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Abstract: In this article, many concepts such as Korselt numbers that are related to Carmichael numbers have
been studied. It deserves to mention that the Korselt numbers and sets were discussed for the first time in 2007 by
Echi.
Let N be a positive integer and α a non-zero integer. If N ̸= α and p− α divides N − α for each prime divisor p of
N , then N is called an α-Korselt number (Kα-number). Korselt numbers were determined by studying the converse
of Fermat’s Little Theorem. To validate the concerned theorems, illustrated examples are solved in order to support
the correctness of these theories. In this article we addressed errors in the relevant literature, and we introduced
proper corrections with proofs for them.
Finally, many notes have been taken and directed us to build and develop a number of algorithms in order to find
Korselt sets for relatively large numbers in an effective way which may require a great time and need tedious effort
if it is to be calculated manually. .
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I. INTRODUCTION

In 1640, Fermat proved his well known result (Fer-
mat’s Little Theorem [6, 9]) which states that: "If p is
a prime number, then p divides ap − a for every integer
a". On the other hand, Korselt studied the converse of
Fermat’s Little Theorem [10]: If N divides aN − a for
any integer a, does it follow that N is prime? Actually,
he proved that a composite odd number N divides
aN − a for any integer a if and only if N is squarefree
and p− 1 divides N − 1 for each prime divisor p of N ,
but he did not provide any numerical example of these
numbers! In 1910, [5] Carmichael observed that the
number 561 provides a counterexample that proves the
converse of Fermat’s little theorem helped him to make
the conclusion that the theorem is not true in general,
which motivated the appearance of the Carmichael
numbers.

A composite number N is called a pseudoprime to
the base a iff aN−1 ≡ 1 (mod N) where a ∈ Z\{0} and
gcd(a,N) = 1 [11], it is called an absolute pseudoprime,
or Carmichael number, if it is pseudoprime for all bases
a with gcd(a,N) = 1 [8]. These numbers were first
described by Robert D. Carmichael in 1910 [5], and the
term Carmichael number was used by Beeger in 1950
[3]. In 1994, Alford, Granville and Pomerance showed
that there are infinitely many Carmichael numbers [2].
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In 2010, Echi, Bouallegue and Pinch introduced the
notion of the Korselt number [4]. They defined that a
natural number N > 1 is called an α-Korselt number
with α ∈ Z\{0} (denoted Kα-number) iff p− α divides
N − α for every prime factor p of N . The Korselt set
of N, denoted by KS(N), is the set of all α ∈ Z\{0, 1}
such that N is Kα-number. The Korselt weight of N ,
denoted by Kw(N) is the cardinality of KS(N). Notice
that Carmichael numbers are exactly k1-numbers [12].

In general, numerical calculations need a lot of
effort, and difficult to check errors unless automated
algorithms are used by computer. This motivated us to
construct algorithms to convert suggested definitions
and propositions into algorithms built through detailed
instructions, consequently, helped us to check and
compare results relevant to Korselt numbers under
different conditions. Three algorithms were proposed
by us in this work for verification, noting that other
literature are lack of algorithms.

II. KORSELT SET OF SQUAREFREE
NUMBERS THAT HAVE 2, 3 AND 4 PRIME

FACTORS

We start this section by introducing the following def-
initions of Korselt numbers and Korselt sets.

Definition 1. [1, 4] Let N ∈ N\{0, 1} and α be a non
zero integer. Then:
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1. N is an α-Korselt number iff N ̸= α and p − α

divides N − α for every prime divisor p of N . If
N is an α-Korselt number, then we write N is a
Kα-number.

2. The set of all α such that N is a Kα-number
is called the Korselt set of N , and denoted by
KS(N).

3. The cardinality of KS(N) is called the Korselt
weight of N , and denoted by Kw(N).

Below is an example illustrates the above definition

Example 2.

• 6 is a K4-number. Indeed, 6 = 2 ∗ 3 and 2− 4 =

−2 | 6− 4 = 2 and 3− 4 = −1 | 6− 4 = 2. Here,
KS(6) = {4} and Kw(6) = 1.

• N = 770 = 2 ∗ 5 ∗ 7 ∗ 11 is K8 and K14-number.
Hence, KS(770) = {8, 14} and Kw(770) = 2.

The following result helps in finding the Korselt set
of a given squarefree integer N .

Proposition 3. [1] Let α be a non zero integer and N

be a composite number where largest prime factor is q

and smallest prime factor is p. (eg. N = 30, here, p = 2

and q = 5). If N is a Kα-number, then the following
inequalities hold:

3q −N

2
≤ α ≤ N + p

2

.

Proof. To prove that 3q−N
2 ≤ α, assume that

α ∈ KS(N). By definition of the Korselt number, q−α

divides N − α. Thus, there exists a natural number
y such that N − α = y(q − α). And as N > q, this
implies that y ≥ 2.
Claim: y ̸= 2. By contradiction, suppose that y = 2.
Hence, N − α = 2q − 2α, consequently α = 2q −N .
Claim: α ̸= 2q − N . Here, N ̸= q because N is a
composite number and q is a prime number. Also, α

being a non-zero implies that N ̸= 2q, Thus, N = mq

where m ≥ 3, and hence α = 2q − mq = −(m − 2)q.
Now, if s is a prime factor of m, then since N

is a Kα-number, s − α = s + (m − 2)q divides
N − α = q(2m − 2). But gcd(s + (m − 2)q, q)

equals 1 or q. If gcd(s + (m − 2)q, q) = q, then
this leads that q divides s which is not possible.
Hence, gcd(s + (m − 2)q, q) = gcd(s, q) = 1, and
this implies that s + (m − 2)q divides 2m − 2. But
2m − 2 = 2 + 2(m − 2) ⪇ s + (m − 2)q because s ≥ 2

and q ⪈ 2, this gives a contradiction. Therefore, y ≥ 3.
This leads that N − α = y(q − α) ≥ 3(q − α). Hence,
α ≥ 3q−N

2 .

Now, the case α < 0 is trivially as N+p
2 > 0. If

0 < α ≤ p, then α ≤ p+p
2 < N+p

2 . Also, when p <

α < N , then |p − α| ≤ |N − α| and α − p ≤ N − α,
hence α ≤ N+p

2 . Also, when α ≥ N and as q < N ,
then α − q > α −N ≥ 0. But q − α divides N − α (N

is a Kα-number), which implies that α − N = 0, and
hence α = N . But by definition of the Korselt number,
N ̸= α, a contradiction. Thus α < N .

Example 4. Let N = 165 = 3 ∗ 5 ∗ 11. Here, q = 11

and p = 3.

• α ≥ 3q−N
2 = 3∗11−165

2 = −66.

• α ≤ N+p
2 = 165+3

2 = 84.

One application of Proposition 3 is that it can be used
to find the Korselt set of numbers with 2, 3 and 4 prime
factors after a deep understanding and analysis to this
Proposition and converting it into stages and steps, we
managed to build algorithm through clear sequential
steps and converting it into a powerful program using
MATLAB software shown in the next figure (Figure 1)
where the input is any integer and the output is the KS

of this number.

FIG. 1: Flowchart represents the way
to calculate the KS(N).

The next tables (Tables 1, 2, 3) contain some
squarefree numbers N with their prime factorization
(Pf) and KS(N). Results of the proposed algorithm
are presented in the following tables.
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TABLE I: KS of squarefree numbers
with 2 prime factors.

N Pf of N KS(N)

6 2 ∗ 3 {4}
10 2 ∗ 5 {4, 6}
14 2 ∗ 7 {6, 8}
15 3 ∗ 5 {4, 6, 7}
21 3 ∗ 7 {5, 6, 9}
22 2 ∗ 11 {12}
N Pf of N KS(N)

26 2 ∗ 13 {14}
33 3 ∗ 11 {9, 13}
34 2 ∗ 17 {18}
35 5 ∗ 7 {3, 6, 8, 11},
38 2 ∗ 19 {20}
39 3 ∗ 13 {12, 15}

TABLE II: KS of squarefree numbers
with 3 prime factors.

N Pf of N KS(N)

30 2 ∗ 3 ∗ 5 {4, 6}
42 2 ∗ 3 ∗ 7 {6}
66 2 ∗ 3 ∗ 11 {6, 10}
78 2 ∗ 3 ∗ 13 {}
102 2 ∗ 3 ∗ 17 {12}
N Pf of N KS(N)

105 3 ∗ 5 ∗ 7 {6, 9}
114 2 ∗ 3 ∗ 19 {}
138 2 ∗ 3 ∗ 23 {}
165 3 ∗ 5 ∗ 11 {−3, 4, 9}
174 2 ∗ 3 ∗ 29 {}

TABLE III: KS of squarefree numbers
with 4 prime factors.

N Pf of N KS(N)

210 2 ∗ 3 ∗ 5 ∗ 7 {6}
330 2 ∗ 3 ∗ 5 ∗ 11 {}
390 2 ∗ 3 ∗ 5 ∗ 13 {}
462 2 ∗ 3 ∗ 7 ∗ 11 {12}
N Pf of N KS(N)

510 2 ∗ 3 ∗ 5 ∗ 17 {}
570 2 ∗ 3 ∗ 5 ∗ 19 {}
690 2 ∗ 3 ∗ 5 ∗ 23 {}
770 2 ∗ 5 ∗ 7 ∗ 11 {8, 14}

Also, to find all composite squarefree N ∈ [0, 1000]

for any α, we constructed a new algorithm to count the
number of Kα-numbers, in addition to it’s value/s. The
following flowchart (Figure 2) shows how to find them,
which works in an opposite direction to find N by using
α.

Table 4 contains all existing composite squarefree
Kα-numbers of less than 1000 for α ∈ {−10, 20}

A summary representing the number of Kα-numbers
as α ∈ [−10, 20] is depicted in Figure 3, there is no clear
tend for the number of Kα as α ∈ [−10, 20], making it
difficult to describe the behaviour of number of Kα-

FIG. 2: Flowchart represents the way to find
Kα-numbers for a specific α if exist.

number, but the results of the algorithm totally agree
with definition of Korselt numbers which illustrate the
theory involved.

FIG. 3: Bar chart represents −10 ≤ α ≤ 20 with
corresponding number of Kα-numbers

of less than 1000

III. KORSELT SET OF N = pq AND THE
CORRECTION OF [7, THEOREM 14]

In this section, a focus on the Korselt set of a product
of two distinct prime numbers is introduced by repro-
ducing paper [7]. During that, we were able to discover
and verify the existence of a fundamental error in [7,
Theorem 14(6)], and after a lot of research and exper-
imenting with numbers, we were able to find an alter-
native theory that can be considered as a correction to
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TABLE IV: All Kα-number of less than 1000

for all α ∈ {−10, 20}.

α Number of Kα Kα

−10 1 935

−9 1 231

−8 0 -
−7 1 273

−6 0 -
−5 1 715

−4 0 -
−3 2 165,357
−2 1 598

−1 2 399,935
1 1 561

2 0 -
3 1 35

4 8 6,10,15,30,70,130,165,238
5 3 21,77,221
6 16 10,14,15,21,30,35,42,66,70,

105,195,210,231,266,286,805
7 6 15,55,187,247,715,759
8 10 14,35,77,110,143,170,273,638,

770,935
9 16 21,33,65,77,105,165,209,231,

273,345,385,399,429,561,609,969
10 10 55,66,91,130,154,255,322,385,

682,715
11 9 35,65,91,119,221,299,323,455,651
12 11 22,39,77,102,143,182,187,442,462,

782,962
13 6 33,85,133,253,493,589
14 14 26,77,91,119,143,182,209,221,230,

374,399,455,494, 770
15 25 39,51,55,65,85,95,119,143,187,195,

221, 231,247,255, 323,391,399,435,
455,527, 627, 663,715,759,935

16 5 133,170,247,506,646
17 5 65,77,209,377,437
18 3 34,323,663
19 6 51,91,187,391,403,943
20 11 38,95,110,209,290,323,437,506,551,

713,902

the theory presented by both Echi and Ghanmi in their
paper [7]. Throughout the section, p and q are prime
numbers with p < q, q = ip + s such that i ≥ 1 and
1 ≤ s ≤ p− 1 and N = pq. The theme throughout this
section is how are some conditions on p and q deter-
mines KS(N). The next theorem was proved in [7], we
provide it here to be used along with our new result at
the end of this section in building algorithm that deter-
mine α’s for which given positive integer is Kα as well
as the korselt set of that integer.

Theorem 5. [7]

1. If q > 2p2, then KS(N) = {p+ q − 1}.

2. If p2 − p < q < 2p2 and p ≥ 5, then KS(N) ⊆
{ip, p+ q − 1}.

3. If 4p < q < p2−p, then KS(N) ⊆ {ip, (i+1)p, p+

q − 1}.

4. Suppose that 3p < q < 4p. Then the following
conditions are satisfied:

(a) If q = 4p − 3, then the following properties
hold:

i. If p ≡ 1 (mod 3), then KS(N) =

{4p, q − p+ 1, p+ q − 1}.
ii. If p ̸≡ 1 (mod 3), then KS(N) = {q −

p + 1, p + q − 1} except when p = 5, be-
cause in this case KS(N) = {3p, q− p+

1, p+ q − 1}.

(b) If q ̸= 4p− 3, then KS(N) ⊆ {3p, 4p, p+ q−
1}.

5. Suppose 2p < q < 3p, then KS(N) ⊆ {2p, 3p, 3q−
5p+ 3, 2p+q−1

2 , q − p+ 1, p+ q − 1}. [7]

The following examples illustrate the above men-
tioned properties:

Example 6. 1. Let N = 123 = 3 ∗ 41. Here, p = 3,
q = 41 and 41 > 2 ∗ 32 = 18. Therefore,
KS(123) = {3 + 41− 1} = {43}.

2. Let N = 185 = 5 ∗ 37. Here, p = 5, q = 37

and 52 − 5 = 20 < 37 < 2 ∗ 52 = 50. Therefore,
KS(123) ⊆ {7 ∗ 5, 5 + 37− 1} = {35, 41}.

3. Let N = 217 = 7 ∗ 31. Here, p = 7, q = 31

and 4 ∗ 7 = 28 < 31 < 72 − 7 = 42. Therefore,
KS(217) ⊆ {4 ∗ 7, 5 ∗ 7, 7+31− 1} = {28, 35, 37}.

4. Let N = 1387 = 19 ∗ 73. Here, p = 19, q =

73 where 73 = 4 ∗ 19 − 3 and 19 ≡ 1 (mod 3).
Therefore, KS(1387) = {4 ∗ 19, 73 − 19 + 1, 19 +

73− 1} = {76, 55, 91}.

5. Let N = 2047 = 23 ∗ 89. Here, p = 23, q =

89 where 89 = 4 ∗ 23 − 3 and 23 ̸≡ 1 (mod 3).
Therefore, KS(2047) = {89 − 23 + 1, 23 + 89 −
1} = {67, 111}. Note that in case p = 5, then
q = 4∗5−3 = 17 which leads N = 85. Therefore,
KS(85) = {3∗5, 17−5+1, 5+17−1} = {15, 13, 21}

6. Let N = 473 = 11 ∗ 43. Here, p = 11, q = 43

where 43 ̸= 4 ∗ 11 − 3. Therefore, KS(473) ⊆
{3 ∗ 11, 4 ∗ 11, 11 + 43− 1} = {33, 44, 53}.

7. Let N = 629 = 17 ∗ 37. Here, p = 17, q = 37

where 2 ∗ 17 = 34 < 37 < 3 ∗ 17 = 51. There-
fore, KS(629) ⊆ {2 ∗ 17, 3 ∗ 17, 3 ∗ 37 − 5 ∗
17 + 3, 2∗17+37−1

2 , 37 − 17 + 1, 17 + 37 − 1} =

{34, 51, 29, 35, 21, 53}.

While reproducing paper [7] which is related to
Korselt numbers of the form N = p ∗ q, we were able
to introduce examples where Theorem 14(6) was not
satisfied. Below are the result and the counterexample
which ensures its mistake:
The claimed mistaken result ([7, Theorem 14(6)]) is:
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Suppose that α be an integer and p < q < 2p. If
α ∈ KS(N), then α ∈ (I(p, q) ∩ J(p, q)) ∪ {2p}, where

I(p, q) := {p− q − 1

k
| k divides q − 1}

J(p, q) := {q − p− 1

l
| l divides p− 1}.

The counterexample is:

Example 7. Let N = 77. Here, p = 7, q = 11 and
p < q < 2p.

I(7, 11) = {7− 10

k
| k divides 10},

hence, getting k = 1, 2, 5 and 10 which give I(7, 11) =

{−3, 2, 5, 6}. Also,

J(7, 11) = {11− 6

l
| l divides 6},

hence, having l = 1, 2, 3 and 6 which gives J(7, 11) =

{5, 8, 9, 10}. Therefore, (I(p, q) ∩ J(p, q)) ∪ {2p} =

{5, 1, 4}). Note that KS(77) = {5, 8, 9, 12, 14, 17} ̸⊆
{5}.

In the next theorem, we introduce a correction of
aforementioned mistaken result along with it’s proof,
and hence we overcome the detected mistake.

Theorem 8. Suppose that p < q < 2p. Then, setting

I(p, q) := {p+ q − 1

k
|k divides (q − 1)}

J(p, q) := {q − p− 1

k
|k divides (p− 1)},

we have KS(N) ⊆ {2p} ∪ I(p, q) ∪ J(p, q).

Proof. The proof divided into two cases:
Case1: p divides α. By [7, Lemma 7], α = p or α = 2p.
But if α = p then i − 1 must divide p + s − 1 with
q = ip + s, and here, i = 1 that leads i − 1 = 0 which
does not divide p+ s− 1, hence, α = 2p.
Case2: p doesn’t divide α, which means that
gcd(p, α) = 1. By [7, Proposition 4(2)], then

q − p+ 1 ≤ α ≤ p+ q − 1,

so

q − (p− 1) ≤ α ≤ p+ (q − 1).

By Proposition [7, Proposition 4(1)], gcd(q, α) = 1.
Hence, by Proposition [7, Lemma 5(2)], q − α di-
vides p − 1. Thus, p − 1 = l(q − α) which implies
α = q − p−1

l with a non-zero integer l. Also, by hy-
pothesis, gcd(p, α) = 1. Hence, by [7, Lemma 5(3)],
p − α divides q − 1 which yields α − p divides q − 1

Thus, q − 1 = k(α − p) which implies α = p + q−1
k

with a non-zero integer k. Therefore, α ∈ {q− p−1
l1

, q−
p−1
l2

, ..., q− p−1
ls

}∪{p+ q−1
k1

, p+ q−1
k2

, ..., p+ q−1
kt

}, where
(k1, ..., kt) are factors of q − 1 and (l1, ..., ls) are factors
of p − 1. Hence, from case1 and case2, it is concluded
that α ∈ I(p, q) ∪ J(p, q) ∪ {2p}.

Example 9. Let N = 77. Here, p = 7, q = 11 and
7 < 11 < 22.

I(7, 11) = {7 + 10

k
| k divides 10},

hence, getting k = 1, 2, 5 and 10 which gives I(7, 11) =

{17, 12, 9, 8}. Also,

J(7, 11) = {11− 6

l
| l divides 6},

hence, having l = 1, 2, 3 and 6 which gives J(7, 11) =

{5, 8, 9, 10}. Therefore, KS(77) ⊆ (I(7, 11)∪J(7, 11))∪
{2 ∗ 7} = {17, 14, 12, 10, 9, 8, 5}.

In our final algorithm, we introduced a comprehend
structure that takes N as an input and then selects only
those values of N satisfying the condition N = p ∗ q

where p and q are primes to obtain first, the cate-
gory which the algorithm used to find α, secondly, the
KS(N). This algorithm puts our new theorem along
with the old mentioned ones in this article and is used
to give a modified new tables. The following diagram
(Figure 4) illustrates the algorithm.

FIG. 4: A flowchart representing the fast approach
to calculate the KS(N).

Applying this algorithm on the values of N which is less
than 10000 and satisfying the condition N = p ∗ q, giving

the outputs: The category and α ∈ KS(N) which are
presented in the next table (Table 5).
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TABLE V: A collection of KS(N) for N = pq

which are less than 10000.

N p q Category α ∈ KS(N)

6 2 3 9 4
10 2 5 8 4, 6
14 2 7 7 6, 8
15 3 5 9 4, 6, 7
21 3 7 8 5, 6, 9
22 2 11 1 12
26 2 13 1 14
33 3 11 7 9, 13
34 2 17 1 18
35 5 7 9 3, 6, 8, 11
38 2 19 1 20
39 3 13 9 12, 15
46 2 23 1 24
51 3 17 9 15, 19
55 5 11 8 7, 10, 15
57 3 19 1 21
58 2 29 1 30
62 2 31 1 32
65 5 13 8 9, 11, 15, 17
69 3 23 1 25
74 2 37 1 38
77 7 11 9 5, 8, 9, 12, 14, 17
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
9939 3 3313 1 3315
9943 61 163 8 183, 223
9946 2 4973 1 4974
9953 37 269 3 305
9957 3 3319 1 3321
9959 23 433 3 455
9961 7 1423 1 1429
9965 5 1993 1 1997
9969 3 3323 1 3325
9974 2 4987 1 4988
9977 11 907 1 917
9979 17 587 1 603
9983 67 149 8 215
9985 5 1997 1 2001
9986 2 4993 1 4994
9987 3 3329 1 3331
9989 7 1427 1 1433
9991 97 103 9 91, 95, 99, 100, 199
9993 3 3331 1 3333
9995 5 1999 1 2003
9997 13 769 1 781
9998 2 4999 1 5000

FIG. 5: The performance of the suggested algorithm.

2 Finally, the complexity of the suggested algo-
rithms are of orders O(N) (linear running time); as the
loop depends on N. An emphasis of the complexity was
empirically proved through implementing the suggested
modified algorithm with different values and measured
corresponding elapsed times, the best regression repre-
sentation was linear regression which complies with the
O(N) complexity (See Figure 5 ). However a compar-
ison between the different methods for calculating the
Korselt numbers is made by defining composite squar-
free N from 1 to 10000 that have the form pq. Results
showed that the way for calculating the Korselt number
by checking all numbers between 3q−N

2 and N+p
2 con-

sumed more time rather than the proposed technique in
this section, such that the first method needed 3.110 sec
on a laptop with i7 processor, while the improved tech-
nique consumed 0.618 sec. This gives us the right to
say the modified technique is more efficient, although
the program was not yet fully optimized for the time
being.

Summary

• This article for the first time introduces a set of
algorithms implemented to enrich the literature
with tables of Korselt relatively large numbers. In
previous works, the authors provide tables with-
out algorithms. Moreover, we expanded the set
of tested numbers covering more than what the
literature covered previously.

• While reproducing the different theorems and
propositions in the literature, we detected an
important mistake in [7, Theorem 14 (6)] and
through a robust work, one original theorem is
introduced by us to overcome the detected mis-
take.

• Through preparing the proper algorithms and
writing program, we modified a compounded al-

An - Najah Univ. J. Res. (N. Sc.) Vol. 00 (0), 2023 15



gorithm which showed a remarkable performance
compared to traditional ones.
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