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Abstract 

Fair and timely delivery of supplies plays a critical role under major public health emergencies. In this paper, aiming 
at fairness and timeliness, an optimization model of open vehicle routing problem for medical supplies distribu-
tion is established considering the urgency of the demand. We adopt a differential evolutionary algorithm with fast 
non-dominated solution sorting to solve the proposed model, obtaining an approximate Pareto optimal solution 
set. Through the comparison of algorithms, the results showed that the differential evolutionary algorithm with non-
dominated sorting is superior with a shorter runtime and more diverse solutions, while the epsilon constraint method 
has more accurate solutions. In the case verification, the quality of the solutions of both algorithms was within the 
acceptable range, but the runtime of the epsilon constraint method was too long to be applicable. The results can 
provide theoretical suggestions and practical guidance for decision-makers in emergency supplies distribution.

Keywords Major public health emergencies, Medical supplies distribution, Multi-objective evolution algorithm, 
Urgency of demand

1 Introduction
In recent years, a series of major public health emer-
gencies, such as SARS, anthrax crisis, swine influenza, 
and COVID-19, have posed a serious threat to public 
safety. For example, about 464 million people have been 
infected and more than 6.06 million people have died 

since the outbreak of COVID-19 (WHO 2022). In addi-
tion, major public health emergencies have a huge impact 
on the social economy. At the beginning of COVID-19, 
the total number of passengers sent by the national trans-
portation system dropped by 50.3% (Ministry of Trans-
port, PRC 2020), and 78% of catering enterprises had no 
income in China (Chinese Cuisine Association 2020).

Medical supplies under major public health emer-
gencies are mainly used to prevent epidemics and treat 
diseases, including masks, protective suits, goggles, 
disinfectants, and ventilators. The unpredictability of 
major public health emergencies, the low substitut-
ability, and the high timeliness requirements of medi-
cal supplies storage have led to a shortage of emergency 
medical supplies (Mete and Zabinsky  2010). Moreover, 
population movement can easily lead to the expansion 
of public health emergencies and a surge in demand for 
medical supplies in a short time. Therefore, there is often 
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an imbalance between supply and demand for medical 
supplies in affected areas after the major public health 
emergencies, and the affected areas need to rely on exter-
nal supplies to meet their demands, which promotes the 
development of research on the optimization of medical 
supplies distribution to a certain extent. In the early stage 
of COVID-19, the situation of unreasonable distribu-
tion and delayed transportation of the supplies were also 
serious, causing needless deaths (Zhu et al. 2020). Based 
on the above, we study the distribution of medical sup-
plies after major public health emergencies by consider-
ing fairness and timeliness. To improve the efficiency and 
safety of distribution, split distribution and open vehicle 
distribution are also considered.

This study contributes in three ways:

1. This paper studied the distribution of medical sup-
plies under major public health emergencies, which 
is very necessary and valuable at present.

2. Based on split distribution, an open-vehicle routing 
optimization model combining fairness and timeli-
ness was developed. The relative fairness of medical 
supplies distribution was improved by incorporating 
the urgency of demand into the measure of fairness.

3. The differential evolution algorithm introduced by 
the fast non-inferior solution sorting operator was 
proposed to find the optimal solution for the prob-
lem. Compared with the epsilon constraint method, 
the diversity and convergence of the algorithm were 
verified in this paper.

The remainder of this paper is structured as follows. 
Section 2 provides an overview of the related literature. 
A detailed problem description is presented in Sect.  3. 
The model formulation and steps of the algorithm are 
described in Sects.   4 and 5, respectively. In Sect. 6, we 
adopt a COVID-19 case to verify the model and algo-
rithm. Finally, the paper ends with conclusions in Sect. 7.

2  Literature review
Some related studies have been conducted in the past. 
This section reviews the relevant literature related to our 
problem including emergency supplies distribution vehi-
cle routing problems and multi-objective optimization 
methods respectively in this section.

2.1  Emergency supplies distribution vehicle routing 
problem

The storage and distribution are important parts of emer-
gency rescue (Li et  al.  2022; Mete et  al.  2010). Many 
scholars and practitioners have researched demand 
forecasting and supply storage, calling for a reason-
able amount of emergency supplies to be stored in a 

reasonable place (Zaza et  al.  2016). However, there 
was insufficient research on the distribution of emer-
gency supplies during major health emergencies (Liu 
et  al.  2021a, 2021b), especially on the vehicle rout-
ing problem of the relief distribution. The distribution 
of medical supplies from the distributing center to the 
affected area plays an important role after the public 
health emergency (Patel et al. 2017; Hou and Jiang 2021).

In the existing research, many scholars have also 
explored the distribution objectives and constraints. For 
example, Li et  al.  2021a) explored the optimization of 
medical supplies distribution under major public health 
emergencies through literature review and concluded 
that most studies were conducted to minimize total time, 
minimize total cost, and maximize the requirement point 
coverage expectation. To minimize the total delivery time 
of vehicles arriving in affected areas, Zhong et al. (2020) 
constructed a bi-objective mixed-integer nonlinear pro-
gramming model. With the dual goal of minimizing car-
bon emissions and distribution costs, Li et  al. (2021b) 
established a distribution path planning model with mul-
tiple distribution stations and solved it by using a hybrid 
genetic algorithm to achieve the balance between the 
two goals. Some scholars also believe that the distribu-
tion of supplies should take into account the urgency of 
the demand for emergency supplies in the affected areas 
(Rivera-Royero et  al. 2016; Shamsi Gamchi et  al. 2021). 
For humanitarian purposes, we often do not involve cost 
considerations in the initial stages of the public health 
emergency. However, the fairness and timeliness of medi-
cal supplies distribution are indispensable.

The fair distribution of medical supplies reflects the 
respect for the human right to survival and can avoid 
negative social emotions caused by unfair distribution 
(Rezaei-Malek and Tavakkoli-Moghaddam 2014). There-
fore, fairness has been taken into consideration by many 
scholars (Anaya-Arenas et  al. 2018; Liu et  al. 2019). In 
reality, public health emergencies, such as epidemics, 
can be an easy cause of social panic (Luo et al. 2021). To 
avoid patients’ psychological panic due to the unreason-
able allocation of emergency supplies, Li and Du (2021) 
constructed a multi-cycle medical supplies distribu-
tion model, whose goal is to minimize the psychologi-
cal panic of patients and the emergency response cost. 
Considering the order, Herrmann (2011) believed that in 
the case of overall fairness, the order in which custom-
ers were served also affected their perception of fairness. 
As a result, the order of visits to the affected areas is also 
included in the fairness measurement in this paper.

Time is a key factor in disaster response, according to 
key benchmarks defined by the US Federal Emergency 
Management Agency (Fugate 2012). Compared with 
other emergency supplies, medical supplies are more 
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demanding in terms of delivery times and no delays are 
allowed. Zhang et  al. (2020) reveal that timely distribu-
tion of medical supplies can help prevent the spread of 
the epidemic. In addition, Yang (2019) pointed out that 
the demand of the victims for medical supplies is often 
time-limited. Victims must receive assistance within a 
specific time if medical supplies are to be effective. Schol-
ars mostly measure timeliness through total delay time, 
total delivery time, and the latest delivery time (Eisen-
handler and Tzur 2019; Liu et al.  2021a, 2021b).

Under a major public health emergency, to improve 
the efficiency and safety of delivery, vehicles should stop 
in the last affected area and wait for the next order (Li 
et al. 2021a, 2021b). Then, the distribution problem stud-
ied in this paper can be summarized as an open-vehicle 
routing problem (OVRP). In addition, in the early stage 
of the outbreak, the quantity of material distribution was 
large, and single vehicle distribution could not meet the 
requirements of distribution, which made it necessary 
to consider split distribution. There are some in-depth 
studies on the emergency supplies distribution vehicle 
routing problem under major public health emergencies, 
and the characteristics of the studies are summarized in 
Table 1.

As can be seen from Table 1, few articles consider both 
fairness and timeliness under major public health emer-
gencies. Therefore, based on considering the urgency 
of demand, we consider the fairness and timeliness of 

the distribution of medical emergencies supplies in this 
paper. Among them, fairness is measured by the total 
demand satisfaction rate gaps among the affected areas. 
Limited emergency supplies ideally should be prioritized 
for those affected areas with more urgent demand to 
improve fairness. In addition, timeliness is measured by 
the total delivery time.

2.2  Multi‑objective optimization methods
In terms of solving multi-objective optimization prob-
lems, the linear weighted sum method is simple and 
convenient to use. However, studies have shown that the 
solution of the weighted model does not correspond to 
the real solution of the original model (Du 2015), and it 
also has disadvantages such as strong subjectivity and 
long calculation time. As an accurate algorithm, the epsi-
lon constraint method is also widely used in multi-objec-
tive optimization problems (Fan et  al. 2016). Through 
literature analysis, it is found that more studies are 
solved by heuristic algorithms and intelligent algorithms 
(Eisenhandler and Tzur  2019; Sheng et  al. 2019; Kang 
et  al. 2020; Karami et  al. 2020). The heuristic algorithm 
includes simulated genetic algorithm (GA), ant colony 
algorithm (ACO), differential evolution algorithm (DE), 
and so on (Nayeri et  al. 2022), which can often find a 
good solution in one time, but in some special cases, the 
efficiency of solving can’t be guaranteed. To ensure the 
efficiency of solutions, scholars often improve algorithms 

Table 1 Research on the emergency supplies distribution vehicle routing problem under major public health

References Disasters types Materials types Objectives Consideration Solving method

Fairness Timeliness Open‑
vehicle 
routing

Split delivery

Liu et al. ( 2021a, 
2021b)

Major public health 
emergency

Medical supplies  × √  × √ Multiple dynamic pro-
gramming algorithm

Du et al. (2022) Major public health 
emergency

Medical supplies  × √  ×  × Column generation 
and pulse algorithm

Zhong et al. (2020) Generalized disasters Generalized supplies  × √  ×  × Hybrid genetic algo-
rithm

Chen et al. (2020) COVID-19 Food  × √  × √ PEABCTS algorithm

Akwafuo et al. (2020) Public health emer-
gencies

Generalized supplies  × √ √  × Hybrid heuristic algo-
rithm

Liu et al. (2020) COVID-19 Medical waste  × √  ×  × Ant colony-tabu hybrid 
algorithm

Li et al. (2020) Public health emer-
gencies

Emergency supplies  × √ √ √ NSGA-II algorithm

Ning et al. (2021) Public health emer-
gencies

Medical material  × √  ×  × Heuristic algorithm

Shiri et al. (2022) COVID-19 Vaccine √  × √ √ Multi-stage stochastic 
programming

This paper Major Public Health 
Emergencies

Medical supplies √ √ √ √ NSDE algorithm
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according to practical problems. For example, the Dijk-
stra algorithm is often used to solve the shortest path 
problem, and Liu et  al. (2021) have proposed a multi-
dynamic programming algorithm based on the improved 
Dijkstra algorithm to solve the distribution of medical 
supplies in major public health emergencies. With long 
calculations, the algorithm does not apply to the distribu-
tion of medical supplies at the initial stage of an emer-
gency, which this paper aims to solve.

The optimization effect of the Non-Dominated Sort-
ing Genetic Algorithm-II (NSGA-II) is better, which 
can get all the optimal solutions at one time, and has the 
advantages of good convergence, fast operation, and local 
search (Deb et al. 2002; Murugan et al. 2009). In addition, 
NSGA-II does not need to assign the target weight, which 
can avoid the subjective preference of weight assignment. 
By comparing Non-Dominated Sorting Differential Evo-
lution (NSDE) with a weighted genetic algorithm, Du 
(2015) concluded that NSDE had certain advantages in 
solving multi-objective models. NSGA-II and NSDE are 
similar in structure, and perform better in the diversity 
mechanism and elite retention mechanism. In this paper, 
the NSDE with strong operability will be selected to solve 
the model.

3  Problem definition
This paper focuses on the distribution of non-targeted 
medical supplies in the initial stage of major public health 
emergencies. Different from government-directed dis-
tribution, the social non-targeted medical supplies were 
mainly donated by organizations, companies, and indi-
viduals for the major public health emergencies, which 
are not designated to the specific affected areas and need 
to be distributed scientifically. Thus, the research object 
of this paper is social non-targeted medical supplies, 
which is referred to as medical supplies for short.

Therefore, there are four cores of the problem defini-
tion in this paper. (1) after a public health emergency, 
medical supplies need to be distributed to affected areas 
as quickly as possible to reduce the negative impact; (2) 
faced with limited medical supplies and vehicles, man-
agers also need to distribute them fairly to reduce social 
discontent; (3) to ensure the efficiency of distribution and 
reduce the infection of drivers, the vehicle will not return 
the distribution centers after the last delivery, but stay in 
the last place and wait for the next assignment; (4) each 
affected area can be served multiple times by multiple 
vehicles, but only once by the same vehicle.

To visualize the problem, the distribution network of 
medical supplies under major public health emergencies 
can be defined as G = (N ,Y ) shown in Fig. 1, where N  is 
the set of nodes, and Y = {(i, j) : i, j ∈ N , i �= j} is the set 
of feasible links in the network. N  contains two subsets: 

W  represents the set of distribution centers and D is the 
set of affected areas. The number of vehicles available in 
each distribution center is known, and all vehicles are 
parked at the last affected area after the delivery. A fleet 
of homogeneous vehicles K  with capacity C departs from 
the distribution centers i ( i ∈ W  ) to provide medical 
material distribution services to the affected area j ( j ∈ D

).
In conclusion, in line with the principle of improving 

fairness and timeliness, the following decisions should be 
made: (1) given a set of distribution centers and vehicles, 
what quantity of medical supplies should those vehicles 
carry to which affected areas so as to maintain fairness 
between the affected areas; (2) in which order will these 
vehicles visit the affected areas from the distributions to 
deliver the supplies as timely as possible.

4  Model formulation
To better characterize the model, the following assump-
tions are proposed: (1) the location information of each 
node in the network is known, and the distance between 
each node can be obtained through Baidu map distance 
measurement; (2) vehicles are considered for medical 
material distribution, and other transportation methods 
are not considered; (3) the time for vehicles to load and 
unload supplies in any area is short and negligible; (4) the 
demand for medical supplies is far greater than the avail-
able quantity.

Considering the fairness and timeliness of medical sup-
plies distribution under major public health emergen-
cies, an open dual-objective optimization vehicle routing 
problem model is developed. The meanings of indices, 
sets, parameters, and variables adopted in the model are 
described in Table 2.

Fig. 1 An illustration of vehicle routing problem in relief distribution
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4.1  Objective function

(1) Minimize the total demand satisfaction rate gap

 After a major public health emergency, there is an 
urgent demand for medical supplies in the affected 
areas, but the existing medical supplies cannot meet 
the demand in a short period. Therefore, the fair-
ness theory is introduced to make the demand sat-
isfaction rates in the affected areas as close as pos-
sible. And the more urgent demand in an affected 
area is, the higher proportion of the demand satis-
faction rate in the affected areas in the fairness eval-
uation will be.

 Let F expresses the total demand satisfaction rate 
gap in the affected areas considering the urgency 
of demand. Equation  (1) indicates the minimiza-
tion of the sum of the demand satisfaction rate gap, 
where gi denotes the demand satisfaction rate of 
the affected areas i(i ∈ D) and g  means the average 
demand satisfaction rate of all affected areas.

(2) Minimize the total delivery time
 The delivery of medical supplies under the major 

public health emergencies has a higher require-
ment on timeliness, so timeliness is also included 
in the decisive goal. Let E represents the total deliv-
ery time, which can be calculated by the sum of the 
product of all units of medical supplies and their 
delivery time. The shorter the total delivery time, 
the higher the timeliness of delivery. Therefore, the 
second objective function can be expressed as:

(1)min F =

i∈D

hi(gi−g)2.

(2)gi =
Yi

Ri
, i ∈ D.

(3)min E =
∑

k∈K

∑

i∈N

∑

j∈N

vkijIkij
dij

v
, i �= j.

Table 2 Notations and definitions in the model

Item Description

Indices

 i, j Indices to nodes, i, j ∈ N

 k Indices to vehicles, k ∈ K

Sets

 G The distribution network

 N Set of all nodes in the distribution network

 Y Set of all feasible links in the distribution network

 W Set of all distribution centers

 D Set of all affected areas

 K Set of all vehicles

Parameters

 C The capacity of a vehicle

 dij Distance of feasible link (i, j) , i, j ∈ N

 v Speed of the vehicles k , k ∈ K

 hi The urgency of demand of the affected area i  , i ∈ D

 Ri Quantity of supplies needed by the affected area i  , i ∈ D

 k∗ Number of vehicles available for delivering medical supplies

 s Number of affected areas

Variables

 Yi Quantity of supplies delivered by all vehicles to the affected area i  , i ∈ D

 vkij 1, if the vehicle k travels from area i  to j(i  = j) ; 0, else, i, j ∈ N

 Ikij Quantity of supply carried by vehicle k directly from area i  to j  , k ∈ K  , i, j ∈ N

 Lki 1, if the affected area i  is the last affected area served by vehicle k; 0, else, i ∈ D , k ∈ K
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4.2  Constraints

Constraint (4) indicates that the sum of the urgency 
of demand of all affected areas equals 1. Constraint (5) 
means that the medical supplies loaded in vehicles must 
be delivered to affected areas. Constraint (6) represents 
that the same vehicle can only visit an affected area at 
most once. Constraint (7) mean that the vehicle can stay 
at only one node after the delivery. Constraint (8) repre-
sents the vehicle flow balance constraint, which indicates 
that a vehicle needs to leave from a node other than the 
final node on its delivery route after reaching that node. 
Constraint (9) refers to the vehicle capacity constraint. 
It means that the vehicle does not deliver more materi-
als than its capacity. Constraint (10) indicates that the 
supply is not greater than the demand. Constraints (11)–
(12) are 0–1 constraints and non-negative constraints, 
respectively.

5  NSDE algorithm
The NSDE algorithm proposed by Angira et  al. (2005) 
extends the Differential Evolution (DE) algorithm to 
multi-objective optimization problems and is widely 
used in solving multi-objective optimization problems. 
The process of using the NSDE algorithm to obtain an 
approximate Pareto optimal solution set can be seen in 
Fig. 2, where NP represents the population size, and each 

(4)
∑

i∈D
hi = 1.

(5)
∑

i∈D
Yi = k∗C .

(6)
∑

i∈N

vkij ≤ 1, ∀k ∈ K , ∀i, j ∈ N , i �= j.

(7)
∑

i∈D

Lki = 1, ∀k ∈ K .

(8)

∑

j∈N

vkij −
∑

j∈N

vkji = 0, ∀i ∈ N\{i|Lki = 1}, ∀k ∈ K .

(9)0 ≤ Ikij ≤ C , ∀k ∈ K ,∀i, j ∈ N .

(10)Yi ≤ Ri, ∀i ∈ D.

(11)vkij ∈ {0, 1}, ∀k ∈ K , ∀i, j ∈ N , i �= j.

(12)Yi,Ri ≥ 0, ∀i ∈ D.

chromosome in the population represents a distribution 
plan of the medical supplies. In addition, three key steps 
of the DE algorithm are described below.

The meanings of symbols involved in the NSDE algo-
rithm process are described as follows: Fi represents the 
set of solutions in the frontier i , Si represents the num-
ber of chromosomes in the frontier Fi of Pareto; T  is the 
maximum allowed number of iterations.

5.1  Coding and initializing chromosomes
Each chromosome in this paper is composed of 
two sub-strings, that is Xi =

[

X1
i ,X

2
i

]

 . String 1 is 
the random arrangement of vehicles, and string 2 
is the random arrangement of affected areas, that is 
X1
i = randperm(k∗),  X2

i = randperm(s) . The chro-
mosome length is k∗ + s , and the population size is 
NP = 5 ∗ (k∗ + s)  (Storn 1996). For example, when 
k∗ = 4, s = 6 and i = 1 , the random arrangement of vehi-
cles in string 1 is X1

1
= randperm(k∗) = [3, 4, 1, 2] , and 

the random arrangement of affected areas in string 2 is 

Fig. 2 NSDE algorithm process
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X2
1
= randperm(s) = [5, 4, 2, 6, 1, 3] . The chromosome 

i = 1 is X1 =
[

X1
1
,X2

1

]

= [3, 4, 1, 2, 5, 4, 2, 6, 1, 3].
The coded data needs to be encoded. The encod-

ing process is as follows: the first locus in string 1 starts 
from the distribution center and accesses the first locus 
in string 2. If there are any medical supplies left, the next 
locus of string 2 is visited. Otherwise, it stays at this locus 
in string 2. The second locus of string 1 is distributed 
from the next locus of string 2. And so on. When there 
is a surplus in string 1 and the string 2 locus are not all 
satisfied, the process is repeated.

5.2  Variation and crossover
Variation operation is to generate new solutions through 
individual gene changes. The variation operation of the 
traditional Genetic Algorithm (GA) will cause the solu-
tion to fall into the local optimum, so the DE algorithm 
is improved. The variation operation of the NSDE algo-
rithm in this paper is to add the weighted difference of 
any two individuals in the chromosome population to 
the third chromosome to produce the variation vector 
Vi . After the weighted difference, the value of gene posi-
tion in the chromosome string may be out of bounds, 
so the largest-order-value (LOV) rule is used to correct 
it (Qian et al. 2009). For example, assume that there are 
six affected areas, and after weighted difference, the 
variation vector Vi of string 2 in the chromosome i is 
[−5.7, 4.6, 2.9,−6.4, 1.3, 3.1] . After the correction of LOV, 
the maximum value in the variation vector Vi is given 6, 
followed by 5 for the second largest value, 4 for the third 
largest value, and so on. Finally, the modified variation 
vector Vi becomes [2, 6, 4, 1, 3, 5].

The crossover operation is designed to randomly gen-
erate new individuals in a probabilistic manner. Binomial 
crossover is used to generate the test vector Ui in this 
paper. When the value of the crossover rate ( CR ) is less 
than the random number, the value in the target chro-
mosome Xi is assigned to Ui ; otherwise, the value of Vi 
is assigned to Ui . Where, CR = 1− t

/

Maxgen , generated 
by the adaptive method, and the value is between 0 and 1. 
For example, assuming that Xi = [3, 4, 1, 2, 5, 4, 2, 6, 1, 3] 
and Vi = [3, 4, 2, 1, 2, 6, 4, 1, 3, 5] , when CR is less than the 
random number, then Ui = [3, 4, 1, 2, 5, 4, 2, 6, 1, 3] , other-
wise Ui = [3, 4, 2, 1, 2, 6, 4, 1, 3, 5].

5.3  Elite selection mechanism
An elite selection mechanism can retain the optimal indi-
viduals produced in evolution and finally get the global 
optimal solution. This paper is mainly based on fast non-
dominated solution sorting and crowded density sorting 
to select elite individuals.

Fast non-dominated solution sorting. The non-domi-
nated solution is also called the Pareto solution, which is 

a multi-objective solution that is not dominated by other 
solutions proposed by Pareto in 1986. Fast non-domi-
nated solution sorting can accelerate the convergence 
rate of the algorithm. The chromosomes in the popula-
tion are sorted according to the two target values, and 
then the Pareto front rank to which the chromosomes 
belong is obtained. p is the dominant solution, Sp is the 
set of dominated solutions dominated by p , and Np is the 
number of p.The fast non-dominated solution sorting 
method is proposed by Deb et al. (2002), whose pseudo 
code can refer to Wang’s research (Wang et al. 2014).

Crowded density sorting. The crowding density refers 
to the density of solutions in the same layer of non-
dominated solutions, which needs to be considered 
to ensure the diversity of the population. Suppose the 
distances between a solution and its nearest NP solu-
tions are d1, d2, d3, . . . , dNP , then its crowding density is 
d = NP

/(

1
/

d1 + · · · + 1
/

dNP
)

.

6  Case study
COVID-19 poses significant challenges for supplies man-
agement under major public health emergencies (Cao 
et  al. 2020). Therefore, the distribution of medical sup-
plies in Province X during the COVID-19 was taken as an 
example in this paper. We studied the distribution of sur-
gical masks from 00:00 to 24:00 on February 4, 2020. The 
Red Cross (0) served as the distribution center for sup-
plies, with a lot of medical supplies stored. And the loca-
tions of the distribution center and affected areas (1–17) 
are shown in Fig. 3, where the size of the points reflects 
the demand of the affected areas. In the distribution net-
work, distance data of all regions are shown in Table 3. In 
addition, the data on the number of surgical masks in the 
affected area is available from the government website, as 
shown in Table 4.

Assuming that at the initial stage of emergency 
response, there are 750,000 surgical masks in the 

Fig. 3 Location maps of distribution centers and affected areas
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distribution center and only 16 emergency vehicles 
with the capacity of 50,000 surgical masks and the driv-
ing speed of 50  km/h. The urgency of demand of each 
affected area are as follows: hi = [0.2600, 0.0453, 0.0667, 
0.0853, 0.0733, 0.0813, 0.0453, 0.0160, 0.0640, 0.0827, 
0.0440, 0.0280, 0.0547, 0.0187, 0.0147, 0.0147, 0.0053].

Based on the relevant data of the COVID-19, this paper 
tries to find the optimal distribution solutions on the 
premise of satisfying the fairness and timeliness of sup-
plies distribution in the affected areas.

6.1  Computational results
Using R software to run the algorithm, a more ideal solu-
tion set was obtained. In which, the maximum operation 
algebra max gen = 500 , the variation parameter F = 0.5 
is obtained through continuous testing. After solving the 
model, six approximate optimal solutions in the solution 

set of Pareto front 1 are obtained, as shown in Table  5. 
The specific values of the solution with the best timeli-
ness and fairness are shown in Table 6.

The specific vehicle routes and distribution schemes of 
the above two solutions (Solution 6 and Solution 1) are 
shown in Figs. 4 and 5. From the perspective of optimal 
fairness, compared with the solution with the best timeli-
ness, the demand satisfaction rate of each affected area is 
mostly maintained at about the average demand satisfac-
tion rate (0.7792). As can be seen from Table 4, except for 
the affected area 1 and the affected areas with a demand 
satisfaction rate of 1, the demand satisfaction rates of the 
other affected areas in this solution are all distributed 
between 0.5 and 0.85, without a large gap. Therefore, this 
solution is relatively fair. From the perspective of opti-
mal timeliness, it has the shortest total delivery time per 
unit of supply. Eight vehicles in solution 6 visited only 

Table 3 Distance between the affected areas

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 0

1 9.1 0

2 95 83.1 0

3 449 403.8 488.8 0

4 321 261.3 343.4 143.2 0

5 324 290.8 364.5 221 166.4 0

6 223 201.2 270.5 289.8 186.2 99.1 0

7 247 208 287.7 223.7 180.3 94.5 78.2 0

8 76 57.4 27.4 459.2 317 346.8 254.9 266.5 0

9 67 49.1 131.7 355.2 213.4 255.7 176.9 167.8 104.9 0

10 71 55.9 32.8 457.8 314.3 344.6 252.5 262.5 5.6 101.7 0

11 88 83.9 79.4 457.2 321.1 306 207.8 244.5 80.2 124.3 83.6 0

12 178 150.2 229.2 264.9 124,2 228.8 186.1 133.8 201.4 103.7 197.8 224.2 0

13 526 467.6 536.2 287.8 316.2 180.4 266.3 273.2 519.1 434 517.6 469.6 403.1 0

14 106 87.7 154.6 361.9 225.6 211.6 116.3 144 137.4 80.9 136.9 100.2 151.9 381.9 0

15 147 109.9 187.1 315.8 182.5 180.9 96.1 101.1 166 79.5 165 143.2 117.7 357.6 44.7 0

16 158 138.3 208.8 315.9 192.6 157.3 62.1 94.8 191.4 116 189.9 153.5 149 329.2 53.9 36.9 0

17 497 369.5 450.2 97.3 140.6 130.2 216.7 165.1 428.5 324.9 425 408.3 256 196.9 308.4 266.9 257.7 0

Table 4 Demand for surgical masks in affected areas

Area 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Quantity demanded (thousands) 400 50 100 100 95 110 85 30 81 121 50 30 62 20 19.2 18 7.5

Table 5 The target value of pareto frontier 1 under dual objectives

Solution 1 2 3 4 5 6

Fairness 0.1157 0.1047 0.1171 0.1431 0.1028 0.1012

Timeliness 72.7600 73.6680 78.8940 79.8080 94.5060 108.2740
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one affected area, while 12 vehicles in solution 1 with the 
best timeliness did so, indicating that direct delivery can 
save time. Therefore, reducing the number of each vehi-
cle visiting the affected area can improve the delivery 
timeliness.

6.2  Comparative results

(1) Advantages of NSDE algorithm

 The epsilon constraint method usually keeps the 
most important one among multiple objectives and 
brings the rest into the constraint condition, which 
has a wide application in solving multi-objective 
problems (Abounacer et al. 2014), The comparison 
of the epsilon constraint method and the NSDE 
algorithm in the example of province X demon-
strates the superiority of the NSDE algorithm. 
Transform into a single objective linear model. This 
paper argues that fairness is the most important 
goal of material distribution. Therefore, let E = ε1 , 
where ε1 can take all the values of E , and add the 
constraint E ≤ ε1 . The constraints (4)–(13) in the 

original model remain unchanged. Then the origi-
nal model is transformed into a linear model.

 Solve the single objective optimization model. 
It is calculated that the NSDE algorithm can give the 
global optimal solution in about 25 s, while the epsi-
lon constraint method is obviously inferior to the 
NSDE algorithm because a value exceeds 48 h. In this 
case, the calculation time of the NSDE is significantly 
better than the epsilon constraint method.
 Then, we reduced the data size of the case to 
reduce the calculation time, to compare the quality of 
the solutions. In the case of the halved size, 6 affected 
areas need to be delivered, the same as the first 6 
affected areas in the previous case. The distribution 
center and vehicle remain unchanged. The results of 
the two algorithms are shown in Table 7.

(13)min F = L

(14)
∑

k∈K

∑

i∈N

∑

j∈N
vkijIkij

dij

v
≤ ε1

Table 6 Single objective optimal solution in pareto frontier 1

Best fairness (solution 6) Best 
timeliness 
(solution 1)

Fairness 0.1012 0.1157

Timeliness 108.2740 72.7600

Average demand satisfaction rate 0.7792 0.7723

Affected area The urgency of demand Vehicle Demand satisfaction rate Vehicle Demand 
satisfaction 
rate

1 0.2600 (12,15) 0.2500 (11,12) 0.2500

2 0.0453 (14) 0.6000 (10) 1.0000

3 0.0667 (1,4) 0.6250 (13) 0.5000

4 0.0853 (7) 0.5000 (6,4) 0.8080

5 0.0733 (5) 0.5263 (8) 0.2579

6 0.0813 (6,16) 0.6364 (1) 0.4545

7 0.0453 (10,13) 0.8235 (14,15) 0.9412

8 0.0160 (1) 1.0000 (5) 0.6667

9 0.0640 (8) 0.6173 (3) 0.6173

10 0.0827 (11,9) 0.6678 (2) 0.8264

11 0.0440 (4,2) 1.0000 (7) 1.0000

12 0.0280 (13) 1.0000 (5) 1.0000

13 0.0547 (3) 1.0000 (9) 0.8065

14 0.0187 (14) 1.0000 (15) 1.0000

15 0.0147 (9) 1.0000 (4) 1.0000

16 0.0147 (16) 1.0000 (8) 1.0000

17 0.0053 (2) 1.0000 (8) 1.0000
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 After the operation, the NSDE algorithm obtains 
two approximate optimal solutions, while the epsi-
lon constraint method obtains an optimal solution. 
By comparing the results, it is found that the two 
methods have similar results and better quality, but 
there is a big difference in runtime, which is similar 
to the conclusion of previous research (Zheng et  al. 
2018). The runtime of the global optimal solution of 
the NSDE algorithm is about 5.1487 s, while the epsi-
lon constraint method takes 59,410.3333 s to get the 
global optimal solution. The comparison between the 
two cases shows that with the doubling of the data 
scale, the runtime of the epsilon constraint method is 
about thousands of times longer. Briefly, it can be seen 
that the runtime of the epsilon constraint method will 
increase sharply with the expansion of the data scale. 
In the early stage of the epidemic, medical supplies 
are continuously arriving at the warehouse and sent 
to the affected areas. Therefore, allocation decisions 
need to be made quickly. Furthermore, the epsilon 
constraint method is not applicable to the distribution 
decision of large-scale emergency supplies under the 
epidemic.

(2) Applicability of the model
 A case of medical supplies scheduling in Wuhan, a 

city with a small-scale data, was used to verify the 
universality of the model. There are 13 affected 
areas in this case. After solving for 12 s, three opti-
mal solutions were obtained, as shown in Table  8. 
The comparison proves that the model is also suit-
able for small-scale distribution problems.

 In addition, in order to study the applicability of 
NSDE algorithm in large-scale data, a case involv-
ing 34 affected areas was used for comparison. It 
should be noted that the data in this case was ran-
domly selected based on a map, not a real case. 
After about 120 s of runtime, four optimal solutions 
are obtained, as shown in Table 9.

 The solution time and the number of optimal solu-
tions of NSDE algorithm under different scale data 
are shown in Table 10. With the expansion of data 
scale, the runtime of NSDE algorithm is within 
the acceptable range. After a major public health 
emergency has occurred, the number of affected 
areas under the same level is limited. For example, 
emergency supplies from the municipal level are 
often distributed to districts and counties under 
their jurisdiction, while emergency supplies from 
districts and counties are distributed to streets and 
towns under their jurisdiction.

Fig. 4 Best fairness solution

Fig. 5 Best timeliness solution
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7  Conclusions
This paper studies the optimal distribution of medi-
cal supplies during the initial stage of major public 
health emergencies. For the difference between medi-
cal supplies and general supplies, as well as the differ-
ence between the major public health emergencies and 
general emergencies, the optimal model of medical 
supplies distribution under major public health emer-
gencies is established by considering the two goals 
of fairness and timeliness. Based on the open route 
and split distribution, the model is more consistent 
with the reality of major public health emergencies. 
Moreover, the NSDE algorithm is adopted to solve the 
model, and the model and algorithm are verified by a 
real case under the COVID-19. The results show that 
the designed model and algorithm can be well applied 
and give specific solutions, including the quantity of 

medical supplies distribution and the vehicle route. 
In addition, compared with the epsilon constraint 
method, it is proved that the NSDE algorithm can not 
only guarantee the solution efficiency, but also the solu-
tion diversity and quality. The comparison of solution 
results under different scale data also proves the appli-
cability of the model. The results of the study show that 
the model and algorithm are reasonable and effective to 
provide a reference for managers.

It should be pointed out that this paper only considers 
single-cycle allocation model, which has certain limita-
tions. In fact, due to the continuous supply of medical 
supplies and the changing classification of urgency of 
needs in different areas, vehicles may be distributed 
dynamically over multiple cycles. For further research, a 
multi-cycle dynamic allocation model will be considered.
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