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A B S T R A C T

The 4R concept (reduce, reuse, recycle and repurpose) in water management necessitates innovative adsorption
techniques that utilize sustainable and natural materials. This study investigates the use of natural sawdust
embedded in magnetic iron oxide to treat wastewater. The performance of the newly synthesized Fe3O4/sawdust
adsorbent was also compared to the native Fe3O4 and Fe3O4/MWCNT. Methyl Green (MG) was used as a model
pollutant due to its wide use and potential toxicity. The new adsorbents demonstrated a high removal efficiency
that exceeds 97 % under ambient conditions. The study investigates the effect of pH on adsorption, revealing a
significant shift in removal efficiency as pH increases, with an optimal pH of around 7. The pH dependence is
explained based on the point-of-zero-charge of the Fe3O4 adsorbent and the structure of the dye. The thermo-
dynamic parameters (ΔH◦, ΔS◦, and ΔG◦) of adsorption were determined through a temperature study. The
adsorption equilibrium was found to be endothermic, therefore preferring elevated temperatures. Because the
adsorption data of the study exhibited S-shaped-like curves, sigmoidal models were used to describe the
adsorption isotherms. This provided new insights into the competitive adsorption mechanisms acting on the
heterogeneous Fe3O4/sawdust surfaces. The kinetics study indicates rapid and efficient adsorption with pseudo-
second-order reaction. The half-life of the reaction was as low as 4.8 min. The findings suggest a rapid, highly
efficient and sustainable method to remove organic pollutants from wastewater.

1. Introduction

Our world is struggling with an alarming freshwater shortage
marked by present wars, industrialization, misuse, droughts, natural
disasters, and pollution. Estimates suggest that 2.2 billion people still
lack access to safe drinking water worldwide [25,64,86]. Recent esca-
lating conflicts have further intensified this crisis, creating further
challenges for people seeking fresh water. Therefore, efforts are
continued to develop efficient and accessible technologies that can
secure freshwater for individuals and societies.

Over the course of recent decades, several technologies have been
developed to address freshwater challenges such as flocculation, coag-
ulation, adsorption, biodegradation, membrane removal, advanced
oxidation, and ion exchange [6,7,23,73,77,81,82]. However, none of
these methods are 100 % efficient, and therefore, a combination or a
sequence of these techniques is usually adapted [1]. Also, the new

technologies need to address new regulations, such as the zero liquid
discharge (ZLD) and minimal liquid discharge (MLD) policies, that are
put into place to limit pollutants discharged into the environment [11,
24,60,65].

Adsorptive removal is the leading technique for cleaning water from
both organic and inorganic contaminants [12,54,55,79,87,88]. Over the
past few decades, extensive research has been done to prepare new types
of nano-adsorbents that can quickly and efficiently clean water. These
can be either engineered (e.g., free metals, metal oxides, and zeolites) or
naturally occurring such as carbon nanotubes and clays [10,84,85]. [10]
Because these materials are expensive and non-eco-friendly, there is a
growing interest in green techniques that promote the use of affordable,
natural alternatives like sawdust and food waste. This approach both
serves the 4R concept (reduce, reuse, recycle and repurpose), as well as
supports sustainable, and large-scale operations [5,34,36,67,72]. As
such, the primary objective of this study is to explore the use of sawdust
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waste as an adsorbent for water treatment, considering factors such as
environmental sustainability, cost-effectiveness, and efficiency.

Organic industrial dyes are among the toughest pollutants to remove
due to their complex aromatic structure [42,80]. Generally. organic dyes
are categorized as mutagenic, allergenic, carcinogenic, toxic, and
non-biodegradable [13,39,42]. Methyl green (MG) [C26H33Cl2N3, MG,
Fig. 1] is an example of such dye, which is considered dangerous to
humans and living organisms at high doses [1,8]. MG is a basic
triphenylmethane-type di-cationic dye, featuring a complex aromatic
structure that hinders its natural biodegradation. Its major applications
include dyeing textiles, nylon, wool, silk, and cotton, along with its use
as a pH indicator [7,8] Scheme 1.

While sawdust itself exhibits good adsorption properties [2,66], its
separation from the aqueous medium hinders its applications. Hence,
our objective was to synthesize a magnetic material incorporating
sawdust to facilitate its separation and reuse. Iron oxides are examples of
adsorbents that satisfy this requirement [20,30,46,57,63,68]. Magnetite
(Fe3O4) is the most investigated mineral owing to its remarkable
nanoscale qualities, such as its high stability, magnetism, and surface
area [29,45,50,69]. However, pure Fe3O4 exhibits low adsorption effi-
ciency. Throughout the reaction process, Fe3O4 tends to agglomerate,
diminishing the specific surface area of the material by concealing the
active sites on its surface. This ultimately results in a reduction of the
catalytic activity of the catalyst [27,28].

Iron oxides can easily be functionalized to address specific contam-
inants [62]. This does not only emhamces the removal efficiency but can
also bolsters their resistance to agglomeration. Surface modification can
be carried out using solid supports like zeolite, sawdust, charcoal, car-
bon nanotubes, and activated carbon [2,11,12,15,75]. These materials
have been recognized for their ability to serve as supports for magnetic
nanoparticles and are acknowledged as excellent adsorbents frequently
employed for organic pollutant adsorption in the environment.

Modeling of adsorption isotherms is crucial—not only for the sake of
fitting the experimental data but also to interpret adsorption mecha-
nisms and comprehend their nature [4,21,78]. Isotherms exhibit distinct
types based on their curvature. While numerous adsorption data
conform to conventional isotherms, such as Langmuir and Freundlich,
other experimental data, including the present study, demonstrate a
more complex nature, adhering to S-shaped isotherms (typified by Types
II and IV), indicative of sigmoidal behavior. Consequently, an additional
objective of this study is to identify the most suitable sigmoidal model
that describes the adsorption behavior. The study also aims to provide
an in-depth analysis of the causes of sigmoidal behavior.

Considering the motivations and objectives mentioned above, we
investigated the effect of modifying the Fe3O4 surface with sawdust
(SD), multi-walled carbon nanotubes (MWCNT), and activated carbon

(AC). We studied the effects of adsorbent dosage, solution pH, shaking
time, and temperature on MG adsorption, and correlated that with bare
Fe3O4 The adsorption kinetics were investigated by monitoring the re-
action over time till equilibrium is reached.

2. Materials and methods

2.1. Materials and reagents

Methyl green (C26H33Cl2N3, 458.47 g/mol) was purchased from BDH
Middle East LLC, Doha, Qatar. Iron (II) sulfate (FeSO4, 99 %) and
ammonium hydroxide (NH4OH, 26 %) were obtained from Riedel-de
Haen, Germany. Iron (III) sulfate hydrate (Fe2(SO4)3.xH2O, 400 g/mol,
99 %) was purchased from Research Lab Fine Chem, India. The sawdust
(SD) used for this experiment was obtained from a local sawmill in Doha,
Qatar. Multiwalled carbon nanotubes (MWCNT, outer diame-
ter=5–15 nm, length= 10–30 μm) were acquired from Nanjing XFNano
Material Tech Co. Ltd. China. Modified hydroxyethyl methyl cellulose
(HEMC WALOCEL™ MKW 30000 PP30 Cellulose Ether) was obtained
from Dow Chemical Company, Michigan, USA. Sodium hydroxide
(NaOH, pellets, 97.5 %) and sodium nitrate (NaNO3, 99 %) were pur-
chased from Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany, to be
used in point-of-zero charge experiments. For preparing the buffer so-
lutions, nitric acid (HNO3, 69 %) and acetic acid (glacial, 99.55 %) were
obtained from Loba Chemie Pvt. Ltd., India. Sodium acetate (CH3.
COONa, 99 %) was obtained from Research Lab Fine Chem., India.
Ammonium chloride (99.5 %) was purchased from Sigma-Aldrich
Chemie GmbH, Taufkirchen, Germany. The neodymium magnets
(model DIYMAG, F60103, 20 P) used in this work were acquired from
Amazon Inc., Washington, USA.

2.2. Instruments

For the adsorption studies, samples were weighed using a 5-digit
analytical balance (Adam Equipment, UK). An ultrasonic cleaner
(model 2800, Branson Ultrasonics Corporation, Connecticut, USA) was
used to dissolve the samples once needed. The samples were shaken
during the experiments using an orbital/linear shaker (model Sk-O180-
PRO, Biobase Ltd., India). The shaking power and speed were sat at
15 W and 300 rpm, respectively. For the temperature study, a 28.0-L
water bath equipped with a shaker (model NE5–28, Nickel-Electro
Ltd. UK) was used. The pH was measured using a portable pH Meter
(PH400S, Apera Instruments, Ohio, USA). The concentration changes of
MGwere followed by observing its maximum absorbance using a UV-Vis
Spectrophotometer (model UV-2700i, Shimadzu. Maryland, USA). An X-
ray diffractometer (MiniFlex 2, Applied Rigaku Technologies, Inc.,
Texas, USA), equipped with nickel-filtered CuKa radiation (λ =Fig. 1. Separating the Fe3O4 nanocomposite by a neodymium magnet.

Scheme 1. Molecular structure of methyl green (MG).
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0.1564 nm) and operating at 30 kV and 15 mA, was employed to
investigate the crystal structure of the nanocomposites. The XRD scans
were performed for 2 hours at a scanning rate of 1.8◦/min in the 10–30◦

range. The field emission instrument (Nova Nano SEM 450), operating at
5 kV and equipped with an energy dispersive X-ray analyzer (EDX,
Bruker), was used to obtain the scanning electron microscope (SEM)
images for the nano-adsorbent.

2.3. Synthesis

Magnetite (Fe3O4) nanoparticles were prepared using the co-
precipitation method as described previously [17,58,74]. Briefly,
12.006 g of Fe2(SO4)3.xH2O and 2.2062 g of FeSO4 (molar ratio of 2:1)
were dissolved in 80 mL of Milli-Q®water. Care was taken to initiate the
reaction quickly to prevent the rapid oxidation of iron (II) ions to brown
Fe2O3. Afterwards, specific amounts of loading materials (SD or
MWCNT) along with ~ 0.70 g of HEMC, as a binder, were added to the
reaction. For simplicity, the Fe3O4 /SD and Fe3O4 /MWCNT will be
donated herein as IO/SD and IO/CNT, respectively. In order to maintain
the pH > 10, 50 mL of concentrated NH4OH solution (26 %) was added
dropwise to the mixtures over 5 min. The result was the formation of
Fe3O4 due to the precipitation of Fe2(SO4)3.xH2O and of FeSO4 in basic
medium. Further additions of NH4OHwere added as needed to maintain
a basic medium. The reaction was kept under continuous stirring for
3 hours at 60◦C. Afterwards, the reaction mixture was allowed to cool
down to room temperature, and the nanoparticles were separated by a
powerful neodymium magnet, rinsed multiple times in Milli-Q® water,
and dried overnight at 80◦C.

2.4. Point-of-Zero-Charge (PZC) measurements

To determine the adsorbent’s point-of-zero-charge (PZC), ten solu-
tions with identical ionic strength but different pH values ranging from
1.0 to 12.0 were prepared. An acetate buffer (CH3COOH/CH3COONa)
was prepared to control the solution’s pH. The pH was adjusted with
0.1 M dilutions of HNO3 or NaOH. To maintain constant ionic strength,
40.0 mL of 0.1 M NaNO3 was introduced to each flask. The initial pH
was measured with a pH meter and recorded. Then, 20.0 mg of freshly
produced Fe3O4 adsorbent was added to each flask, and the solutions
were agitated for 20 hours at 350 rpm. Once equilibrium had been
achieved, the pH was tested and declared final. The initial pH and final
pH values were plotted, and the PZS was found to be the point of
intersection [11,13,16,83].

2.5. Adsorption experiments

The batch adsorption tests were carried out by adding different
masses of the freshly produced nano-adsorbents to 25.0 mL of 15 mg/L
MG aqueous solutions in 50 mL vials. The vials were sealed and shaken
for 20 minutes at 300 rpm and 25 ◦C. Using a neodymium magnet, the
solid MG nano-adsorbent was removed from the solution, and the su-
pernatant was transferred to a clean flask. To avoid any side-adsorptions
by the filter papers, no filtering was performed. The MG concentrations
were then determined by recording their absorbance spectra at λmax =
635 nm, followed by converting the absorbance to concentration using a
calibration curve. For the temperature study, a similar procedure was
used, with the reaction vials and starting materials initially placed in a
water bath at the desired temperature, followed by shaking the solutions
for 20 min at the same temperature. UV-Vis spectra were then obtained
using temperature-controlled cuvettes.

3. Results and discussion

3.1. Adsorbent’s characterization

The distinguishing feature of Fe3O4 is its magnetic function, allowing

it to be easier to handle with a magnet. Fig. 1 illustrates how easily the
nanoparticles are separated by the neodymium magnet. The nano-
composites were also examined by field emission electron scanning
microscope (SEM). The images are shown in Fig. 2 for the native Fe3O4
(a, b), and the composites: IO/CNT (c, d), and IO /SD)(e, f). The bare
Fe3O4 shows a rough morphology with medium pores as illustrated by
the 50,000-x magnification in Fig. 2(b). The material shows minimal
signs of contamination as shown in the figure, a conclusion that is
supported by the EDX analysis presented below. Fe3O4 underwent sig-
nificant change when mixed with MWCNT as depicted in Fig. 2(c, d).
The images show the traditional ‘spongy’ morphology of the carbon
nanotube fibres that are bound to the Fe3O4 surface [11,14]. As for the
IO /SD nanocomposite, Fig. 2(e, f) shows an irregular, sharper and
smoother surface with shattered edges, in agreement with iron oxide/-
wood morphology [76]. As measured by SEM, the particle size in all
composites varied between ~20–100 nm in width and 100 nm to a few
μm in length, in agreement with our recent work [11,14].

To shed more light on the elemental composition of their surfaces,
the samples were examined by EDX analysis, as detailed in the Supple-
mentary Information Section. The EDX of Fe3O4 (Fig S1) shows signals
for Fe and O only. The mass percent of iron in Fe3O4 was determined to
be 73.4 %, a result close to the theoretical value of 72.4 %. As for the IO/
CNT sample (Fig S2), carbon was 41 % by mass, indicating a high
loading of MWCNT as a result of the strong loading between iron oxide
and the nanotubes. The carbon’s mass percent in the Fe3O4/SD (Fig S3)
varied between 20 % and 50 %, depending on the prepared ratio.
Furthermore, the EDX analysis did not identify any unexpected ele-
ments, indicating the absence of contaminants in the samples. Further
characterization of the Fe3O4 used in this work can also be found in
previous works [8,11,17].

3.2. Adsorption experiments

In order to determine the MG concentration in the adsorbed samples,
its absorbance in the visible region was recorded as discussed in the
experimental section. Fig. 3-a shows the room-temperature spectra for
the standard solutions of MG with a maximum absorbance at λmax =

635 nm. The results were used to construct a calibration curve as shown
in Fig. 3-b. The error bars in the figure represent the standard deviation
between three replicates. The data followed a linear fitting with an R2

value of 0.99983.
The adsorption experiments were performed by shaking the

15 mg L− 1 MG solution in different amounts of Fe3O4 (ranging between
1 and 100 mg) and comparing the connotations of MG before and after
the adsorption. In this work, the removal efficiency is defined as:

Removal efficiency =
Co − Ce

Co
× 100%

where Co and Ce (mg L− 1) are the initial and equilibrium concentrations
of the dye in solution. The removal efficiency for the native Fe3O4 was
determined to be as high as 95 % at room temperature and neutral
conditions, as illustrated in Fig. 4-a. This reflects the relatively high
binding between the MG molecule and the nano surface. To better
optimize and understand the adsorption mechanism, the effects of
different environmental parameters, including pH and temperature
were investigated as discussed below.

3.3. Effect of solution’s pH

The effect of the solution’s pH on the adsorption of MG by Fe3O4 was
studied in the pH range of 1–7, and the results are shown in Fig. 4-a (The
investigation was not extended to the basic region as MG turns colorless
at pH > 8). Notably, the removal efficiency exhibits a significant shift
with increasing pH. The removal efficiency increases from nearly zero at
low pH to over 95 % removal as the pH reaches neutral conditions. To
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Fig. 2. Scanning electron microscope (SEM) images for a) native Fe3O4 (10,000x) b) native Fe3O4 (50,000x), c) Fe3O4/MWCNT (10,000x), d) Fe3O4/MWCNT
(50,000x), e) Fe3O4/SD (10,000x),f) Fe3O4/SD (50,000x).
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better understand this behavior, the PZC of Fe3O4 was determined as
described earlier. As shown in Fig. 4-b, the pHPZC value is equal to 5.8. At
a pH of 5.8, the Fe3O4 surface is electrically neutral; however, when the
pH exceeds 5.8 or falls below 5.8, the surface possesses negative or
positive charges, respectively. MG is a di-cationic dye with a reported
pKa value of 4.0 [1]. However, previous reports indicate that the dye
stays cationic within the pH range of 1–8 [7,44]. Thus, at low pH values,
repulsive electrostatic interactions between the positively charged
Fe3O4 surface and the cationic dye hinder its adsorption, leading to very
low adsorption efficiency. As pH increases, the Fe3O4 surface becomes
negatively charged as shown in Fig. 4-c. and strong interactions between
the dye and the active sites dominate, leading to a high adsorption ef-
ficiency [37,43]. This finding is consistent with our recent work on
Ketoprofen [11], and other studies that have used Fe3O4 as an adsorbent
[61,70].

3.4. Effect of temperature

In this section, we discuss the effect of the solution’s temperature on
the adsorption of MG by Fe3O4. This serves to determine the thermo-
dynamic parameters required to understand the adsorption mechanism.
In a recent critical review by [48], it was observed that serious errors can
occur in thermal analysis as a result of simplifying calculations. Several
studies misapplied equations to determine thermal properties. The
misuse involved employing a simplified Arrhenius plot without
considering the equilibrium constant K, by plotting the natural loga-
rithm of concentration against the reciprocal of temperature from a

single experiment. This approach has led to substantial errors in
assessing thermodynamic parameters. The authors emphasized the
importance of “obtaining isotherms of adsorption at different temperatures
and making the nonlinear fitting of the isotherms” to find the K values [11,
48]. Thus, we conducted our temperature investigation in accordance
with these guidelines. The study was performed under isothermal con-
ditions at five different temperatures: 282, 298, 315, 324, 338, and
347 K, The isothermal conditions were maintained by placing all solu-
tions, materials, and glassware in a water bath at the desired tempera-
ture for at least 10 min. before the experiments to ensure thermal
equilibrium. In addition, a temperature-controlled UV-Vis cuvette was
used to minimize temperature fluctuations. The adsorption isotherms
were constructed by plotting the adsorption capacity at equilibrium (qe)
vs. the adsorbate concentration at equilibrium (Ce), where the two are
governed by the following relationship [11,13]:

qe =
C0 − Ce

W
V (1)

In the above equation, Co represents the initial concentration of MG
in the solution (mg L− 1), V is the sample volume (L). andW is the mass of
Fe3O4 nano adsorbents (g).

The thermodynamic parameters (ΔH◦, ΔS◦, and ΔG◦) of adsorption
can be deduced starting with the Van’t Hoff equation [9,48]:

ΔG◦

= − RTlnKf (2)

where ΔG◦ is the change in Gibb’s free energy, R is the universal gas
constant, and T is the temperature in K. The equilibrium constant Kf was

Fig. 3. a) room-temperature UV-Vis spectra for different concentrations of MG, b) linear fitting for the calibration curve for MG standard solutions at 25 ◦C, and pH ≈

7. Error bars represent the standard deviations of three replicates.

Fig. 4. Effect of solution’s pH on the adsorption of 15 mg L− 1 MG onto 80 mg of Fe3O4. Solution volume = 25 mL, T = 25◦C. b) determining the point of zero charge
for the Fe3O4 adsorbent, c) MG and Fe3O4 surface charges at different pH values.
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considered to be the Freundlich constant, defined in the formula:

qe = KF C
1
n
e (3)

where n is the Freundlich adsorption intensity. The fundamentals of
thermodynamics state that:

ΔG◦

= ΔH◦

− TΔS◦ (4)

where ΔH◦ and ΔS◦ are the changes in standard enthalpy and entropy,
respectively. Eqs. 2 and 4 rearrange to:

lnKf =
− ΔH◦

RT
+

ΔS◦

R
(5)

Therefore, an Arrhenius plot of ln Kf vs. the reciprocal of T should
give a straight line with a slope = -ΔH◦/R and an intercept = ΔS◦/R.

The results of this investigation are illustrated in Fig. 5-a, with
dashed lines representing non-linear fittings based on the Freundlich Eq.
(3). All adsorptions have followed the Freundlich model with acceptable
R2 values that exceed 0.95, except the one at 282 K, which was dis-
regarded. The fittings were used to determine the Kf values, which were
then used to construct the Arrhenius plot in Fig. 5-b. The analysis of the
slope and intercept of the plot as per Eq. 5 provided ΔH◦ and ΔG◦ values
of 22.1 and − 0.9 kJ mol− 1, respectively. The positive enthalpy change
indicates that the adsorption of methyl green onto Fe3O4 is endothermic,
in agreement with earlier observations involving NiFe2O4-CNT adsor-
bent. [15], Physically, a positive ΔH implies that, with increasing tem-
perature, the adsorption equilibrium tends to shift to the right,
promoting the formation of more adsorbate-adsorbent pairs. As a result,
the removal efficiency increases to ~ 98 % at 347 K. On the other hand,
the negative ΔG◦ value (-0.9 kJ mol− 1) indicates that the adsorption is
slightly favored in the case of native Fe3O4. It was also determined that
the entropy of adsorption (ΔS◦) was 76.9 J mol− 1 K− 1. This indicates
that adsorbate-adsorbent pairs are more disordered than their individual
counterparts.

3.5. Comparison between different modifications of Fe3O4 adsorbents

One aim of this work is to compare the adsorption efficiency of the
cost-effective IO /SD adsorbent, with that of the native IO or IO/CNT
composite. Fig. 6-a depicts the removal efficiency for the three adsor-
bents, with the concentration of MG, pH, shaking conditions, and tem-
perature all kept constant. Clearly, the IO/CNT (red circles) has the
highest adsorption efficiency in agreement with its superior ability to
adsorb organic molecules [11,52,53]. To better assess the performance

of the adsorbents, the adsorption isotherms are plotted in Fig. 6-b. The
dashed lines represent non-linear fittings according to the
corresponding-states equation (CSE) [41], which will be explained later.
The maximum adsorption capacities, as obtained from the CSE model,
were 2.7, 5.7, and 4.2 mg g− 1 for IO, IO /10 %CNT and IO /10 %SD,
respectively. It is noteworthy that the adsorption capacities of IO /10 %
CNT and IO /10 %SD are remarkably close. In fact, our experiments
demonstrated an impressive removal efficiency of 98 % with the use of
50 % sawdust-modified Fe3O4. This finding indicates that
sawdust-modified iron oxide could be a great candidate for treating
water from organic dyes, providing its low cost, availability, and
toxicity.

3.6. Adsorption isotherms and interpretation of sigmoidal behavior

In this section, we discuss the modeling of adsorption isotherms of
MG onto Fe3O4 modified with different loadings of 10 %, 25 %, and
50 % of sawdust. Generally, our data exhibited S-shaped curves as
depicted in Fig. 7. The isotherms exhibited at least one inflection point,
thereby categorizing them either as type II or IV according to the modern
IUPAC classification [4,41].

We first fitted our data to the Langmuir [32,47], Freundlich [33],
and Sips [32,71] models. The dashed lines in Fig. 7-a, b, and c, represent
the results of these fittings. The fittings parameters and the R2 values are
tabulated in Table 1. The three traditional models proved inadequate in
modeling the data, as evident in the figures and reflected by their R2

being less than 0.95. An inflection point marks a location on a curve
where the curvature undergoes a change. In other words, it signifies that
the second derivative of the equation becomes zero. The inflection oc-
curs due to the transition from low adsorbate concentration, where
active sites are plenty, to high concentration, where the adsorption is
limited by the number of active sites [41]. Therefore, we used modern
models to describe the S-shaped behavior including the Langmuir-Sips
[40,41], CSE [41], Sigmoidal Langmuir [49], Biphasic Sigmoidal [18],
Biphasic Sigmoidal Dose-response [22,26], Meghea [56], and Anderson
(modified BET) [21,35]. As seen in Table 1, the average R2 values for
sigmoidal models are all above 0.95. The best fittings were made by the
Langmuir-Sips (R2=0.960). CSE (R2=0.986), Biphasic Sigmoidal
Dose-response (R2=0.995) and Anderson (R2=0.974). The good per-
formance of the CSE model to describe adsorption on modified iron
oxide adsorbent is in agreement with our recent study on using
Fe3O4/MWCNT to remove ketoprofen from aqueous solutions [11].
Although the Biphasic Sigmoidal Dose-response is widely used in toxi-
cology and agriculture, it is seldom used in adsorption studies. Its great

Fig. 5. a) Freundlich adsorption isotherms of MG at different temperatures, and b) Arrhenius plot of ln K vs. 1/T to determine the thermodynamic parameters for the
adsorption of MG into the Fe3O4.
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performance here (R2 ≈1) is interesting. Its mathematical model (cf.
Table 1-g) includes the A1 and A2 parameters, which respectively
establish the maximum and minimum values for the ‘dose’[18]. The A2
parameter becomes handy in this study in describing the maximum
adsorption capacity (qe), particularly when the curve converges to a
horizontal plateau towards high concentrations, such as in the cases of
IO and IO/10 %SD in Fig. 7-h. Similar observations can be made from
the Biphasic Sigmoidal, Meghea, and Anderson curves (Fig. 7-g, I, and j).

It is significant to discuss the physical meaning of S-shaped iso-
therms. It is widely accepted that these isotherms may have two causes:
either the adsorbate- adsorbate attractive forces at the surface may cause
cooperative adsorption, or the adsorption is inhibited by a competing
reaction. In fact, most studies agree that S-shaped behavior arises as a
result of two opposite mechanisms [21,38,41,49]. In our case, the ex-
istence of two types of active sites, iron oxide and sawdust, leads to
different adsorption mechanisms, in complete agreement with the ideas
conveyed by Limousin [49].

3.7. Effect of contact time and adsorption kinetics

The adsorption kinetics of MG adsorption on IO/10 %SD was studied
by following the concentration change over a period of 30 min. The
concentration of MG, pH, shaking conditions, and temperature were all
kept constant. Fig. 8 shows the results of this investigation along with
non-linear fittings for pseudo first-order (PFO) and pseudo second-order
(PSO) kinetics. The corresponding mathematical equations for the PFO
and PSO models are [78]:

qt = qe (1 − e− k1 t) (6)

qt =
q2e k2t

(1+ qek2t)
(7)

where k1 and k2 are the pseudo first- and second-order rate constants,
respectively.

The R2 values for the PFO (0.9732) and PSO (0.9855) demonstrate
that the adsorption in this study follows second-order kinetics. The
estimated second-order rate constant is 2.32 × 10− 4 mg− 1 L s− 1.
Therefore, the half-life of the reaction is 4.8 min. The half-life is in
concert with previous studies on the adsorption of ketoprofen on IO/
CNT (4.4 min)[11], and algae adsorption on porous carbon (8.4 min)
[59]. It’s worth noting that, according to the PSO model (41), the
adsorbent material is characterized by an abundance of active sites,
which contributes to the high efficiency of adsorption.

3.8. Comparison with previous studies

The above results suggest that the adsorption of MG using the
modified iron oxides, IO/MWCNT and IO/SD, is rapid, efficient, and
easy. In this section, we compare our findings with those from the
literature. Table 2 shows a comparison between our results and those of
prior research when MG was employed as an adsorbate and various
engineered or natural adsorbents. First, there is an agreement on the
optimal pH for the adsorption of MG, provided its structure and pKa as
explained previously (section ↱3.3). The removal efficiency (>97 %) in
this study is among the highest of all previous studies. Although Table 2
lists high efficiencies for adsorbents such as graphene oxide (GO), zeo-
lites (e.g., MCM), and Silica gel/Polyaniline, our study holds an
advantage due to the cost-effectiveness and availability compared to
these engineered materials. In addition, the reaction kinetics of the IO/
SD demonstrate quick adsorption with an equilibrium time of 30 min.
This is also one of the fastest times as listed in Table 2. The most sig-
nificant difference this study provides is the modeling of the adsorption
isotherms. While previous studies on MG adsorption were confined to
conventional models like Langmuir and Freundlich, this study employs
sigmoidal models, offering new insights into the curvature, shape, and
mechanism of adsorption.

4. Conclusions

In this study, we successfully demonstrated an efficient, rapid, and
sustainable adsorptive removal of methyl green (MG), a widely used and
toxic organic dye, from aqueous solutions. Adsorption was done using a
newly synthesized sawdust-modified magnetite (Fe3O4/SD). The results
were compared to the native Fe3O4 and Fe3O4/MWCNT, both prepared
in-situ. The nanocomposites were characterized using SEM/EDX. While
the native Fe3O4 exhibited a coarse morphology, the Fe3O4/CNT surface
looked “spongy” as a result of the CNT fibers covering the iron oxide
surface. The Fe3O4/SD, on the other hand, had irregular, sharper and
smoother surfaces with shattered edges. The synthesized composites
were found to be highly pure with rough surfaces. The nano adsorbents
were highly magnetic and can be easily separated by a magnet. The
adsorption was proved to be rapid, easy, and highly efficient. Both
Fe3O4/SD and Fe3O4/CNT exhibited high removal efficiency exceeding
97 %. Adsorption was proved to be pH- dependent, with optimum
adsorption occurring under near-neutral conditions. The pH effect was
explained based on the point-of-zero-charge of Fe3O4 and the pKa of the
dye. A temperature analysis, following recent literature

Fig. 6. a) Comparison of the removal efficiency of 15 mg L− 1 MG by Fe3O4, Fe3O4/10 % sawdust, or Fe3O4/10 % MWCNT. b) adsorption isotherms according to the
CSE model. Shaking time = 10 min, shaking speed = 300 rpm, T = 25 ◦C.
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Fig. 7. Adsorption isotherms of MG onto IO/SD with non-linear fitting curves according to different models. Shaking time = 10 min, shaking speed = 300 rpm, T =

25 ◦C.
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Table 1
Fitting parameters for the batch adsorption of MG according to different adsorption models.

Adsorption models fitting

a) Langmuir

qe =
qmKLCe

1+ KLCe

Fe3O4 Fe3O4/10 %SD Fe3O4/25 %SD Fe3O4/50 %SD Ave.

qm 26.07 28.16 18.09 20.74
KL 0.140 0.074 0.129 0.539
R2 0.862 0.858 0.803 0.878 0.850

b) Freundlich

qe = KFC
1
n
e

Kf 4.107 2.795 2.619 6.856
n 1.772 1.808 1.526 2.409
R2 0.936 0.875 0.902 0.907 0.905

c) Sips

qe =
qmKsCe

1
n

1+ KsCe
1
n

qm 6.88×105 2.72×105 3.20×105 9.54×104

Ks 5.96×10− 6 1.03×10− 5 8.17×10− 6 7.19×10− 5

nS 0.565 0.554 0.656 0.415
R2 0.936 0.875 0.902 0.907 0.905

d) Langmuir-Sips

qe = qm
[

k1Ce

1+ k1Ce
+

k2Cn
e

1+ k2Cn
e

]

qm 2.21×106 5.11×105 4.85×105 1.59×101

k1 5.68×10− 7 1.65×10− 6 2.24×10− 6 8.98×10− 1

k2 1.54×10− 6 6.15×10− 6 6.57×10− 6 2.14×10− 13

n − 0.133 − 0.384 − 0.568 11.617
R2 0.976 0.938 0.944 0.980 0.960

e) CSE
qe = qm[1 + k1 Ce + k2 C2e + k3 C3e ]
qm 3.48 2.70 1.27 2.05
k1 0.41 0.46 1.92 2.97
k2 − 0.033 − 0.064 − 0.298 − 0.494
k3 2.30×10− 3 4.01×10− 3 1.77×10− 2 2.60×10− 2

R2 0.987 0.994 0.982 0.980 0.986
f) Sigmoidal Langmuir

qe =
qmKLCe

1+ KLCe +
S
Ce

qm 46.8 37.8 161.2 22.2
KL 0.047 0.034 0.007 0.387
S − 0.451 − 0.654 − 0.791 − 0.147
R2 0.934 0.890 0.926 0.882 0.908

g) Biphasic Sigmoidal

qe = min +
(max − min)

1+

(
e
Ce

)b

Max 3.39×105 4.58×105 3.96×105 3.74×105

Min 4.34 4.40 4.27 − 1.28
m 2.40×104 9.62×102 3.15×103 4.60×1012

b 1.33 2.53 1.90 0.37
R2 0.982 0.976 0.960 0.908 0.956

h) Biphasic dose-response

y = A1 + (A2 − A1)
[

p
1+ 10(LOGx01− x)h1

+
1 − p

1+ 10(LOGx02− x)h2

]

A1 − 4.6 − 150.2 − 20.7 − 3690.7
A2 (max) 20.5 20.7 518.8 5035.9
h1 0.226 1.021 1.172 0.392
h2 0.884 0.022 0.012 0.405
p 0.552 0.027 0.446 0.576
R2 0.999 0.997 0.994 0.991 0.995

i) Meghea

qe = qm

⎡

⎢
⎢
⎣A2 +

(A1 − A2)

1+ exp
(
Ce − B0

B1

)

⎤

⎥
⎥
⎦

qm 127.4 32.4 54.4 94.1
Min (A1) − 0.056 0.101 0.040 − 10.56
Max (A2) 58.8 537.4 389.1 7.7
B0 96.9 51.9 58.3 − 109.8
B1 14.88 5.20 6.22 334.24
R2 0.984 0.984 0.967 0.893 0.957

j) Anderson (modified BET)

(continued on next page)
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recommendations, revealed that the adsorption is endothermic with
ΔH◦=22.1 kJ mol− 1, therefore favoring elevated temperatures. The ΔG◦

and ΔS◦ values were determined to be − 0.9 kJ mol-1 and 76.9 J mol− 1

K− 1, respectively. The adsorption isotherms for the Fe3O4/SD demon-
strated an S-shaped curves. The traditional models of Langmuir,
Freundlich, or Sips have failed to fit the data adequately. Thus,

sigmoidal models were used to describe the isotherms. This includes the
Langmuir-Sips, CSE, Sigmoidal Langmuir, Biphasic Sigmoidal, Biphasic
Sigmoidal Dose-response, Meghea, and Anderson. It was found that the
Biphasic Sigmoidal Dose-response was the best model with an R2 close to
unity (0.995). The fitting allowed the determination of the maximum
adsorption capacity for the Fe3O4/SD to be 20.7 mg g− 1. The sigmoidal

Table 1 (continued )

Adsorption models fitting

qe = qm

⎡

⎢
⎢
⎣A2 +

(A1 − A2)

1+ exp
(
Ce − B0

B1

)

⎤

⎥
⎥
⎦

qm 6.82 4.61 5.22 10.44
c 1.02 1.02 1.04 1.02
k − 2.24 − 2.27 − 1.47 − 1.70
R2 0.988 0.985 0.975 0.946 0.974

Fig. 8. The kinetics of adsorption of MG on IO/10 %SD modeled by a) nonlinear fitting for pseudo first-order, and b) second-order kinetics. MG concentration
15.0 mg L− 1, amount of adsorbent = 25 mg, shaking speed 350 rpm, shaking time = 10 min, solution pH ≈ 7. T = 25◦C.

Table 2
Comparison between this study and other studies.

Adsorbent Adsorbent
particle size (nm)

Adsorption
capacity (mg/g)

Concentration
range (ppm)

Optimum
pH

Equilibrium time
(min)

Removal
(%)

Isotherm
model

Ref.

Eggshell waste 250000 70 1–100 6 105 69.38 Langmuir Alalwan et al. [6]
Chitosan/Fe2O3/
NiFe2O4

13.3 77.22 40 8 60 80 - Ansari et al. [8]

MCM− 41 5–100 285.70 10–50 6 60 99 Tamkin Alardhi et al. [7]
NiFe2O4/CNTs 11 88.50 50–200 - 120 59 Langmuir Bahgat et al. [15]
Silica gel/
Polyaniline

- 50 10–80 6 70 96 Freundlich Belaib, Meniai [19]

GO/CoFe2O4 22.6 47.2 50–400 - 120 - Langmuir Farghali et al. [31]
MgFe2O4 10–25 1231 250–750 4 30 97.60 Langmuir Liu et al. [50]
Halloysite
nanotubes

100 185 10–300 6–7 120 95 Langmuir M. Vargas-
Rodríguez et al.
[51]

Activated
Sawdust-Based

100000 8.67×10− 5 a - - 30 90 Langmuir Rahman et al. [66]

Iron-manganese
oxide/GO

10 195.7 20–100 8 160 94.60 Freundlich Khan et al. [44]

TiO2 5–10 384.6 50–200 6.3 45 - Temkin and
Langmuir

Abbas [1]

Bamboo 200000 5.5 5–30 - 140 79.40 Langmuir Adnan Atshan [3]
Fe3O4 20–100 20.5b 1–16 7.0 30 95.5 Sigmoidal

models
This work

Fe3O4/10 %
MWCNT

35.5b 97.9

Fe3O4/10 %SD 20.7b 97.8

Author’s Note: The observed maximum adsorption capacity appears surprisingly low.
b Based on the Biphasic dose-response model
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behavior was explained based on the competing action theory. Because
of the dual nature of the Fe3O4/SD adsorbent, and the availability of two
different active sites, adsorption shifts between two different mecha-
nisms passing through an inflection point on its isotherm’s curve. The
adsorption kinetics was also investigated by following the reaction over
time. The reaction was found to follow pseudo-second order kinetics
with a rate constant of 2.32× 10− 4 mg− 1 L s− 1, and a half-life of 4.8 min,
indicating rapid adsorption. Finally, the study’s findings were compared
with those in the literature, revealing the developed method’s advan-
tages. It boasts high adsorption efficiency and the benefit of utilizing
natural sawdust waste for wastewater treatment.
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wastewater in the context of European Union water reuse legislation and goals,
J. Clean. Prod. 426 (2023) 139037, https://doi.org/10.1016/j.
jclepro.2023.139037.

[66] N.U. Rahman, W. Bahadar, S. Alam, M. Zahoor, I. Zekker, F.A. Khan, H.C.
A. Murthy, Activated sawdust-based adsorbent for the removal of basic blue 3 and
methylene green from aqueous media, Adsorpt. Sci. Technol. 2022 (2022)
4551212, https://doi.org/10.1155/2022/4551212.

[67] X. Ren, C.-C. Wang, Y. Li, C.-Y. Wang, P. Wang, S. Gao, Ag(I) removal and recovery
from wastewater adopting NH2-MIL-125 as efficient adsorbent: a 3Rs (reduce,
recycle and reuse) approach and practice, Chem. Eng. J. 442 (2022) 136306,
https://doi.org/10.1016/j.cej.2022.136306.
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