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Abstract 

In this paper, Radial Basis Functions (RBFs) Interpolation is used for the solution of Volterra integral 

equations of the first kind. We used three types of RBFs: Inverse Multiquadric, Multiquadric and 

Gaussian. The goal of this work is to verify the effectiveness of the method on solving the Volterra 

integral equation of the first kind numerically. Moreover, we look into the possibility of the convergence 

of the method by increasing the number of center points. This investigation is done by studying three 

different examples verifying the performance of the method and showing the behavior of error using the 

Root-Mean-Square-Deviation (RMSD). Finally, the results show that the Gaussian has superiority over 

the Multiquadric and Inverse Multiquadric radial basis functions. 

 

Keywords: Radial basis functions, interpolation, approximation, first kind Volterra equation, integral 

equation 

 

1. Introduction 

Volterra integral equations have received huge attention in recent years, as these equations are 

involved in many scientific fields, such as engineering, economics, and medicine [10, 14]. This 

led interested people to study these equations analytically as well as produce numerical 

methods to solve these equations. The general form of the linear Volterra integral equation of 

the first kind is 

 

∫ 𝐾(𝑥, 𝑠)𝑦(𝑠)𝑑𝑠
∞

0
= 𝑔(𝑥), 0 ≤ 𝑠 ≤ 𝑥 ≤ 1,  (1) 

 

Where 𝑔(𝑥): ℛ →  ℛ is the input function and 𝐾(𝑥, 𝑠): ℛ × [0, 1]  →  ℛ is a kernel function, 

where both 𝑔 and 𝐾 are given functions, while 𝑦(𝑥) is the unknown function. In literature, 

equation (1) was solved numerically using several methods. The authors in [11] used a 

modification of Block Pulse Functions to solve equation (1). A recent work in [7] used the Swai 

Decomposition method to solve Volterra integral equations. Khidir in [9] presented a numerical 

technique based on the Chebyshev Spectral method for solving Volterra integral equations. 

Saberi et al. [13] approximated solutions of linear Volterra equations by applying the Wavelet-

Galerkin scheme. Another direction for solving Volterra integral equations numerically is the 

radial basis functions interpolation approach; which approximates the solution on some given 

points that have no particular structure, for example authors in [1] used a mesh-less method for 

approximating solutions of Fredholm and mixed Volterra-Fredholm integral equations. 

Authors in [4, 5] have presented methods based on RBFs and iterative procedures for the 

solution of Fredhom and Volterra integral equations. In [3], authors used RBFst to solve 

different types of integral equations, moreover, they showed that this method has an 

exponential convergence rate. Finally, Zhang et al. in [15] proposed a radial basis functions 

method focusing on the multiquadric function for solving some integral equations. The authors 

compared their results with the thin plate spline method and Haar wavelet method showing the 

Multiquadric method gives better accuracy. 

In this work, the Volterra integral equation is numerically solved by using several types of 

radial basis functions.  
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The structure of this paper is as follows: after this 

introduction, radial basis functions are introduced in Section 

2. The RBF interpolation method is presented in Section 3. In 

Section 4, numerical examples are performed. Finally, Section 

5 is devoted to the conclusion. 

 

Radial Basis Functions 

Radial Basis Functions were introduced in the year 1971, 

Hardy was the first one to develop and implement the RBFs 

to interpolate multidimensional scattered data, and indeed he 

tried to use it to approximate the earth’s gravitational field 
[6]. Radial basis function𝛷: ℛ𝑑 →  ℛ, 𝑑 is a positive integer, is 

defined as a function of distance 𝑟 = ∥ 𝑥 − 𝑡𝑖 ∥, where ∥. ∥ is 

the Euclidian norm and ti is called the centers. Then an 

approximation of a function 𝑦(𝑥), denoted by �̂�(𝑥), using 

radial basis function is given as in the following formula: 

 

𝑦(𝑥) ≈ �̂�(𝑥) = ∑ 𝛼𝑖𝜙(∥ 𝑥 − 𝑡𝑖 ∥)𝑁
𝑖=1 ,  (2) 

 

where 𝛼𝑖 are coefficient numbers and 𝜙(𝑟) is the radial basis 

function. Some commonly known RBFs are illustrated in 

Table 1. 

 
Table 1: A set of common RBFs. 

 

Name of RBF 𝜙(𝑟), (𝑟 ≥ 0) 

Inverse multiquadric (IMQ) 
𝜙(𝑟) =

1

√1 + (𝜀𝑟)2
 

multiquadric (MQ) 𝜙(𝑟) = √1 + (𝜀𝑟)2 

Gaussian (GA) 𝜙(𝑟) = 𝑒−(𝜀𝑟)2
 

 

To find the coefficients 𝛼𝑖, consider a set of distinct points 

𝑥 =  {𝑥1, 𝑥2, . . . , 𝑥𝑁} and a corresponding data values 𝒘 =
 {𝑤1, 𝑤2, … , 𝑤𝑁}, substituting in (2) gives a system that can be 

written in a matrix form, 

 

𝐴𝜶 =  𝒘, 
 

Where 

 

𝐴 = [

𝜙11

𝜙21

⋮
𝜙𝑁1

𝜙12

𝜙22

⋮
𝜙𝑁2

…
…
⋱
…

𝜙1𝑁

𝜙2𝑁

⋮
𝜙𝑁𝑁

] , 𝜙𝑗𝑖: =  𝜙(‖𝑥𝑗 − 𝑡𝑖‖), 𝑖, 𝑗 =  1, 2, … , 𝑁. (4) 

 

Indeed, the linear system (3) can be solved for 𝜶 as the 

coefficient matrix 𝐴 is nonsingular, because the RBFs 

considered here are sufficiently smooth, see for instance [8]. 

Therefore, solving system (3) gives: 

 

𝜶 =  𝐴−1𝒘.  (5) 

 

Description of the method 

We consider the first kind of Volterra integral equation 

defined by, 

 

∫ 𝐾(𝑥, 𝑠)𝑦(𝑠)𝑑𝑠
𝑥

0
 =  𝑔(𝑥), 0 ≤  𝑠 ≤  𝑥,  (6) 

 

where 𝑦(𝑥) is the function being sought, 𝐾(𝑥, 𝑠) and 𝑔(𝑥) are 

two given 𝐶∞ functions with 𝑔(0) = 0. In the following, a 

numerical method based on using radial basis functions 

interpolation is used to get an approximating solution to 

equation (6). To start, take 𝑁 points (𝑡1, 𝑡2, … , 𝑡𝑁) in the 

interval [0, 1], suchpoints are called center points. Then the 

solution 𝑦(𝑥) of equation (6) can be approximated by writing 

it as a linear combination of N RBFs: 

 

𝑦(𝑥) ≈ �̂�(𝑥) = ∑ 𝛼𝑖𝜱𝑖(𝑥)𝑁
𝑖=1  (7) 

 

Where �̂�(𝑥) is the approximate solution, 𝛼𝑖′𝑠 are constant 

coefficients and 𝜱𝑖(𝑥) ∶=  𝜙(||𝑥 − 𝑡𝑖||) are smooth radial 

basis functions some of which are defined in Table1. 

Substituting the linear combination (7) in equation (6) gives: 

 

∫ 𝐾(𝑥, 𝑠) ∑ 𝛼𝑖𝜱𝑖(𝑠)𝑁
𝑖=1 𝑑𝑠

𝑥

0
≈  𝑔(𝑥)  (8) 

 

The linear property of integrals implies, 

 

∑ 𝛼𝑖 ∫ 𝐾(𝑥, 𝑠)𝜱𝑖𝑑𝑠
𝑥

0
𝑁
𝑖=1 ≈  𝑔(𝑥)  (9) 

 

Now, substituting a set of collocation points 𝑥𝑗 ∈ [0, 1], 𝑗 =

1, 2, … 𝑁 in equation (9) gives the system, 

 

∑ 𝛼𝑖 ∫ 𝐾(𝑥𝑗 , 𝑠)𝜱𝑖𝑑𝑠
𝑥𝑗

0
𝑁
𝑖=1 = 𝑔(𝑥𝑗), 𝑗 = 1, 2, … 𝑁 (10) 

 

Let 𝐾 denote the 𝑁 × 𝑁 matrix, 

 

𝑲 ≔ [

𝐾11

𝐾21

⋮
𝐾𝑁1

𝐾12

𝐾22

⋮
𝐾𝑁2

…
…
⋱
…

𝐾1𝑁

𝐾2𝑁

⋮
𝐾𝑁𝑁

], 

 

Where 

 

𝐾𝑖𝑗 ≔ ∫ 𝐾(𝑥𝑗 , 𝑠)𝛷𝑖(𝑠)𝑑𝑠

𝑥𝑗

0

. 

 

In the numerical implementation performed later, Gauss 

Quadrature method used to approximate the definite integrals 

𝐾𝑖𝑗 as follows, 

 

𝐾𝑖𝑗 ≔ ∫ 𝐾(𝑥𝑗 , 𝑠)𝛷𝑖(𝑠)𝑑𝑠
𝑥𝑗

0
=

𝑥𝑗

2
∫ 𝐾 (𝑥𝑗 , 𝑄(𝑧)) 𝛷𝑖(𝑄(𝑧))𝑑𝑧

1

−1
 ≈

∑ 𝑚𝑟𝐾(𝑥𝑗 , 𝑄(𝑧𝑟))𝜱𝑖(𝑄(𝑧𝑟))𝑅
𝑟=1 .  (12) 

 

Where 𝑄(𝑧): =
𝑥𝑗

2
+

𝑥𝑗 𝑧

2
= 𝑠 and 𝑚𝑟 is the weight of the 

integral approximation. Then the system in (10) can be 

rewritten in matrix form as, 

 

[

𝐾11

𝐾21

⋮
𝐾𝑁1

𝐾12

𝐾22

⋮
𝐾𝑁2

…
…
⋱
…

𝐾1𝑁

𝐾2𝑁

⋮
𝐾𝑁𝑁

] [

𝛼1

𝛼2

⋮
𝛼𝑁

] = [

𝑔1

𝑔2

⋮
𝑔𝑁

] (13) 

 

The system in (13) is solved for αi as follows, 

 

[

𝛼1

𝛼2

⋮
𝛼𝑁

] = [

𝐾11

𝐾21

⋮
𝐾𝑁1

𝐾12

𝐾22

⋮
𝐾𝑁2

…
…
⋱
…

𝐾1𝑁

𝐾2𝑁

⋮
𝐾𝑁𝑁

]

−1

[

𝑔1

𝑔2

⋮
𝑔𝑁

] (14) 

 

Finally, the solution 𝑦(𝑥) in (7) becomes, 

𝑦(𝑥) ≈ �̂�(𝑥) = [𝜙1(𝑥)𝜙2(𝑥). . . 𝜙𝑁(𝑥)] [

𝐾11

𝐾21

⋮
𝐾𝑁1

𝐾12

𝐾22

⋮
𝐾𝑁2

…
…
⋱
…

𝐾1𝑁

𝐾2𝑁

⋮
𝐾𝑁𝑁

]

−1

[

𝑔1

𝑔2

⋮
𝑔𝑁

](15) 
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Error analysis and convergence 

Define the operator 

 

𝑉 [𝑦(𝑥)] ≔ ∫ 𝐾(𝑥, 𝑠)𝑦(𝑠)𝑑𝑠
𝑥

0
, (17) 

 

that maps continuous functions 𝑦(𝑥) to 𝐶(ℛ). Consequently, 

equation (1) becomesin operator form as: 

 

𝑉[𝑦] = 𝑔  (18) 

 

This is a contraction operator since 𝐾 is a 𝐶∞ function and 

𝑦(𝑥) is a continuous solution on a bounded domain which 

implies a bounded operator, then a simple scaling argument 

gives the contraction. The Banach contraction mapping 

principle implies the existence of a unique solution to 

equation (1). Moreover, the operator 𝑉 is one-to-one and onto 

with bounded inverse as a result of the Geometric Series 

Theorem (See [2], Appendix A). 

Let us now put the linear combination of the RBFs in 

equation (7) in the operator form as a collocation projection 

operator defined by 

 

ℊ𝑁[𝑦(𝑥)]: = ∑ 𝛼𝑖𝜱𝑖(𝑥),𝑁
𝑖=1   (18) 

 

which maps functions from 𝐶(𝐷) to span{𝛷1, 𝛷2, . . . , 𝛷𝑁} ⊂
𝐶(ℛ). Finally, the integral approximations in (12) are used to 

introduce the numerical integral operators 𝐼𝑁: 

 

𝐼𝑁[𝑦(𝑥)]: = ∑ 𝑚𝑟𝐾(𝑥, 𝑄(𝑧𝑟))𝑦(𝑄(𝑧𝑟))
𝑅𝑁
𝑟=1 , 𝑁 ≥ 1.  (19) 

 

Using the operators above together we can rewrite the 

problem in the abstract form: 

 

ℊ𝑁𝐼𝑁[�̂�𝑁] =  𝑔  (20) 

 

In the following, we sketch the proof for error analysis and 

convergence of the RBFs method 

• First, the 𝐿∞ bound of the iterated discrete collocation 

solution is obtainedassuming that ℊ𝑁[𝑦] → 𝑦 as 𝑁 → ∞. 

See the complete result in ([1], Theorem 4.1). 

• Then, the error bound and convergence of the 

approximate solution �̂�𝑁 in (20) can be proved by 

showing that the 𝐿∞ distance between �̂�𝑁 and the unique 

solution of the problem is convergent to zero. For a 

complete result and full details, the reader can refer to 

([1], Theorem 4.2). 

• From the computations done in ([1], Theorem 4.2) one 

can see that there are two main errors that are caused by 

the RBF interpolation and by performing the numerical 

integration scheme and both errors are bounded. Finally, 

as the error of the RBF interpolation is dominated over 

the integration error, then increasing the number of nodes 

in the numerical integration method has no significant 

effect on the error. 

 

Numerical results 

This section is devoted to testing the method presented above 

by implementing it through three different examples. 

Furthermore, error analysis for each example presented by 

using the Root-Mean-Square deviation (RMSD) defined by, 

 

𝑅𝑀𝑆𝐷 = √∑ (𝑦(𝑥𝑖)−�̂�(𝑥𝑖))
2𝑁

 𝑖=1

𝑁
  (21) 

 
In the implementations, we consider three different types of 

RBFs: Inverse Multiquadric, and Gaussian functions given in 

Table 1. We aim in this section to study the performance of 

the presented method by considering the main factors that can 

affect the behavior of the error which are: 

1. The number of center and collocation points 𝑁 used to 

build the approximation solution in (15). 

2. The number of testing points𝑀. 

3. The shape parameter ϵ; the optimal choice of ϵ is still 

under intensive investigation, for more details see [12]. 

 

In the following, three different examples are presented for 

different values of N and M with ϵ = 0.3. 

 

Example 1. Consider the Volterra integral equation 

 

∫(𝑥2 − 𝑠 +  2)𝑦(𝑠)𝑑𝑠

𝑥

0

= (𝑥2 − 𝑥 + 2)𝑠𝑖𝑛(𝑥) + 1 − 𝑐𝑜𝑠(𝑥), 0 

≤  𝑥 ≤  1, 

 

Which has the exact solution 𝑦(𝑥) = 𝑐𝑜𝑠(𝑥). For this 

example, the center and collocation points 𝑁 are chosen to be 

the same. Table 2 shows results for exact and approximating 

solutions with RMSD for different RBFs withℎ = 0.2. These 

results are represented graphically in Figure 1. Tables 3 and 4 

show the RMSD error for different values of, and different 

numbers of testing points 𝑀, respectively. In particular, Table 

3 gives an insight into the convergence of the approximating 

solution of the method to the exact solution 𝑦(𝑥). Table 4 

shows that the accuracy of the approximating solution �̂� 

increases as the number of testing points 𝑀 gets larger. 

 

 
(a) 
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(b) 

 

 
(c) 

 

Fig 1: Exact and the approximating solutions using (a) IMQ,(b) MQ and (c)GA RBFs, respectively, for Example 1 
 

Table 2: Exact and approximating solutions with RMSD results for Example 1. 
 

𝒙𝒊 𝑬𝒙𝒂𝒄𝒕 𝒚(𝒙𝒊) 𝑰𝑴𝑸 �̂�(𝒙𝒊) 𝑴𝑸 �̂�(𝒙𝒊) 𝑮𝑨 �̂�(𝒙𝒊) 
0 1 0.9967524 0.9980215 0.9999740 

0.2 0.9800665 0.9807565 0.9804851 0.9800682 

0.4 0.9210609 0.9206962 0.9208468 0.9210557 

0.6 0.8253356 0.8256994 0.8255556 0.8253349 

0.8 0.6967067 0.6959721 0.6962713 0.6966992 

1.0 0.5403023 0.5438255 0.5424308 0.5403220 

 RMSD 8.2655E-004 4.9919E-04 6.1857E-06 

 
Table 3: RMSD for different values of ℎ for Example 1. 

 

𝒉 RMSD IMQ RMSD MQ RMSD GA 

0.25 8.6195E-004 8.9512E-004 5.1235E-004 

0.20 6.3327E-004 6.5629E-004 7.7655E-005 

0.15 7.3499E-005 5.2081E-004 1.1971E-005 

0.10 4.4944E-005 4.7546E-004 2.8656E-006 

0.05 1.1286E-005 2.2240E-005 1.9435E-006 

 
Table 4: RMSD for different number of testing points 𝑀 and ℎ for Example 1. 

 

𝒉 M RMSD IMQ RMSD MQ RMSD GA 

0.25 50 6.7150E-004 1.5920E-003 8.2445E-005 

 100 6.3363E-004 1.5015E-003 7.7701E-005 

 200 6.1537E-004 1.4579E-003 7.5412E-005 

 400 6.0642E-004 1.4365E-003 7.4290E-005 

0.15 50 9.2110E-005 4.9929E-004 2.4352E-006 

 100 8.6094E-005 4.9573E-004 2.3407E-006 

 200 8.3148E-005 4.9403E-004 2.2949E-006 

 400 8.1691E-005 4.9321E-004 2.2723E-006 

0.05 50 7.5692E-005 7.9800E-005 9.4324e-007 

 100 7.5371E-005 7.3865E-005 9.4235e-007 

 200 7.5218E-005 7.0950E-005 9.4055e-007 

 400 7.5144E-005 6.9507E-005 9.3677E-007 

 

 

https://www.mathsjournal.com/


 

~29~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

For the following two examples, similar tables (Tables: 5, 6) 

as Table 4 of Example 1 are performed which give similar 

results for different choices of the kernel 𝐾(𝑥, 𝑠) and 𝑔(𝑥). 

 

Example 2. Consider the Volterra integral equation 

 

∫(𝑥 − 𝑠)𝑦(𝑠)

𝑥

0

𝑑𝑠 = 2 + 𝑥 − 2𝑒𝑥 + 𝑥𝑒𝑥, 0 ≤ 𝑥 ≤ 1. 

The exact solution of this equation is 𝑦(𝑥) = 𝑥𝑒𝑥. The 

numerical results are shown in Table 5. 

 

Example 3. Consider the Volterra integral equation 

 

∫ 3𝑥−𝑠𝑦(𝑠)

𝑥

0

𝑑𝑠 = 𝑥, 0 ≤ 𝑥 ≤ 1. 

 

The exact solution is𝑦(𝑥) = 1 − 𝑥 𝑙𝑛(3). The numerical 

results are shown in Table 6. 

 
Table 5: RMSD for different number of testing points 𝑀 and ℎ for Example 2. 

 

𝒉 𝑴 RMSD IMQ RMSD MQ RMSD GA 

0.25 50 1.7635E-002 1.3761E-002 8.5645E-003 

 100 1.6737E-002 1.3060E-002 8.1228E-003 

 200 1.6295E-002 1.2714E-002 7.9051E-003 

 400 1.6075E-002 1.2542E-002 7.7971E-003 

0.15 50 2.5007E-003 2.6814E-003 1.8066E-003 

 100 2.3461E-003 2.5336E-003 1.7070E-003 

 200 2.2700E-003 2.4607E-003 1.6580E-003 

 400 2.2323E-003 2.4246E-003 1.6336E-003 

0.05 50 5.4858E-005 7.9742E-005 4.2817E-005 

 100 5.2899E-005 7.1559E-005 3.8842E-005 

 200 5.1975E-005 6.7567E-005 3.6905E-005 

 400 5.1530E-005 6.5600E-005 3.5951E-005 

 
Table 6: RMSD for different number of testing points 𝑀 and ℎ for Example 3. 

 

𝒉 𝑴 RMSD IMQ RMSD MQ RMSD GA 

0.25 50 9.9480E-005 1.7843E-003 1.9735E-005 

 100 9.3132E-005 1.7836E-003 1.8543E-005 

 200 9.0057E-005 1.7833E-003 1.7970E-005 

 400 8.8547E-005 1.7831E-003 1.7690E-005 

0.15 50 6.4504E-005 6.5779E-004 1.6840E-005 

 100 6.4509E-005 6.2032E-004 1.5742E-005 

 200 6.4512E-005 6.0224E-004 1.5202E-005 

 400 6.4514E-005 5.9338E-004 1.4934E-005 

0.05 50 2.2422E-005 2.7240E-004 2.4551E-006 

 100 2.2027E-005 2.7238E-004 2.4533E-006 

 200 2.1849E-005 2.7237E-004 2.4525E-006 

 400 2.1764E-005 2.7236E-004 2.4521E-006 

 

Conclusion 

In this work, a numerical method is used to solve linear 

Volterra integral equations of the first kind based on radial 

basis functions. To verify the efficiency of the presented 

method, the RMSD error is studied through three different 

examples. Moreover, the convergence of the approximating 

solution is tested for variant values of ℎ and showed a stable 

behavior as h decreased. Finally, while comparing the 

performance of the implemented RBFs it can be concluded 

that the Gaussian outperformed the MQ and IMQ RBFs. 
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