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Abstract: Background: Food insecurity significantly impacts children’s health, affecting their devel-
opment across cognitive, physical, and socio-emotional dimensions. This study explores the impact
of food insecurity among children aged 6 months to 5 years, focusing on nutrient intake and its
relationship with various forms of malnutrition. Methods: Utilizing machine learning algorithms,
this study analyzed data from 819 children in the West Bank to investigate sociodemographic and
health factors associated with food insecurity and its effects on nutritional status. The average age
of the children was 33 months, with 52% boys and 48% girls. Results: The analysis revealed that
18.1% of children faced food insecurity, with household education, family income, locality, district,
and age emerging as significant determinants. Children from food-insecure environments exhibited
lower average weight, height, and mid-upper arm circumference compared to their food-secure
counterparts, indicating a direct correlation between food insecurity and reduced nutritional and
growth metrics. Moreover, the machine learning models observed vitamin B1 as a key indicator of all
forms of malnutrition, alongside vitamin K1, vitamin A, and zinc. Specific nutrients like choline in
the “underweight” category and carbohydrates in the “wasting” category were identified as unique
nutritional priorities. Conclusion: This study provides insights into the differential risks for growth
issues among children, offering valuable information for targeted interventions and policymaking.

Keywords: food insecurity; malnutrition; wasting; stunting; machine learning; public health

1. Introduction

Food security deeply influences children’s health, impacting not only their current
nutritional status but also their long-term cognitive, physical, and socio-emotional devel-
opment [1,2]. Food insecurity (FI) is widely recognized as an indicator of a vast array
of negative outcomes, such as undernutrition, overweight status, obesity, stress, depres-
sion, and poor academic performance, among the general population [3]. Indeed, the
burden of FI on young children can be more dramatic than in adults, as food-insecure
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children are 140% more likely to develop iron-deficiency anemia and cognitive, mental,
and psychomotor impairments [4]. Similarly, children in food-insecure households are
more likely to present upper respiratory infections and to be hospitalized compared to their
food-secure counterparts.

Studies have shown varying effects of food insecurity on the weight status of children,
indicating a need for more comprehensive analyses to understand the potential differential
risks for growth issues [5–8]. Research presents different findings, with some studies noting
a correlation between food insecurity and increased body weight in children, while others
report no such link [3,5,9]. Additionally, certain investigations associate food insecurity
with higher rates of obesity or overweight conditions in young children, whereas some
studies suggest food insecurity may lead to malnutrition [6–8].

As for the causes of food insecurity, studies have shown that socioeconomic status
plays a crucial role in influencing the outcomes of food insecurity and undernutrition [10,11].
Moreover, children living in food-insecure households often have an inadequate intake of
macronutrients such as proteins, carbohydrates, and fats [12]. Protein–energy malnutrition,
characterized by insufficient intake of protein and calories, is a common indicator of food
insecurity in this age group [13]. This can lead to stunting, wasting, and an underweight
status [14]. Micronutrient deficiencies are also prevalent among children in food-insecure
environments. Essential vitamins and minerals, such as iron, vitamin A, iodine, and zinc,
are often lacking in their diets. These deficiencies can lead to anemia, impaired cogni-
tive development, weakened immune systems, and increased susceptibility to infections
and diseases [15].

Indeed, food insecurity has been linked to undernutrition and stunting, among other
forms of malnutrition, in children. The Joint Child Malnutrition Estimates (JME) report
shows that an alarming 148.1 million children under the age of 5 experienced stunting in
2022, representing over 1/5 of children in this critical age group globally [16]. Moreover,
Tiwari et al. highlighted a significant relationship between food insecurity and both stunting
and severe stunting in children aged 0 to 59 months and 0 to 23 months, respectively,
emphasizing the link between food insecurity and stunting in young children [11]. The
debate continues about the extent to which FI influences the likelihood of undernutrition
complications among children and adolescents.

Recently, machine learning (ML) algorithms, which combine elements of statistical
learning and artificial intelligence research, are increasingly being utilized to analyze vast
datasets, discovering hidden patterns or relationships and revealing the significance of
predictors for specific problems [15,17,18]. Additionally, ML aids in the development of
predictive models and the identification of the most crucial predictors [17,19]. There is a
growing body of research utilizing ML for predicting various health conditions such as
nutrition status, undernutrition, malnutrition, mortality, stunting, and anemia [15,17,20,21]
using demographic and health survey datasets and nutrition risk factors.

Specifically, in the context of malnutrition, several studies have employed ML tech-
niques. Talukder et al. used the Bangladesh Demographic and Health Survey (BDHS) 2014
data to predict malnutrition in children under five, finding that the Random Forest (RF) al-
gorithm was the most effective [22]. Bitew et al. found that the Extreme Gradient (xgbTree)
algorithm performed better using the Ethiopian Demographic and Health Survey 2016
data [23]. Khare et al. utilized the Indian Demographic Health Survey dataset 2005–2006
to explore correlations with malnutrition using artificial intelligence [24]. Furthermore,
Shahriar et al. found that the Artificial Neural Network (ANN) was the most effective in
classifying malnutrition among Bangladeshi children [25].

However, research on the application of machine learning (ML) algorithms to pre-
dict the relationship between food insecurity and malnutrition in children under five is
limited. Therefore, this study aims to explore the impact of food insecurity and potential
risk factors on child malnutrition and to classify its effects on children’s nutrient intake.
Moreover, to the best of our knowledge, no study has yet investigated the link between
food insecurity and different types of malnutrition (underweight, stunting, wasting, and
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undernutrition) to identify the nutrient factors most affected by each type of malnutrition.
This research employs an ML approach to identify the nutrient factors most impacted
by food insecurity, which will aid in developing more accurate models for predicting
malnutrition risk, leading to more effective interventions and policies. Additionally, ML
algorithms can offer data-driven insights by indicating the key predictors of malnutrition
and providing valuable information to policymakers and public health officials for resource
and intervention prioritization.

2. Materials and Methods
2.1. Data Source

This research was based on primary data collected from a cross-sectional study on food
insecurity conducted in the West Bank, Palestine, in 2022. Our study assessed household
food insecurity, nutritional status, nutrition awareness, attitudes, and parental practices.
The sample comprised 1400 households, from which 819 children aged 6 months to 5 years
(51.3% boys and 48.7% girls) were selected for this paper.

In our ML analysis, we initially dealt with a small sample size of 819, leading to data
imbalances. To address this, we applied the Synthetic Minority Over-sampling Technique
(SMOTE), expanding our sample to 1226 participants [26]. This expansion aligns with
the O = 2k heuristic for sample size calculation, ensuring a robust pool of subjects for
analysis [27,28]. While some studies suggest needing up to 70k samples per variable for
enhanced statistical power, our adjusted sample size strikes a balance between statistical
rigor and the feasibility of identifying distinct clusters. SMOTE generated synthetic data
by interpolating between neighboring instances in the minority class. We divided the
dataset into four categories related to food insecurity: stunting, wasting, underweight,
and undernutrition. Then, we used a 10-fold cross-validation method to evaluate model
performance and minimize overfitting. SMOTE is widely used in fields like fraud detection
and medical diagnostics.

Ethical clearance was granted by the Hebron University ethical committee on 17
October 2022, under reference number 17/7. Furthermore, informed consent was obtained
from all participants before conducting the interviews.

This research focused on children from the West Bank aged 6 months to 59 months,
with an average age of 33 months, including 52% boys and 48% girls. Those with disabilities
or chronic conditions were not included in this study. Data were gathered using a structured
questionnaire administered in person, which covered various personal, environmental, and
dietary factors known to impact nutrition,. Sixteen trained research assistants carried out
in-person surveys during home visits throughout all West Bank governorates.

2.2. Study Variables

The variables of this study were organized into four primary categories, detailed
as follows:

1. Socioeconomic and Demographic Data: This part of the questionnaire aimed to gather
information on social and environmental factors potentially impacting nutrition,
such as geographical location, economic status, and household dynamics, as shown
in Table 1. Typically, parents (usually mothers) provided the socioeconomic and
demographic information for their households.

2. Household Food Insecurity: The Radimer/Cornell hunger scale, a 10-item question-
naire, was used to evaluate food insecurity at three levels: the household, the adult
caregiver, and the child [29]. This scale captures various dimensions of food insecurity
within the household.

3. Nutrition Status (Dietary Intake): Children’s nutrient intake was assessed using a
24 h dietary recall method [30]. A total of three 24 h recalls were collected for each
child, including two on non-consecutive weekdays and one on a weekend day. This
approach ensures a comprehensive representation of the children’s dietary intake
across different days. Parents (mothers) reported all the food and beverages their
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children consumed in the previous 24 h, covering all meals (breakfast, lunch, and
dinner) and snacks, including portion sizes and preparation methods. This method
provided a comprehensive overview of each child’s daily dietary intake.

4. Anthropometric Measures: The research team recorded the height, weight, and mid-
upper arm circumference (MUAC) of the study participants, with MUAC measure-
ments specifically taken for older children. A portable SECA 217 body meter, equipped
with a horizontal headboard, was used to measure height, with each measurement
taken twice to ensure accuracy within 0.1 cm. Participants’ weight was measured
using a SECA 874 digital scale, accurate to 0.1 kg, after they were asked to remove
their shoes, socks, and any heavy clothing. These measurements were then converted
into three indices using the WHO Anthro Software (Version 3, 2009): height-for-age
Z-score (HAZ), weight-for-age Z-score (WAZ), and weight-for-height/length Z-score
(WHZ). Based on these Z-scores, children under five were categorized into moderate
and severe underweight, stunting, and wasting, defined as Z-scores below −2 and
−3, respectively [31,32].

Table 1. Study variables.

Section Items

Socioeconomic and Demographic Data

Sex, age, administrative district, geographic
region (southern, central, and northern),
locality (refugee camp, village, or city),
household education level, household size,
employment status of the father, employment
status of the mother, and household income.

Household Food Insecurity Food quantity, food quality, food acceptability,
and the certainty of obtaining food.

Nutrition Status (Dietary Intake)

Recall (24 h): grams intake, energy, protein,
carbs, fiber, fats, vitamin B1 (thiamine), vitamin
B2 (riboflavin), vitamin B3 (niacin), vitamin B5,
vitamin B6, choline, vitamin B9 (folate),
vitamin B12, vitamin C, vitamin E, vitamin K1,
calcium, magnesium, phosphorous, potassium,
sodium, copper, iron, manganese, and zinc.

Nutrition Status (Anthropometric Measures) Length, weight, mid-upper arm circumference,
and body mass index (BMI).

The MUAC was measured at the midpoint of the upper arm using a NutriActiva
MUAC tape and recorded to the nearest 0.1 cm. Each child’s MUAC was measured twice,
with the average value recorded as the final measurement. This value was then used to
calculate the MUAC-for-Age Z-score (MUACZ) using the WHO Anthro Software (Version
3, 2009) [33,34]. Children were classified into moderate and severe acute undernutrition
categories based on MUACZ scores below −2 and −3, respectively.

2.3. Nutrient Intake

Data from the 24 h dietary recall were analyzed using the nutrient analysis tool of
the EMFID software Version 1. EMFID, established by Al Quds University in 2021 in
collaboration with the World Health Organization (WHO), is a collaborative food database
for Eastern Mediterranean countries. The software’s food composition tables converted the
reported food and beverage consumption into their respective nutritional contents. This
analysis provided information on the intake of macronutrients and micronutrients, such as
energy, protein, carbohydrates, fats, fibers, B vitamins, vitamin C, vitamin A, and minerals
like calcium (Ca), magnesium (Mg), potassium (K), phosphorus (P), copper (Cu), iron (Fe),
and zinc (Zn). To ensure accuracy, daily energy and nutrient intake was calculated as the
average intake from the two 24 h recalls.
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The nutritional intake data were then evaluated against the Recommended Dietary
Allowances (RDAs). The RDAs, developed and periodically updated by the U.S. Na-
tional Research Council, serve as benchmarks for optimal nutrition [35]. They specify
the necessary nutrient levels for children based on their age, gender, and anthropometric
measurements, allowing for an assessment of whether their diets meet, exceed, or fall below
the recommended levels.

2.4. Machine Learning Techniques

Machine learning (ML) techniques encompass a diverse array of algorithms, each
with unique strengths and applications, particularly in the use of personalized precision
health. These algorithms help identify complex patterns within data, thereby showing the
potential of ML to advance areas such as personal weight management. This research looks
at several machine learning methods, such as Support Vector Machine (SVM), Random
Forest (RF), Logistic Regression (LR), Gradient Boosting (GB), and decision trees (DTs), and
how they can be used in this field.

1. Support Vector Machine (SVM): SVM is a powerful algorithm used for both classifica-
tion and regression tasks [36]. It works by finding the best boundary (or hyperplane)
that separates data points from different categories with the widest margin. This
boundary helps in classifying new data points into their respective categories. SVM
is especially good at handling complex datasets where the relationship between
data points is not straightforward, thanks to its ability to transform data into higher
dimensions where data are easier to separate.

2. Random Forest (RF): Random Forest is an ensemble learning technique, which means
it combines the predictions from multiple machine learning algorithms to make more
accurate predictions than any individual model [37]. Specifically, RF builds multiple
decision trees and merges their results. It is great for both classification and regression
tasks. This approach helps in dealing with overfitting, which is a common problem
with decision trees. Random Forest works well with large datasets and can handle
both numerical and categorical data, making it versatile and robust.

3. Logistic Regression (LR): Logistic Regression is primarily used for binary classification
problems—tasks that have two possible outcomes [38]. It predicts the probability that
a given input point belongs to a certain class. It can predict the status of the target
variable based on the set of associated features. LR works well with linearly separable
data and is easy to implement and understand, making it a popular choice for many
binary classification problems.

4. Gradient Boosting (GB): Gradient Boosting is a type of machine learning algorithm
that improves predictions over time by combining the insights of several models,
typically decision trees [39]. It starts with a base model and incrementally builds new
models that correct the errors made by previous ones. This process continues until
the model can no longer improve or reaches a specified number of trees. Gradient
Boosting is effective for a wide range of tasks and can handle complex datasets with
mixed types of data.

2.5. Model Validation and Performance Measures

This study adopted a detailed validation strategy along with multiple metrics to
evaluate the model’s performance. The 10-fold cross-validation method was used for
data validation, whereby the dataset is split into 10 parts, 80% of which is used for model
training, while the remaining 20% is used for testing and validation, thus ensuring that
each data point is tested once and enhancing model reliability by enhancing exposure to
varied data scenarios.

For performance evaluation, the confusion matrix was utilized to visualize true and
false positives and negatives. In addition, accuracy was utilized to measure the proportion
of correct predictions. Given accuracy’s limitations in skewed datasets, precision was also
considered given its importance for reducing false positives, as well as sensitivity (recall),
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crucial for identifying true positives. To balance precision and recall, the F1-score and the
Fβ score (β = 0.5) were deployed to slightly favor precision.

Furthermore, the Kappa statistic assessed agreement levels, and the Area Under the
Receiver Operating Characteristic (ROC) Curve, or AUC, measured the model’s class
differentiation ability, with higher values indicating better performance. These metrics
collectively provide a comprehensive view of the model’s effectiveness in distinguishing
between different weight statuses.

The Random Forest ranking method was implemented to understand the relative
importance of features in the model. This technique calculates the importance of each
feature based on how much it decreases the impurity in the model’s decision trees. Features
that contribute more to reducing impurity are ranked higher, providing insights into which
factors are most influential in predicting malnutrition outcomes. This information is crucial
for focusing interventions on the most impactful determinants of child malnutrition.

2.6. Data Analysis

The data were presented in two forms: continuous variables were shown as means
and standard deviations (mean ± SD), including age (in months), weight (kg), height (cm),
mid-upper arm circumference (MUAC in cm), and various Z-scores (e.g., weight-for-age
Z-score, height-for-age Z-score); categorical variables were presented as frequencies and
percentages (n, %), including sex (male/female), district (south/middle/north), locality
(city/village/camp), family income (low/moderate/high), and household education level
(≤secondary/university). The Shapiro–Wilk test was used to assess the normality of
continuous variables, guiding the choice of subsequent statistical tests; the specific results
of these tests were not detailed in the tables but were used to determine the appropriate
methods. Differences between food-secure and food-insecure children in Tables 2–5 were
tested using univariate analysis, Mann–Whitney U tests, and chi-square tests. The level of
significance was set at p ≤ 0.05 for all analyses, with p ≤ 0.001 indicating highly significant
differences for variables showing particularly strong associations with food security status.

Table 2. Demographic and socioeconomic characteristics of children aged 6 months to 5 years by
household food security status.

Variables Food-Secure
n = 671 (n%)

Food-Insecure
n = 148 (n%)

Total
819 (n%) F (p-Value)

Age (months)

6–12 106 (15.8) 41 (27.7) 147 (17.9)

7.4 **

12–24 135 (20.1) 37 (25) 172 (21)

24–36 152 (22.7) 12 (8.1) 164 (20)

36–48 138 (20.6) 38 (25.7) 176 (21.5)

48–60 140 (20.9) 20 (13.5) 160 (19.5)

Sex
Male 340 (50.7) 80 (54.1) 420 (51.3)

0.56
Female 331 (49.3) 68 (45.9) 399 (48.7)

District

South 298 (44.4) 79 (53.4) 377 (46)

11.3 **Middle 150 (22.4) 48 (32.4) 198 (24.2)

North 223 (33.2) 21 (14.2) 244 (29.8)

Locality

City 255 (38) 8 (5.4) 263 (32.1)

43.9 **Village 230 (34.3) 50 (33.8) 280 (34.2)

Camp 186 (27.7) 90 (60.8) 276 (33.7)
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Table 2. Cont.

Variables Food-Secure
n = 671 (n%)

Food-Insecure
n = 148 (n%)

Total
819 (n%) F (p-Value)

Family Income

Low 49 (7.3) 100 (67.6) 149 (18.2)

245.3 **Moderate 257 (38.3) 38 (25.7) 295 (36)

High 365 (54.4) 10 (6.8) 375 (45.8)

Household
Education

≤Secondary 106 (15.8) 106 (71.6) 212 (25.9)
258.7 **

University 565 (84.2) 42 (28.4) 607(74.1)
** statistically highly significant: p-value ≤ 0.001.

Table 3. Anthropometric measurements of children aged 6 months to 5 years by household food
security status (n = 819).

Variables Food-Secure
n = 671 (n%)

Food-Insecure
n = 148 (n%)

F-Value
(p-Value)

Weight 13.93 ± 4.43 12.37 ± 5.04 7.3 (0.001) **

Height 87.48 ± 14.66 81.63 ± 16.45 6.5 (0.001) **

MUAC 16.61 ± 3.16 15.43 ± 2.71 3.1 (0.001) **

Weight-for-age 0.4 3± 1.26 0.08 ± 1.95 12.8 (0.001) **

Height-for-age −0.7 ± 2.38 −1.07 ± 2.6 9.3 (0.001) **

Weight-for-height 1.4 ± 2.49 1.15 ± 1.91 9.1 (0.001) **

MUACZ 0.72 ± 2.11 −0.03 ± 1.94 8.8 (0.001) **
** p < 0.001; MUAC: mid-upper arm circumference; MUACZ: mid-upper-arm-circumference-for-age Z-score.

Table 4. Nutritional and weight status of children aged 6 months to 5 years by household food
security status (n = 819).

Food-Secure
n = 671 (n%)

Food-Insecure
n = 148 (n%)

Total
n = 819 (n%)

F-Value
(p-Value)

Underweight

Normal 640 (95.4) 147 (99.3) 787 (96.1)

8.4 (0.004) *Moderate 10 (1.5) 1 (0.7) 11 (1.3)

Severe 21 (3.1) 0 (0) 21 (2.6)

Wasting

Normal 645 (96.1) 136 (91.9) 781 (95.4)

6 (0.015) *Moderate 22 (3.3) 10 (6.8) 32 (3.9)

Severe 4 (0.6) 2 (1.4) 6 (0.7)

Stunting *

Normal 510 (76) 103 (69.6) 613 (74.8)

5.3 (0.023) *Moderate 86 (12.8) 25 (16.9) 111 (13.6)

Severe 75 (11.2) 20 (13.5) 95 (11.6)

Undernutrition

Normal 615 (91.7) 134 (90.5) 749 (91.5)

17.8 (0.001) **Moderate 29 (4.3) 6 (4.1) 35 (4.3)

Severe 27 (4) 8 (5.4) 35 (4.3)
* Statistically significant: * p < 0.05; ** p < 0.001.
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Table 5. Association between food insecurity and nutrient intake among Palestinian children aged
6 months to 5 years in the West Bank.

Nutrient (Unit) Nutrient Intake per RDA Food Security Level

≥RDA
n (%)

<RDA
n (%)

Food-Secure
Mean ± SD

Food-Insecure
Mean ± SD

F
(p-Value)

Energy (kcal) 432 (52.7) 387 (47.3) 1218 ± 566.8 813.4 ± 555.3 14.9 **

Protein (g) 295 (36) 524 (64) 44.6 ± 24.9 30 ± 23 14.2 **

Carb (g) 110 (13.4) 709 (86.6) 162.5 ± 77.1 110.2 ± 74.2 16.2 **

Fat (g) 787 (96.1) 32 (3.9) 45.3 ± 26.2 29.3 ± 22.9 16.4 **

Fiber (g) 735 (89.7) 84 (10.3) 11.1 ± 7.7 6.8 ± 7.3 10.1 **

Folate (mg) 434 (53) 385 (47) 175.7 ± 163.5 112.9 ± 130.4 0.7

Vit A (mg) 298 (36.4) 521 (63.6) 159.2 ± 219 78.2 ± 165.6 0.8

VitB1 (mg) 465 (56.8) 354 (43.2) 1.3 ± 2 0.4 ± 1 6 *

VitB2 (mg) 287 (35) 532 (65) 3.5 ± 4 2.2 ± 2.9 12.4 **

VitB3 (mg) 172 (21) 647 (79) 7.1 ± 5.4 5 ± 6.3 2.5

VitB5 (mg) 308 (37.6) 511 (62.4) 12.4 ± 41.5 11.9 ± 57.4 0.2

VitB6 (mg) 493 (60.2) 326 (39.8) 2 ± 3 0.6 ± 0.4 17.3 **

VitB12 (mcg) 316 (38.6) 503 (61.4) 2 ± 2.5 1.8 ± 2.7 4.9 *

Vit C (mg) 817 (99.8) 2 (0.2) 46.1 ± 46.1 29.7 ± 35.5 26.1 **

Ca1 (mg) 513 (62.6) 306 (37.4) 467 ± 317.3 307.6 ± 257.1 3.2 *

Mg2 (mg) 614 (75) 205 (25) 125.6 ± 74.6 100.8 ± 77 70.1 **

Mn3 (mg) 264 (32.2) 555 (67.8) 1.9 ± 3.2 1.5 ± 2.9 11.6 **

P4 (mg) 341 (41.6) 478 (58.4) 562.6 ± 321.5 436 ± 332.1 1.3

K5 (mg) 711 (86.8) 108 (13.2) 1190.8 ± 619.2 847.3 ± 546.5 4.5 *

Cu6 (mg) 180 (22) 639 (78) 1.4 ± 1.9 1.3 ± 2.5 6.8 *

Fe7 (mg) 441 (53.8) 378 (46.2) 8.2 ± 6.7 5 ± 5.3 8 **

Zn8 (mcg) 379 (46.3) 440 (53.7) 5.34.2 3.93.5 23.1 **

* Statistically significant: * p < 0.05; ** p < 0.001; Ca1: calcium, Mg2: magnesium, Mn3: manganese, P4: phosphorous,
K5: potassium, Cu6: copper, Fe7: iron, and Zn8: zinc.

3. Results
3.1. Descriptive Analysis

Table 2 shows the descriptive and univariate analyses conducted to examine the link
between food security and a range of sociodemographic and health factors. The findings
revealed that out of 819 children surveyed, 18.1% were identified as food-insecure. Among
the variables analyzed, five were particularly significant in their association with food
insecurity. Household education emerged as the most critical determinant affecting food
security, with family income, locality, district, and age following, respectively.

Indeed, 71.6% of food-insecure households have lower levels of household education,
namely below secondary education (F-value: 258.7; p < 0.001), illustrating the impact of
educational attainment on food security status. Similarly, economic status, as reflected
in family income levels, shows a strong correlation with food insecurity, as 67.6% of the
food-insecure group falls into the low-income category (F-value: 245.3; p-value: 0.001).
Age groups, particularly infants (6–12 months) and toddlers between 36 and 48 months,
show considerable variation in food insecurity (F-value: 7.4; p < 0.001), indicating age as a
crucial factor. Geographic disparities are also significant, as evidenced by the substantial
differences in food insecurity rates among districts, with the southern district exhibiting a
notably higher rate of 53.4% (F-value: 11.3; p < 0.001). Moreover, the type of locality shows
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refugee camps expectedly reporting the highest rates of food insecurity (60.8%), a finding
that is statistically significant with an F-value of 43.9 and a p-value of 0.001.

The results in Table 3 show the anthropometric measurements of children by household
food security status. The results evidence that children in food-secure environments
exhibited higher average weights and heights compared to their food-insecure counterparts,
with significant differences in weight (13.93 ± 4.43 kg vs. 12.37 ± 5.04 kg, F-value: 7.3,
p < 0.001) and height (87.48 ± 14.66 cm vs. 81.63 ± 16.45 cm, F-value: 6.5, p < 0.001). The
mid-upper arm circumference (MUAC), an indicator of nutritional status, was also higher
in food-secure children (16.61 ± 3.16 cm) compared to those classified as food-insecure
(15.43 ± 2.71 cm, F-value: 3.1, p < 0.001).

Furthermore, the analysis investigated the Z-scores that measure growth and nutri-
tional status against standardized growth charts. Food-secure children showed higher
Z-scores across the results [33]. The weight-for-age Z-score (WAZ), height-for-age Z-score
(HAZ), body mass index (BMI)-for-age, and MUAC-for-age Z-score (MUACZ) all indicated
better nutritional and growth status in the food-secure group, with statistically significant
differences observed in each measurement (p < 0.001).

The results in Table 4 show the univariate analysis of nutritional and weight status
among children. In the underweight category, a significant observation is the presence
of severe underweight status exclusively among the food-secure group (3.1%), with food-
insecure children not reporting any severe cases. Likewise, moderate underweight status is
marginally more prevalent in the food-secure group (1.5%) compared to the food-insecure
group (0.7%) (F-value: 8.4, p = 0.004).

On the other hand, the “wasting” analysis indicates that moderate and severe wasting
are notably higher among food-insecure children, with 6.8% experiencing moderate wasting
and 1.4% experiencing severe wasting, compared to 3.3% and 0.6% in the food-secure group,
respectively. This difference is statistically significant (F = 6, p = 0.015), indicating a stronger
correlation between wasting and food insecurity.

The analysis in Table 5 shows significant associations between food insecurity and
nutrient intake. Expectedly, the vast majority of nutrients presented a higher number of
intake percentages below the Recommended Daily Allowance (RDA) in the food-insecure
group compared to the food-secure group. Macronutrients such as proteins, carbohydrates,
and fats evidenced a significant intake variation between food-secure and food-insecure
groups. Food-insecure children had a significantly lower mean intake of these nutrients,
indicating an association between food insecurity and an inadequate intake of essential
macronutrients. The mean energy intake, in particular, greatly differed between food-secure
(1218 ± 566.8 g) and food-insecure children (813.4 ± 555.3 g).

The intake of all micronutrients, including vitamin A, vitamin B1, vitamin B2, vitamin
B3, vitamin B5, vitamin B6, vitamin B12, vitamin C, calcium, magnesium, manganese,
phosphorous, potassium, copper, and zinc, was also significantly lower in the food-insecure
group. Thus, food insecurity is not only affected by macronutrient intake but is also directly
correlated to deficiencies in essential micronutrients.

The F-values and corresponding p-values indicate that the differences in nutrient
intake between the food-secure and food-insecure groups are statistically significant for
most nutrients. For instance, the differences in protein (F = 14.2, p < 0.001), carbohydrate
(F = 16.4, p < 0.001), and fat (F = 16.4, p < 0.001) intake are all highly significant. Interestingly,
the intake of folate, vitamin A, vitamin B3, vitamin B5, and phosphorus did not show a
significant difference between the food-secure and food-insecure groups.

3.2. Machine Learning Analysis

The analysis in Table 6 evaluates the performance of four machine learning models,
namely Random Forest (RF), Support Vector Machine (SVM), Gradient Boosting (GB), and
Logistic Regression (LR), in predicting food insecurity and malnutrition among children
aged 6 months to 5 years.
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Table 6. ML models performance analysis in predicting food insecurity and malnutrition among
children aged 6 months to 5 years.

Model AUC Accuracy F1 Precision Recall MCC

Stunting

RF 0.996 0.977 0.976 0.977 0.977 0.920

SVM 0.957 0.965 0.963 0.966 0.965 0.878

GB 0.996 0.976 0.975 0.975 0.976 0.916

LR 0.975 0.947 0.947 0.946 0.947 0.818

Undernutrition

RF 0.992 0.968 0.968 0.968 0.968 0.933

SVM 0.968 0.940 0.940 0.940 0.940 0.875

GB 0.978 0.942 0.942 0.942 0.942 0.880

LR 0.891 0.804 0.804 0.804 0.804 0.593

Wasting

RF 0.996 0.972 0.972 0.973 0.972 0.945

SVM 0.982 0.953 0.953 0.954 0.953 0.907

GB 0.988 0.951 0.951 0.951 0.951 0.901

LR 0.937 0.874 0.874 0.874 0.874 0.747

Underweight

RF 0.994 0.986 0.986 0.986 0.986 0.927

SVM 0.977 0.981 0.980 0.981 0.981 0.900

GB 0.998 0.985 0.985 0.985 0.985 0.921

LR 0.990 0.971 0.971 0.971 0.971 0.849
MCC is Matthews Correlation Coefficient; AUC is Area Under the Curve.

The Random Forest model exhibited the highest performance for the prediction of
stunting, undernutrition, and wasting. The RF predicted stunting with significantly high
levels of accuracy (0.977), AUC (0.996), F1 score (0.976), precision (0.977), recall (0.977), and
MCC (0.920), yet closely matched by the GB model in most metrics. SVM and LR had lower
performances, with Logistic Regression showing the lowest MCC (0.818). Likewise, the RF
model performed the best for the prediction of undernutrition and wasting, followed by
GB and SVM in both categories. Once again, LR showed significantly lower performance
across all metrics.

However, the GB model exhibited the highest AUC (0.998) for the prediction of
underweight status, closely followed by RF, with an AUC of 0.994. The RF model had the
highest accuracy, F1 score, precision, recall, and MCC, with values of 0.986, 0.986, 0.986,
0.986, and 0.927, respectively. SVM and LR had lower performance compared to RF and
GB, with Logistic Regression showing the lowest MCC (0.849).

The results showed that the RF model consistently outperformed all malnutrition
indicators, followed closely by GB. SVM and LR generally have lower performance met-
rics. These results indicate that ensemble methods like RF and GB are highly effective in
predicting food insecurity and malnutrition among children aged 6 months to 5 years.

The results in Table 7 show the analysis of several forms of malnutrition caused by
food insecurity—stunting, underweight status, wasting, and undernutrition—across all
four ML models (FI importance of nutrient factors alongside socioeconomic determinants
and a precision view of malnutrition’s etiology).



Children 2024, 11, 810 11 of 16

Table 7. ML models’ feature importance ranking by malnutrition form (FI-Stunting, FI-Underweight,
FI-Wasting, and FI-Underweight).

FI-Stunting FI-Underweight
(n = 819)

FI-Wasting
(n = 819)

FI-Undernutrition
(n = 819)

Factor X2 Factor X2 Factor X2 Factor X2

Family
Income 145.4 Family

Income 134.1 Vitamin B1 196.0 Family
Income 108.3

Education 75.9 Education 84.2 Education 164.6 Locality 79.1

Locality 75.5 Choline 49.2 Carbs 153.3 Vitamin B1 78.5

Vitamin K1 57.0 Vitamin B1 48.1 Magnesium 147.2 Education 49.1

Vitamin B1 49.0 Vitamin C 44.8 Vitamin K1 139.6 Vitamin K1 48.3

Vitamin B3 48.0 Locality 39.9 Copper 85.6 Copper 44.4

Vitamin A 28.3 Vitamin K1 28.4 Age 57.9 Vitamin C 44.4

Zinc 27.2 Vitamin A 23.5 Zinc 51.4 Carbs 41.4

Vitamin C 24.5 Sodium 17.5 Vitamin A 41.1 Zinc 39.1

Carbs 23.4 Vitamin B3 17.2 Fat 34.4 Age 30.1

Choline 20.9 Fat 15.1 Choline 30.8 Vitamin B3 29.9

Copper 20.4 Vitamin B6 15.0 Vitamin B12 27.9 Vitamin A 23.9

Age 18.1 Protein 14.9 Locality 27.6 Protein 23.5

Magnesium 16.0 Zinc 14.7 Gender 26.0 Choline 18.2

Fat 15.1 Copper 10.1 Iron 21.4 Folate 12.7

Protein 8.7 Gender 7.6 Calcium 16.8 Fat 11.8

Calcium 6.3 Vitamin B12 7.4 Manganese 16.6 Magnesium 11.6

Iron 5.3 Vitamin B2 5.8 Potassium 12.3 Vitamin B12 9.7

Vitamin B6 4.7 Magnesium 5.2 Protein 4.2 Vitamin B6 9.3

Phosphorus 3.2 Phosphorus 5.1 Vitamin B3 3.1 Vitamin B5 8.1

FI: food insecurity; X2: chi-squared.

Comparing the four models—FI-Stunting, FI-Underweight, FI-Wasting, and FI-
Undernutrition—shows both common and distinct nutrient factors that emphasize the
complex relationship between food insecurity and various forms of malnutrition. Indeed,
sociodemographic factors such as family income and household education play an impor-
tant role among all models, with locality showing similar relevance among stunting and
undernutrition. Similarly, vitamin B1 emerges as a significant nutrient across all models,
with particularly high importance in wasting (X2 = 196.0). Vitamin K1 also appears across
several models, indicating its importance in overall growth and development. Vitamin A
and zinc are other nutrients that persist across the different models.

However, each model also shows unique nutrient priorities that correspond to the
specific malnutrition condition being analyzed. For instance, FI-Wasting emphasizes the
need for vitamin B1 (X2 = 196.0), carbohydrates (X2 = 153.3), and magnesium (X2 = 147.2).
Conversely, choline (X2 = 49.2), vitamin B1 (X2 = 48.1), and vitamin C (X2 = 44.8) show
particular importance in the FI-underweight model. Meanwhile, the FI-Stunting model
focuses on vitamins B1 (X2 = 49), K1 (X2 = 57), B3 (X2 = 48), A (X2 = 28.3), and Zinc
(X2 = 27.2), reflecting the multifaceted nutritional needs to support long-term growth and
prevent stunting.

FI-Undernutrition shows a broad range of nutrients, including vitamins B1 (X2 = 78.5),
K1 (X2 = 48.3), and C (X2 = 44.4), copper (X2 = 44.4), and carbohydrates (X2 = 41.4), indicating
the varied dietary requirements to combat the comprehensive challenges of undernutrition.
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Moreover, the ML ranking model shows that, while some nutrient deficiencies, such as
vitamin B1, vitamin K1, vitamin A, and zinc, are universally critical in the fight against
malnutrition caused by food insecurity, others like choline, carbohydrates, and magnesium
have more targeted importance based on the specific malnutrition condition.

4. Discussion

This study has shown a high prevalence of food insecurity among children (18.1%),
which is consistent with the findings of several studies that have explored food insecurity
at the global level, particularly in regions with similar socioeconomic backgrounds [40,41].
This consistency shows the prevalent nature of food insecurity across diverse geograph-
ical and economic landscapes. The significant association of food insecurity with house-
hold education, family income, locality, district, and age showed the multifactorial na-
ture of this issue, where socioeconomic determinants play a crucial role in shaping food
security outcomes [42].

The linkage between household education and food security status could be attributed
to the direct impact that educational attainment has on employment opportunities, in-
come levels, and health literacy, all of which are essential for ensuring food security [43].
This finding aligns with the theory that education acts as a social determinant of health,
influencing a wide range of health outcomes through its effects on economic and social
conditions [44].

Economic status, as reflected in family income levels, showed a strong correlation with
food insecurity, supporting the hypothesis that financial constraints limit access to adequate
and nutritious food [10,42,45]. This relationship is well documented in the literature, where
low-income households are often unable to afford the costs associated with a balanced
diet, leading to food insecurity [42,46]. The impact of locality (particularly refugee camps)
and district (with the southern district encompassing lower-income populations) on food
security further suggests that environmental and infrastructural factors, such as access to
markets and food distribution channels, play a critical role in determining food availability
and accessibility [47].

Furthermore, the age-related variations in food insecurity observed in our study could
be interpreted through the nature of lifecycle nutrition, where different age groups have
unique nutritional needs and vulnerabilities. Younger children, in particular, are at a
critical stage of growth and development, making them more susceptible to the adverse
effects of food insecurity. This vulnerability indicates the importance of targeted nutritional
interventions during early childhood to prevent long-term health consequences [48].

The findings regarding the nutritional and weight status of children provide empirical
evidence supporting the detrimental impact of food insecurity on child health outcomes.
The anthropometric measures indicate that food-insecure children suffer from malnutrition,
as evidenced by lower average weights, heights, and MUACs compared to their food-secure
counterparts. These differences in growth metrics can have serious implications for the
physical and cognitive development of affected children, potentially leading to delayed
growth and development, reduced academic performance, and increased susceptibility to
infections and diseases [49].

The differences in nutrient intake between food-secure and food-insecure groups indi-
cate the critical role of diet quality in determining health outcomes. The significantly lower
intake of essential macronutrients and micronutrients among food-insecure children points
to a diet lacking in diversity and nutritional adequacy, which is a common characteristic
of food-insecure households. This nutritional inadequacy not only affects growth and
development but also compromises immune function, increasing the risk of morbidity and
mortality among affected populations [50].

The comparative analysis of machine learning models indicates significant insights
into predicting malnutrition among children under five. The RF model consistently out-
performed others across various malnutrition indicators such as stunting, undernutrition,
wasting, and underweight, with remarkable metrics including an AUC of 0.996 for stunting
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and an MCC of 0.933 for undernutrition prediction. This superior performance is largely
attributed to the ensemble approach of RF and GB, which synthesizes outcomes from
numerous decision trees, thereby enhancing prediction accuracy and managing overfitting
more effectively [17,51]. Conversely, SVM and LR showed lower efficacy, as demonstrated
by LR’s lower MCC values. This discrepancy indicates the limitations of linear models like
LR in capturing the complex, multidimensional interactions influencing malnutrition, a
challenge better addressed by the more sophisticated ensemble methods [15,22,52].

Furthermore, this study explored the impact of food insecurity on malnutrition
through machine learning models. In the analysis of FI-Stunting, the emergence of vi-
tamin K1, vitamin B1, and vitamin B3 as critical factors affected by FI emphasizes their
essential roles in child growth. This finding is corroborated by research indicating the
pivotal importance of these vitamins in child growth and development [49]. Similarly, the
impact of vitamin A on immune support and zinc on growth reinforces the consensus on
their critical roles in child health [53].

The significant impact of choline, vitamin B1, and vitamin C among underweight
children indicates the necessity of these nutrients for essential bodily functions such as
liver function, energy metabolism, and nutrient absorption [54]. These findings are in line
with studies highlighting the importance of a diverse and nutrient-rich diet in preventing
underweight conditions among children [15,55].

The FI-Wasting model positions vitamin B1 at the forefront, emphasizing its impor-
tance for energy production and neural function, a perspective strongly supported by
the literature on acute malnutrition management [56]. The importance of carbohydrates
and magnesium for energy and muscle health, alongside vitamin K1, copper, and zinc for
blood health and immune function, further aligns with nutritional strategies advocated for
wasting treatment [57].

In FI-Undernutrition, the model identified vitamin B1 and vitamin K1, followed by
copper, vitamin C, and carbohydrates, as key factors, indicating the broad spectrum of
nutritional needs essential for combating undernutrition [58]. This is consistent with the
integrated nutrition interventions recommended for addressing comprehensive nutritional
challenges [58].

Comparatively, across the four models, vitamin B1’s significance in all forms of malnu-
trition shows its common importance in addressing FI-induced malnutrition. Vitamin K1’s
recurrent appearance emphasizes its role in overall growth, while the consistent presence
of vitamin A and zinc across models corroborates their known importance in child health.
However, the distinct emphasis on specific nutrients like choline in FI-Underweight and
carbohydrates in FI-Wasting points to the unique nutritional priorities necessitated by
different malnutrition conditions.

5. Strengths and Limitations

This study presents a comprehensive analysis of the impact of food insecurity on chil-
dren’s nutritional status, examining a range of sociodemographic factors, anthropometric
measurements, and nutrient intake. It employs machine learning models to add a novel
dimension to the analysis, enabling the identification of key predictors of malnutrition
and offering insights for targeted interventions. This research also provides a detailed
assessment of specific micronutrient intake, offering a precise understanding of nutritional
deficiencies among food-insecure children.

However, this study’s cross-sectional design limits the ability to establish causal
relationships between food insecurity and malnutrition. The reliance on self-reported data
for household income and food security status may introduce bias and affect the accuracy
of the findings. Additionally, the focus on children under five in the West Bank, Palestine,
may limit the generalizability of the findings to other regions or age groups.

Regarding the 24 h recall method used to assess children’s nutrition, it is important to
acknowledge its limitations. This method depends on participants’ memory and accuracy,
which can introduce recall bias and lead to underreporting or overreporting of food intake.
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It captures only a single day’s intake, which may not reflect usual dietary patterns, especially
in children whose daily intake can vary. Additionally, the food composition database may
not have complete nutrient profiles for all foods, potentially leading to an underestimation
of certain nutrient intakes. Despite these limitations, the use of machine learning models in
our study helps identify key predictors and provides valuable insights into malnutrition
among food-insecure children.

6. Conclusions

This study shows the profound impact of food insecurity on the nutritional status
of children aged 6 months to 5 years in the West Bank, Palestine. Food insecurity is
linked to a lower intake of essential nutrients, resulting in poorer growth metrics and
an increased risk of malnutrition. Machine learning models have identified key nutrient
factors influenced by food insecurity, providing valuable insights for the development
of targeted interventions. Addressing the complex determinants of food insecurity and
ensuring adequate nutrient intake are essential for enhancing child health and preventing
malnutrition. This research adds to the growing evidence supporting a comprehensive
approach to combating malnutrition, indicating the importance of addressing both macro-
and micronutrient deficiencies in food-insecure populations.
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