249 0.86168 0.48374 0.9989

The split-sample cross-validation method is also used in this model to determine the spread constant’s (σ ) value. In
his case, the optimal value of σ is 0.16, which corresponds with the minimum MSE value. Fig. 8 shows that the spread
onstant corresponds with the network’s performance.
After the GRNN was trained using the optimal σ value, seventy testing points were used to verify its efficiency. Table 7

illustrates different performance criteria of the tested structure.

5. Results and discussion

The indoor location estimation system proposed in this paper is considered efficient in terms of time and efforts
such that the interpolation leads to a great delay reduction from some hours to just a single run such that the data
collection process for the real measurements needs approximately five hours of working time for RSSI values corresponds
to only 64 reference points and 20 testing points. However, by the interpolated surfaces, a huge number of simulated
measurements can be gathered in just a single run. In addition. A comparative analysis was conducted to select the most
efficient neural network model. In the previous sections, the two proposed structures for FFBP network models achieved
good performance for the in-sample and out-of-sample datasets. Table 8 shows a comparison between the two introduced
FFBP network structures.
13
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Table 8
Comparison between the two introduced FFBP structures.
Input Description Input

Neurons
Hidden
Neurons

Activation
Function

Training
Algorithm

AD Error
Out-of-sample (m)

RSSI from 20 APs 20 20 Tansig LM 0.96662
RSSI from 6 strong APsand their coordinates 18 15 Tansig LM 0.97448

Fig. 9. FFBP neural network performance.

Fig. 10. FFBP neural network performance.

As shown in Table 8, both structures achieve good performance; however, the structure of the FFBP network model,
hich depends on the selective set of APs, is simpler than the other FFBP structure. The selected FFBP network model is
hown in Fig. 9.
During the learning process, the dataset was divided into training (134), validation (28) and testing samples (28). The

irst two sets were used during the training phase, and the last set was used to evaluate the training process. Using the
arly-stop technique and the validation set, overfitting was reduced. The MSE versus epochs comparison of the trained
etworks is shown in Fig. 10. Fig. 11 shows the correlation between the predicted and actual results and for the training,
alidation and testing sets.
Table 9 shows a brief comparison of the results obtained from the two proposed GRNN models.
As illustrated in Table 9, the main difference between the two is in AD — the GRNN structure depends on a selective

et of APs that have better performance. Hence, the selected GRNN model is shown in Fig. 12.
14
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Fig. 11. Regression of error for FFBP neural network.

Fig. 12. Proposed GRNN structure.

Table 9
Comparison between GRNN models.
Input Description Input Neurons Hidden Neurons Spread Constant AD Error Out-of-sample (m)

RSSI from 20 APs 20 130 0.5 0.60638
RSSI from 6 strong APsand their coordinates 18 130 0.16 0.48374

Table 10
Comparison between FFBP and GRNN.
Neural Network Input Neurons Hidden Neurons Activation Function Training Algorithm Spread Constant AD Error Out-Of-sample (m)

FFBP 18 15 tansig LM – 0.97448
GRNN 18 130 – – 0.16 0.48374

During the learning process, the dataset was separated into two sets, training and testing. Fig. 13 shows the correlation
between the actual and predicted values.

As a summary, as shown in Table 10, the results show that FFBP outperforms GRNN in terms of structure simplicity,
while GRNN achieved more accurate prediction results with an average distance error up to 0.48 m.

Furthermore, Fig. 14 shows the AD, for both FFBP and GRNN, of 20 out-of-sample points. The figure illustrates that the
predicted locations using GRNN generally have AD values that are lower than the locations predicted by FFBP, such that
in the GRNN model, nine testing points have zero AD, six have an AD of less than 0.5 m and the other five have an AD of
less than 1.5 m. In the FFBP model, five testing points have an AD of less than 0.5 m, 10 have an AD of less than 1.5 m
and the remaining five are 1.5–2.3 m.
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Fig. 13. Correlation between actual and predicted data for the proposed GRNN model(a) for training dataset (b) for testing dataset.

Fig. 14. AD error for FFBP and GRNN neural network.

In this paper, the positioning accuracy increases due to the efficient selection of the neural network model besides using
dual-band APs, because using both 2.4 and 5 GHz frequencies provides a more accurate positioning [78]. A comparison
between our approach and the different methods used in the state-of-the-art studies is conducted to justify the superiority
of our proposed IPS with the obtained localisation results

• Study #1:
The crowdsourcing method is used in [22] to build the initial radio map, which may have poor performance due
to device heterogeneity problems that result in inaccurate locations since multiple users used various devices to
perform the data collection process in the offline phase. The author claims that this problem is avoided with
normalised RSSI fingerprints for all RPs and 58 APs are deployed in 3200 m2. Their results show that the accuracy
of the proposed method is RMSE = 2.938 m; in our study, one of the proposed ANN models is used just six APs, and
the proposed models achieve better accuracy: RMSE = 1.589 for the FFNN and RMSE= 0.835 for the GRNN model.

• Study #2:
The author of [24] tried to reduce the computational effort needed for the Htrack map-matching system and achieved
localisation accuracy of RMSE ≈ 4 m and 3.5 for the museum and the office building experiment, respectively. The
Wi-Fi fingerprinting method has a low computational requirement [79], and our obtained localisation results are
more accurate.
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• Study #3:
In [21], the BSI method was used to generate a denser radio map and the KNN method for the location estimation
process. However, for the KNN method, the output completely relies on the nearest neighbours. That is, it is sensitive
to the noise and the multipath loss [80,81]; their resulting average position accuracy was MAE ≈ 1 m.

• Study #4:
In [34], an IPS is executed in a museum environment based on Bluetooth Low Energy (BLE), the location estimation
process is done with a feedforward neural network, and their results give a position accuracy below 1 m which
is lower than our achieved accuracy. Bluetooth has some restrictions because it requires an additional installation
while WiFi-based systems have no need to create an additional environment.

Compared to the previously mentioned works, our proposed IPS is a comprehensive system that handles several issues
and performs better in terms of localisation accuracy, simplicity and effort.

In addition to the above comparison, the proposed model has the potential to be implemented in large-scale
heterogeneous practical environments. Machine learning algorithms, particularly ANNs, are highly effective techniques
that are able to overcome the limitations of traditional indoor positioning algorithms, which suffer from a lack of
scalability, which adversely affects their performance in heterogeneous environments. On the other hand, neural network
models, as mentioned in the literature, are very flexible in adapting well to dynamically changing environments, as well
as multidimensional and heterogeneous data applications [82]. Mehmood in [83], discussed the efficiency of using ANN
in heterogeneous indoor environments with different human activities, materials of walls, and types of APs. Moreover,
the authors in [84], developed an ANN model for multi-building and multi-floor indoor localisation based on Wi-Fi
fingerprinting. Consequently, the proposed system can operate efficiently at college campuses, hospitals, and airports
since the Wi-Fi infrastructure and coverage is good. However, to achieve that objective, neural networks require more
data. Therefore, as future work, we propose to develop a robot to implement a data collection process that will increase
the usefulness of the proposed system.

6. Conclusion

In this work, we propose a WiFi-fingerprinting localisation system, which is not only able to save time and effort
for radio-map establishment, but also achieves excellent indoor localisation performance. In the offline stage, a mobile
application is built to gather RSSI fingerprints and construct a stored dataset, which is then uses the biharmonic spline
interpolation method to generate a denser database. In the online stage, two different types of ANN are introduced for
the location estimation process; these are FFBP neural networks and GRNN. For each type of neural network, different
input patterns have been compared.

Several training simulations were carried out with different evaluation criteria. Both neural networks have shown
decent modelling performance; however, the results show that FFBP outperforms GRNN in terms of structure simplicity
while GRNN achieved more accurate prediction results with average distance error of up to 0.48 m.

Future work can be carried out using a more accurate method for the data-collection stage. A robot can be built to
gather actual data, which can save more time and effort in the offline phase and guarantee high accuracy, which will
affect the location-estimation process in the online phase.
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