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Abstract 

Background:  Human and veterinary antibiotics are typically discharged as parent chemicals in urine or feces and are 
known to be released into the environment via wastewater treatment plants (WWTPs). Several research investigations 
have recently been conducted on the removal and bioremediation of pharmaceutical and personal care products 
(PPCPs) disposed of in wastewater.

Results:  SiNP-Cu, a chelating matrix, was produced by delaying and slowing 1.5-dimethyl-1H-pyrazole-3-carbalde-
hyde on silica gel from functionalized with 3-aminopropyltrimethoxysilane. The prepared sorbent material was 
characterized using several techniques including BET surface area, FT-IR spectroscopy, Scanning electron microscopy 
(SEM), thermogravimetric analysis (TGA), and nitrogen adsorption–desorption isotherm. The pseudo-second-order 
model provided the best correlation due to the big match between the experimental and theoretical of different 
adsorption coefficients. The Langmuir and Freundlich adsorption models were used and the study showed a better 
match with the Freundlich model with a capacity of removal reached up to 420 mg g−1. The removal capacity was 
dependent on pH and increased by increasing pH. The removal percentage reached 91;5% at pH = 8. The adsorbent 
demonstrated a high percentage removal of TMP, reaching more than 94% when increased pH. The sample was sim-
ply regenerated by soaking it for a few minutes in 1 N HCl and drying it. The sorbent was repeated five times with no 
discernible decrease in removal capacity. The thermodynamic study also showed endothermic, increasing random-
ness and not spontaneous. The free energy was 2.71 kJ/mol at 320 K. The findings of the DFT B3LYP/6–31 + g (d, p) 
local reactivity descriptors revealed that nitrogen atoms and π-electrons of the benzene and pyrimidine rings in the 
TMP are responsible for the adsorption process with the SiNP surface. The negative values of the adsorption energies 
obtained by molecular dynamic simulation indicated the spontaneity of the adsorption process.

Conclusion:  The global reactivity indices prove that TMP is stable and it can be removed from wastewater using SiNP 
surface. The results of the local reactivity indices concluded that the active centers for the adsorption process are the 
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Introduction
Recently, several research studies for pharmaceutical and 
maybe personal care products (PPCPs) have been dis-
posed of around the world in wastewater [1]. Human and 
veterinary antibiotics are typically discharged as parent 
chemicals in urine or feces and are known to be released 
into the environment via wastewater treatment plants 
(WWTPs). Several of the wastewater treatment plants 
(WWTPs) do not degrade all organic pollutants and this 
leads to the discharge of the effluent that contains these 
compounds that causes a major source of environmen-
tal pollution. Many organic pollutants can resist treat-
ment in WWTPs in some circumstances, and the range 
of organic pollutants in WWTP effluents can exceed the 
mg/L threshold [2]. Also, water pollution from some ter-
minal in thermal power plants during the construction 
and operation may have some contaminants [3]. Over 
the last decade, the development of beryllium mining, 
beneficiation and metallurgy has led to the generation of 
a large amount of wastewater with high contents Be(II) 
ions and various Be(NH2)2 complexes; this wastewater 
has become an urgent environmental issue [4]. In Pal-
estine, when the surface water was sampled, it showed 
the presence of PPCPs that are environmentally persis-
tent. As we know, trimethoprim (TMP) are used widely 
for the treatment of both human and veterinary diseases 
especially in the Middle East and South Africa. The 
removal efficiencies of secondary treatment for TMP is 
in the range of 14–87% and it can reach up to 12.5 mg/L 
in some wastewater treatment plants, especially in the 
spring season [5].

The presence of those antibiotics in the wastewater 
and generally in the environment, causes several adverse 
effects, like bacteria that are resistant to antibiotics [6]. 
Therefore, several studies on the removal of antibiotics 
from bodies of water has been conducted [7].

Trimethoprim (TMP) which is critical sulfonamide 
antibiotic that are frequently discovered in wastewater 
treatment plants causes more scientists that show inter-
est in how TMP antibiotics is biodegraded [8]. One study 
used prepared composite soil to allow biodegradation to 
successfully remove adsorbed TMP from the surface of 
clay ceramists.

Several methods are known for removal of antibiot-
ics from wastewater like ion exchange, co-precipitation, 

and liquid–liquid extraction [9]. These methods often 
demand a large amount of high purity organic solvents, 
which can be dangerous to health and cause environ-
mental problems.

For sample treatment, some procedures are used, 
such as solid phase extraction (SPE), which was utilized 
for the pre-concentration/separation of a wide range of 
inorganic and organic substances [10].

To remove trace metal ions, and antibiotics from 
wastewater, various ligands or functional groups are 
occasionally attached to a solid that serves as a solid 
phase extraction matrix. Several researchers use sil-
ica [11–13]. The use of silica is becoming increasingly 
important in today’s world. Silica is a major component 
of the modern industrial base, and it is used in a variety 
of industries ranging from glass manufacturing to oil 
extraction. Silica has several benefits, including a large 
surface area and good mechanical and thermal stability. 
Also, by interacting with organofunctionalized silanes 
groups, it is simple to modify and functionalize the 
structure [14, 15]. These covalently bonded chemical 
groups serve as a highly stable long arm spacer, allow-
ing the receptor to make contact with the copper ion 
and then TMP. The chelating material was described 
and its adsorption capacities for removing TMP from 
aqueous media were investigated [16]. The advantages 
of them include the ability to operate without losing 
expensive organic molecules, which is due to the nature 
of grafted ligands, which can attach molecules with 
chelating ability due to their characteristics of donor 
atoms, such as nitrogen, oxygen and sulfur [17]. This 
paper described the previously synthesized and char-
acterized some silica that has been functionalized with 
some compounds such as N,N′-bidentate, resulting in 
the formation of five-membered chelating rings [18]. 
The copper-ion-attached compound was employed 
to remove TMP from the produced aqueous solution. 
Even several research studies for pharmaceutical and 
personal care products (PPCPs) have been occurring 
around the world, the use of 1,5-Dimethyl-1H-pyra-
zole-3-carbaldehyde, which was fixed on the silica sur-
face after many treatments and modifications, including 
3-aminopyltrimethoxysilane, and then refluxed with 
copper nitrate to produce SiNP-Cu made it very novel 
for this application with very high efficiency of removal 

nitrogen atoms and the π-electrons of the pyrimidine and benzene rings. Furthermore, the positive value of the maxi-
mum charge transfer number (ΔN) proves that TMP has a great tendency to donate electrons to SiNP surface during 
the process of adsorption.

Keywords:  Global reactivity descriptors, Density functional theory (DFT), Adsorption, Wastewater, Molecular dynamic 
simulation, Trimethoprim, Pyrazole-3-carbaldehyde
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and regeneration. In addition to that, theoretical stud-
ies were very supportive of our study.

Experimental
Chemicals and instrumentations
Trimethoprim (TMP), all chemicals and solvents that 
have been used in this study including silica gel and the 
silylating agent were of high purity > > 99.5%, Where 
bought from Sigma-Aldrich, Saint-Louis, MO, USA. 
Before using silica, it was always activated by heating for 
roughly 24 h at 160 °C.

The formula of TMP was shown in Fig. 1. To increase 
the solubility of TMP certain proportion of ethanol and 
distilled water were used.

Several instruments were used for this research 
including shaking water bath (Daihan Labtech, Korea), 
with variable speed of 20 to 500  rpm to enhance mix-
ing of both adsorbate and adsorbent, thermometers, 
pH meter (model: 3510, JENEWAY, USA) to be used 
for the effect of pH study, Infrared spectroscopy (FTIR-
SHIMADZU, Japan, Model: FTIR-8700). FT-IR Spec-
tra of SiG, SiNH2, and SiNP spectral were obtained 
with a resolution of 2  cm−1 over a range of 1  cm−1 to 

4000  cm−1. Scanning Electron Microscopy (SU8000 
Hitachi, Japan). The specific area was determined by 
using the BET equation. Brunauer–Emmett–Teller 
(Micromeritics, Norcross, GA, USA), The TGA Instru-
ment was used to determine the mass loss (TGA 
Instruments, New Castle, DE, USA) from 20 to 900 °C 
at a rate of 10  °C  min−1. All experimental details are 
explained well in our previous study.

Synthesis of 3‑aminopropylsilica (SiNH2)
As mentioned before this material has been synthe-
sized before and used for removal of metal ions [19] 
with a small modification of attaching copper to SiNP 
and to be referred as SiNP-Cu. In summary, the first 
step was to carry out a reaction on the silica surface 
between the silylating agent and silanol groups. 25 g of 
activated silica gel (SiO2) was added to 150 mL of tolu-
ene and refluxed for 2 h under a nitrogen environment 
with constant stirring. The preceding solution was then 
treated with 10  mL of aminopropyltrimethoxysilane. 
Following that, filtering was performed and washed 
with toluene and ethanol. To remove the silylating resi-
due, a Soxhlet extraction with a mixture of 1:1 ethanol 
and dichloromethane was done for 12  h. The name of 
the final product is called SiNH2. (Scheme 1).

Synthesis of 1.5‑dimethyl‑1H‑pyrazole‑3‑carbaldehyde
A 1.2  g of (1.5-Dimethyl-1H-pyrazol-3-yl) metha-
nol was dissolved in 100 mL of dioxane. After that, an 
amount of manganese oxide was added and refluxed for 
about 5  h [20]. The solution was filtered and MnO2(s) 
was removed.Fig. 1  Molecular structure for trimethoprim (TMP)

Scheme 1  Modified chelating material synthesis scheme
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Synthesis of ((1,5‑Dimethyl‑1H‑pyrazol‑3‑yl) methylene) 
imine‑substituted silica (SiNP)
To prepare the above mixture, a 5 g of the solution pre-
pared in step 2.2 (SiNH2) and 1.5 g of the solution pre-
pared in step 2.3 were mixed in dry ethanol. The solution 
was filtered and soxhlet extracted with methanol and 
acetonitrile. This product is referred to as (SiNP).

Synthesis of SiNP‑Cu
A 1 g of the product of step 2.4 (SiNP) was mixed with 
1.5  g of copper nitrate in 100  mL dry ethanol and then 
Soxhlet extraction with acetonitrile for 2 h. The mixture 
was washed several times with ethanol and dried. The 
final product was checked with the Thermo Scientific™ 
iCE™ 3300 AAS flame atomic absorption to check for 
copper.

Batch experiments
Using a 0.1 g of (SiNP-Cu) and 25 mL of TMP solution 
at various concentrations, the effects of contact time 
(0–150 min), pH (2–12), dose (0.01–0.3 g), and tempera-
ture were investigated.

To achieve the appropriate pH, a solution contain-
ing both NaOH and HCl was used. To aid interaction 
between adsorbent and adsorbate, all flasks were capped 
and shaken using a water bath at a specified tempera-
ture and 150  rpm. A portion of the supernatant was 
obtained after 40  min and centrifuged mechanically at 
4000 rpm for 10 min before being tested for TMP using 
the Shimadzu UV–Visible 1601 model at a wavelength 
of 272 nm. A stock solution of TMP was produced using 
1L deionized water at room temperature (25 °C) for data 
analysis. The adsorbent is washed with 0.1 N HCl solu-
tion and then with distilled water after each adsorption 
process. Following that, each regenerated adsorbent is 
allowed to dry for 24 h before being used again to dem-
onstrate that the prepared adsorbent can be used several 
times with little effect on the percent removal of TMP. To 
study other parameters like kinetics, isotherm, and ther-
modynamics, the same procedures were used but a range 
of different temperatures (310, 315, and 320  K) were 
used. In our study, each parameter’s data was analyzed 
twice, and only the mean data was published and plotted.

Computational details
DFT part
The Gaussian 09 package was used to perform all den-
sity functional theory (DFT) computations [21]. TMP’s 
geometry was optimized without constraints utilizing 
the B3LYP exchange- correlation functional level [22, 
23]. For this project, the 6–31 + g (d, p) basis set was used 
[24]. The polarizable continuum model (PCM) solvation 

approach was used to calculate the solvation effect using 
the self-consistent reaction field (SCRF) method [25–
27]. At the same level, frequency calculations were used 
to represent the stationary points and confirm that the 
ground states do not have an imaginary frequency. Some 
of the energy gaps can be closed by using the optimized 
structure’s highest occupied molecular orbital energies 
(EHOMO) and lowest unoccupied molecular orbital 
energies (ELUMO) ( �E = ELUMO − EHOMO ), electronic 
chemical potential ( µ =

1
2 (ELUMO + EHOMO)), global 

hardness (η = 12 (ELUMO − EHOMO)) , hyper-hardness 
(γ = ELUMO − 2EHOMO + EHOMO−1 ), softness (S = 1/η),, 
electrophilicity (ω = µ2/2η ) and maximum charge trans-
fer (ΔN = −µ/η ) are calculated for TMP molecule [28, 
29].

The Fukui functions (FF) were used to compute the 
local reactivity descriptors (LRD) of TMP for nucleo-
philic attacks ( f +k = qk(N + 1)− qk(N )) and for elec-
trophilic attacks ( f −k = qk(N )− qk(N − 1) ) [30, 31]. The 
charges values of atom (k) for neutral, cation, and anion 
species are denoted byqk(N ) , qk(N + 1) and qk(N − 1) 
respectively. These indices numerically signify the most 
reactive centers that are responsible for the interac-
tions with SiNP surface. Additionally, the local soft-
ness ( σα

k = sf αk ) and local electrophilicity ( ωα
k = ωf αk  ) 

were also calculated [32]. The letter α = (+) and/or (−) 
describes the nucleophilic and electrophilic attacks, 
respectively. More precisely and to get a clearer identifi-
cation for the electrophilic and the nucleophilic attack at 
specific atomic sites [33, 34], the dual descriptors (DDs) 
(Fukui descriptor or the second order Fukui functions 
( f 2k = f +k − f −k ) , dual softness ( �σk = σ+

k − σ−

k ) and 
the dual philicity �ωk = ω+

k − ω−

k  ) were also calculated. 
These DDs simplify chemical reactivity in a local sense 
and allow us to obtain the prefered locations for nucle-
ophilic attacks and the preferred sites for electrophilic 
attacks ( f 2k ,�σkand�ωk< 0) [35].

Results and discussion
Characterization
FT‑IR characterization
A Perkin–Elmer FT-IR spectrophotometer (Spectrum 
BX-II) was used to record FT-IR spectra on KBr disks 
with a range of 4000–400 cm−1 as shown in Fig. 2.

To study the synthesis of new materials that have been 
synthesized for TMP removal (SiNP-Cu) it is necessary 
to study the functional groups.

The two peaks observed at 1100 and 3446  cm−1 were 
attributed to Si–O–Si stretching vibrations, and the pres-
ence of –OH group. Moreover, the peak observed at 
1500  cm–1 was related to the C=N vibrations and N–H 
bending vibration. This verifies the functionalization 
onto the silica surface [36].
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Scanning electron micrographs
Scanning electron micrographs (SEM) of SiNP and SiNP-
Cu were obtained using a scanning electron microscope 
(Jeol JSM 60) and an accelerating voltage of 20 kV.

The SEM is shown in Fig. 3 and was obtained at 200× 
magnification. It is obvious that before SiNP linked with 
Cu ions the adsorbents exhibit heterogeneous surfaces of 
high roughness. Also, considering the SiNP-Cu after link-
age, many of the pores on the adsorbent surface are well-
covered by the Cu ions [37].

TGA analysis and thermal stability
For mass loss and stability studies, a dry sample was 
heated in nitrogen gas at a rate of 10  °C/min (flow rate: 
50 mL/min) as shown in Fig. 4.

This study will help us to have an idea about the surface 
stability and at the same time to be sure there is mobility 
on the surface and how much. According to the profiles 
in a and c, the degradation process occurred between 120 
and 800 °C, demonstrating that both SiNP and SiNP-Cu 
produced materials had high thermal stability.

Fig. 2  FT-IR Spectra of SiG, SiNH2 and SiNP

Fig. 3  SEM images of SiNP (A), SiNP-Cu (B) with ×200 magnification
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In the temperature range of ambient temperature to 
105  °C, both samples revealed a first mass loss stage 
of 3.20 percent, which was attributed to the water loss 
that the samples had absorbed. The second loss was 
5.95 percent between 105 and 800 °C which represents 
the condensation of free silanol groups (Si–O–Si) [38]. 
The significant rise in mass loss demonstrates the pres-
ence of a large number of anchoring organic groups. 
Again two distinct mass loss steps were detected for the 
SiNH2 sample. The first one, a small mass loss of 1.56% 
in the room temperature to 100  °C range is attributed 
to the remaining silanol hydration water, as a conse-
quence of the use of these groups in the immobiliza-
tion process. On the other hand, a pronounced mass 
loss increase of 9.77% was observed for the second 
step, between 208 and 800 °C, which corresponds to the 
organic matter added onto the surface during immobi-
lization. The final SiNP material presented two distinct 
mass loss stages.

Surface properties
The nitrogen adsorption isotherm was used to char-
acterize the produced compounds’ surface area, pore 
sizes, and volume. The pore diameter was calculated 
using the Barrett-Joyner-Halenda (BJH) method [39]. 
The pore volume was 0.77 cm3/g and the surface area 
was 310 m2/g.

Batch method
To study the effects of pH, contact time, the effect of 
dosage and temperatures, A 10  mg of the synthesized 
material (SiNP-Cu) was added to mL of the TMP solu-
tion and shaking for a period of time. The contact time 
was studied up to 150  min. The range of pH was from 
2 to 12, the dosage was from 0.01 to 0.3 g. Three differ-
ent temperatures were used during this study (310, 315 
and 320 K). The concentration of TMP was determined 
by spectrophotometry measurements. The amount of 
TMP removed by the prepared material SiNP-Cu from 
the aqueous medium was calculated using the following 
equations [40]:

QM denotes the quantity of TMP on the adsorbent 
(mmol/g), QW denotes the amount of TMP on the adsor-
bent (mg/g), V denotes the volume of the aqueous solu-
tion (L), W denotes the weight of the adsorbent (g), and 
C0 denotes the initial concentration of TMP (mmol/L), 
The equilibrium concentration of TMP in the prepared 
solution (mmol/L) is represented by Ce, while the atomic 
weight of TMP (g/mol) is represented by M. Analyses 
were carried out in duplicate for each sample, and the 
mean data is what is provided.

(1)QM =
(C0 − Ce)

W

(2)QW = QM ×M

Fig. 4  TGA analysis of free silica (a), of SiNP (b), SiNP-Cu (c)



Page 7 of 17Jodeh et al. BMC Chemistry           (2022) 16:17 	

Sorption experiments
Effect of adsorbent dose
Several parameters were studied to determine the capac-
ity of an adsorbent. One of them is the effect of adsorbent 
dose on adsorption of TMP by SiNP-Cu which showed 
a higher removal capacity of TMP during the increasing 
of the dose amount as shown in Fig. 5. This rise is due to 
an increase in the number of available reaction sites for 
the adsorbent. With 300 mg of SiNP-Cu, about % of TMP 
was removed from a 50 mL solution.

Effect of pH
Previous research has shown that the adsorption of 
medicines to functionalized compounds in solution or 
placed on solid supports is usually influenced by numer-
ous parameters such as pharmaceutical compound size, 
charge, shape of the donor atom [41], as well as their 
binding properties and buffering conditions [42]. These 
characteristics were examined utilizing solution chemis-
try and solid-phase extraction of various materials based 
on the coordination of the immobilized on the surface of 
solid supports, such as silica gel, nanomaterials, and pol-
ymeric compounds. To investigate the suitability of syn-
thesized SiNP-Cu for TMP removal, the effect of pH was 
investigated as one of the critical parameters.

The adsorption properties of SiNP-Cu were investi-
gated between 2.5 and 11.0 is represented in Fig. 6.

As seen in Fig.  6, the TMP uptake of the adsorbent 
changes as the pH changes was studied using 50  mL of 
50  mg/L solution of TMP at room temperature and 
100 mg of SiNP-Cu. The retention of TMP by the func-
tionalized silica SiNP-Cu is not excessive at low pH 
levels, which is due to the ligand, which must be in its 
protonated form. When the pH rises, protonation weak-
ens, which improves the chelation and adsorption of pol-
lutants such as TMP.

Figure  6 clearly shows that an increase in pH had an 
effect on the adsorbent surface and TMP. At pH = 12, the 
elimination percentage nearly reached 90%. The explana-
tion for this is that TMP is a weak base with a pKa of 7.3. 
As a result, all TMP take the form of TH+ ↔ T : +H+.

Another fact is that the protonated form of TMP does 
not favor the adsorbent surface of the produced SiNP-Cu, 
which has a positive charge. At acidic pH values, both the 
TMP and the adsorbent surface are positively charged, 
which may explain why TMP adsorption on SiNP-Cu sur-
faces is low. On the other hand, as pH rises, the proportion 
of adsorption rises as well. In general, the removal percent-
age reached about 91.5% at pH = 8.

Effect of contact time
At different temperatures, (308, 315, and 320 K), the influ-
ence of contact time on TMP adsorption by SiNP-Cu was 
investigated as seen in Fig. 7. As seen it took 90 min to start 
reaching the adsorption equilibrium. This time was used 
for the rest of the batch studies including the effect of dos-
age and temperatures. The equilibrium times were found to 
be the same for all temperatures, and they increased as the 
temperature increased, as seen in the graph.

Adsorption kinetics
To study the kinetics for the adsorption and to understand 
the change in adsorption with time, three models have 
been applied [43]:

Pseudo-first-order, pseudo-second-order, and intraparti-
cle diffusion models are among them.

Lagergren’s pseudo-first-order kinetic model has the fol-
lowing equation:

The parameters in the equation are: qt represents the 
quantity of TMP adsorbed (mg/g) on SiNP-Cu at differ-
ent times t; q1 represents the maximal adsorption capacity 
(mg/g); and k1 represents the pseudo-first-order adsorption 
rate constant (min−1). The parameters (q1 and k1) were cal-
culated using the intercept and slope of a simulated first-
order straight line. Table  1 summarizes these parameters 
and correlation coefficients (R2).

From Table 1, the values for (R1
2) were between 0.75 and 

0.91 for the TMP at 308, 315 and 320 K, respectively.
The equation below was used to calculate the parameters 

for the pseudo-second-order adsorption kinetic rate [44]:

For the pseudo-second-order adsorption kinetic 
model, K2 is the rate constant (g mg−1  min−1) and q2 is 

(3)
1

qt
=

(

k1

q1

)(

1

t

)

+
1

q1

(4)
dqt

dt
= k2(q2 − qt)

2

Fig. 5  Effect of adsorbent dosage on removal TMP by SiNP-Cu using 
50 mL of 50 mg/L of TMP at pH = 8 and room temperature
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the maximal adsorption capacity (mg g−1). The equa-
tion below was generated by integrating the equation and 
using a boundary condition (qt = 0 at t = 0 and qt = qt at 
t = t), the equation below was obtained:

A plot of (t/qt) versus t was obtained to calculate the 
parameters that are listed in Table  1. We found that 
the correlation coefficients (R2) of the first-order and 

(5)
1

qt
=

1

k2d
2
2

+
t

q2

pseudo-second-order kinetic models are substantially 
lower in the first order model than in the second order 
model by comparing the correlation coefficients (R2) of 
the two models. In addition, using different plots for both 
kinetic models to compare both calculated and experi-
mental qe, we found that the results for the pseudo sec-
ond order model correspond better, as shown in Table 1. 
The second-order kinetic model can better characterize 
the sorption process for TMP on SiNP-Cu based on the 
data and results in the Table. Another finding showed 

Fig. 6  Effect of pH on TMP removal using 100 mg of SiNP-Cu and 50 mL of 50 mg/L solutions at room temperature (a), TMP Adsorption mechanism 
on SiNP-Cu (b)



Page 9 of 17Jodeh et al. BMC Chemistry           (2022) 16:17 	

that when the temperature rose, the maximum adsorp-
tion capabilities of TMP adsorption onto SiNP-Cu 
increased. This leads to the conclusion that TMP pro-
motes adsorption onto SiNP-Cu. Another finding is that 
the adsorption process can be regarded as chemical, and 
TMP adherence occurs from the bulk phase to the solid 
phase (SiNP-Cu) as the temperature of the solution rises. 
This finding was also discovered by investigating the iso-
therm adsorption section.

The study of the intraparticle diffusion model of Weber 
and Morris can be presented by the mathematical equa-
tions [45, 46]:

(6)qt = kt t
1/2

+ C

In this equation, qt is the quantity of TMP adsorbed 
(mol/g) at time t, and C is the intercept, which is used 
to define the thickness of the boundary layer; the larger 
the intercept, the stronger the boundary layer effect. The 
intraparticle diffusion rate constant is denoted by ki (mg 
s−1 g−1). The slope of qt versus t1/2 was used to calculate 
ki. The plot may show multi linearity, indicating that a 
few steps occur. For the two temperatures (308 and 315), 
the first portion (14 to 20.5) describes the diffusion of 
adsorbate from the solution to the adsorbent’s external 
surface or, in some cases, displays the boundary layer dif-
fusion of dissolved molecules. The second portion (20.5 
to 23) typically reflects the progressive rise of the layer 
adsorption stage where intraparticle diffusion is the rate 
limiting phase. The third portion (22 to 26) is attributed 
to the ultimate equilibrium stage, as seen in Fig.  8 and 
Table 1.

Figure 8 shows that the figure for qt vs t0.5 at 320 K is 
almost straight line, which can demonstrate and establish 
intraparticle diffusion effects.

As previously stated, the intercept (C) values often 
describe the thickness of the boundary layer. The bigger 
the intercept, the stronger the boundary layer effect. In 
our experiment, the values for C increased with increas-
ing temperature. This demonstrated that the boundary 
layer effect played no significant influence in the adsorp-
tion of TMP onto SiNP-Cu.

Furthermore, the linear sections of the intraparticle dif-
fusion curves in the figure did not pass through the ori-
gin, implying that additional effects and processes control 
the entire adsorption process.

Removal of contaminants in aqueous systems through 
reverse osmosis, ion exchange, and electrolysis is more 
expensive compared to when removal proceeds via the 
adsorption process. Adsorption is an effective and low-
cost technique for the elimination of antibiotics in aque-
ous systems [47].

Fig. 7  Effect of contact time of TMP adsorption onto SiNP-Cu

Table 1  TMP adsorption onto SiNP-Cu kinetic parameters at 
various temperatures

Kinetic Model

Temperature (K) 308 315 320

Pseudo-1st Order

 R1
2 0.75 0.81 0.91

 K1 (min−1) 3.91 6.35 7.32

 q1 (mg g−1) 19.38 19.82 20.3

 qe (Calculated) 9.32 11.23 13.62

 Qe(exp) 41.21 23.17 48.23

Pseudo-2nd Order

 R2
2 0.992 0.981 0.999

 K2 (g mg−1 min−1) 0.003 0.004 0.005

 q2 (mg g−1) 39.32 20.38 40.46

 qe (Calculated) 42.86 22.23 47.85

Intra-particle diffusion

 Rp
2 0.999 0.964 0.999

 Ki (mg s−1\2 g−1) 0.18 0.26 0.19

 C 12.32 14.8 15.7

Fig. 8  The intraparticle diffusion plot for adsorption of TMP onto 
SiNP-Cu at different temperatures
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Application of commercial activated carbons (ACs) for 
the treatment of wastewaters contaminated with antibi-
otics has been reported in various studies [48–50]. ACs 
are universal and more effective to eliminate various pol-
lutants from solution. However, these ACs do not find 
global acceptance due to their high costs [51].

The physicochemical properties, adsorption capaci-
ties, isotherms, and kinetics models of the adsorbents 
used for the removal of trimethoprim are presented in 
Table  2. A most recent study done used modified silica 
to uptake TMP [52]. This adsorbent has been applied as a 
new promising adsorbent for the uptake of trimethoprim, 
as the graphene oxide and its derived nanomaterials are 
known to have outstanding adsorption performance 
toward antibiotics [52].

Adsorption isotherms
The results of the change in the adsorbed amount of TMP 
with equilibrium concentrations on the surface of SiNP-
Cu was given in Fig. 9. The symbol Cs is representing the 
solid phase concentration (mmol g−1) and the Ce symbol 
is representing the final concentration (mmol L−1) in the 
supernatant during equilibrium for every single initial 
concentration.

Plotting Ce/Cs vs Ce, the slope and the shape of the 
initial portion of these isotherm curves for the three 

temperatures plot is very close to S-type and C-type 
as in Giles classification, respectively (Giles, MacEwan 
et al. 1960). This type of isotherms is relatively rare and 
indicative of weak adsorbent–adsorbate interactions 
[53].

Several isotherm equations have been developed and 
used to study the equilibrium nature of adsorption pro-
cesses. In our study, we used two models to describe 
the isotherm equilibrium: The Langmuir and the Fre-
undlich sorption isotherm.

According to Langmuir isotherm principle, it 
assumes the presence of monolayer coverage of adsorb-
ate over a homogenous adsorbent surface like TMP 
on SiNP-Cu in our case the adsorption data were rep-
resented in Table 3 and were obtained using the linear 
form of Langmuir adsorption model (Eq. (7)).

The variables Cs and Ce were mentioned above while 
Cm is the amount of drug that is required for making 
monolayer (adsorption capacity). The variable aL is a 
Langmuir constant and representing the intensity of 
the adsorption and adsorption energy.

(7)
Ce

Cs
=

1

CmaL
+

Ce

Cm

Table 2  Physicochemical characteristics, adsorption capacities, isotherms and kinetics models of the adsorbents used for removal of 
trimethoprim

Adsorbent Surface area 
(m2 g−1)

pH Maximum adsorption 
capacity (mg g−1)

Isotherm model Kinetic model References

Micro-AC 1534 6.22 543 Langmuir Pseudo-second-order model [48]

Biochar 8.89 9.1 2.08 × 103 Langmuir Pseudo-second-order model [49]

Graphene oxide – – 204.08 Freundlich Pseudo-second-order model [50]

Bentonite 23 8.1 106.27 Langmuir Pseudo-second-order model [51]

SiNP-Cu – 8 420 Freundlich Pseudo-second-order model

Fig. 9  Adsorption isotherms for the TMP onto SiNP-Cu at 308, 315 
and 320 K

Table 3  Isotherm coefficients for TMP adsorption onto SiNP-Cu 
at various temperatures

Isotherm Model

Temperature (K) 308 315 320

Langmuir model

 R2 0.71 0.85 0.73

 Cm (mmol g−1) − 0.02 − 0.03 − 0.18

 L (g L−1) − 6.32 − 4.67 − 4.13

 RL 4.28 2.16 2.32

Freundlich model

 R2 0.95 0.98 0.95

 Kf (mg(1–1/n) g−1 L1/n) 15.82 8.75 4.75

 nf 2.11 2.32 1.97
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The dimensionless constant separation factor RL was 
used to study the essential characteristics of the Lang-
muir isotherm:

C0 is the initial TMP concentration (mmol L−1) and aL 
is Langmuir constant. All the variables values are sum-
marized in Table 3. Usually, the RL values between 0 and 
1 indicate favorable adsorption of TMP onto SiNP-Cu at 
the concentration studied.

From Table  3 all the RL values at different tempera-
tures were higher than 1. Which indicates that unfavora-
ble adsorption was occurred and also all the adsorption 
capacity (Cm) values were negative for the SiNP-Cu. 
These results agree with a previous study by Molu and 
Yurdakoc, 2010 [54].

From Table 3, the correlation coefficients (R2) obtained 
for Langmuir equation were smaller than the one 
obtained by Freundlich equation (around 0.75) which 
suggested that the boundary layer thickness that has been 
studied by intraparticle diffusion was also increased. The 
mathematical Freundlich equation (Eq.  (9)) is an expo-
nential equation that usually used for multilayer adsorp-
tion with a heterogeneous energy distribution of active 
sites. The equation can be presented as below [55]:

The linearized form of the equation can be written as:

The coefficient nf is a characteristic constant that 
describes sorption intensity, while the parameters Cs, Ce 
and kf represent the adsorbed amount (mmol g−1), con-
centration (residual) at equilibrium (mmol L−1) and the 
sorption capacity of sorbent (mmol g−1), respectively. All 
the kf values decreased when temperature is increasing.

Adsorption thermodynamics
The study of thermodynamic parameters like equilibrium 
constants (Kc), the standard enthalpy (∆H°), the standard 
Gibbs free energy (∆G°) and the standard entropy (∆S°) of 
the adsorption process of TMP onto SiNP-Cu were stud-
ied using the following equations [56]:

(8)RL=
1

(1+ aL.C0)

(9)Cs=kf C
nf
e .

(10)lnCs = lnkf+nf ln Ce.

(11)�G
◦

= −RTlnKc.

(12)Kc =
Cs

Ce
+

�S
◦

R
.

The parameter Cs is representing the concentration of 
TMP adsorbed (mol L−1); Ce is describing the equilib-
rium concentration of TMP in solution (mol L−1) at a 
given specific temperature; while T is the studied solu-
tion temperature (K); and R is the ideal gas constant 
(8.314 J K−1 mol−1). To find the standard enthalpies (∆H°) 
of the TMP-SiNP-Cu adsorption, the Van’t Hoff equation 
was used and the plots of ln Kc versus 1/T were obtained. 
The list of thermodynamic parameters are shown in 
Table 4. From the Table, the value for the enthalpy is pos-
itive (1.63 kJ mol−1). At the same time, the plot for Van’t 
Hoff which represents the interactions of the drug with 
the surface of the adsorbents usually require energy and 
as seen this interaction is endothermic in nature. The 
obtained low adsorption enthalpy values caused due to a 
number of physical interactions which can be described 
by the electrostatic attractions and nonpolar characteris-
tics interactions, the hydrogen bonding and bridging.

Besides that, other parameters like ion-exchange reac-
tions between TMP molecules and the adsorbent struc-
ture (SiNP-Cu) [55–57]. The main possibility factor for 
the low enthalpy is the H-bond and the formation of 
Water Bridge between the groups of N or O in the TMP 
organic structure (Fig.  1) and the group of –NH that is 
present during the synthesis of SiNP-Cu helped to lower 
the value. For the standard entropy (∆S°) which was 
determined from the intercept of the Van’t Hoof plot 
(∆S°/R) is positive (3.73 Jmol−1 K−1). This shows that the 
degrees of freedom of adsorbed species are increasing. 
At the same time, all the values for ∆G° at various tem-
peratures are also positive. The values of the ∆G° of the 
process for SiNP-Cu decreased with increases the tem-
perature, which lead to assume that the process may be 
spontaneous at high temperatures.

Theoretical results
DFT study
As mentioned above, the main aim of this research study 
is the removal of the TMP from wastewater using SiNP 

(13)lnKc = −
�H

◦

RT
+

�S
◦

R
.

Table 4  The standard thermodynamic parameters for TMP 
adsorption onto SiNP-Cu

Thermodynamic

Temperature 
(K)

Kc ∆G° (kJ mol−1) ∆S° (J mol−1) ∆H° (kJ mol−1)

308 0.318 2.53 3.73 1.63

315 0.321 2.62

320 0.336 2.71
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(Fig.  10a). So that our discussion focuses on the results 
obtained in an aqueous solution. The optimized geo-
metrical structures, the molecular electrostatic poten-
tial maps (ESP), and the distribution of HOMO orbital 
and LUMO orbital of the TMP compound are shown in 
Fig. 10b, c. We found that the distribution of the electron 
cloud in these two orbitals was mainly concentrated on 
most of the entire moiety of the molecule. In particular, 
we found that the HOMO orbital was more distributed 
on the N atom and the delocalized π-electrons of the 
pyrimidine and the aromatic benzene ring. This finding 
suggests that the N atoms and the delocalized π-electrons 
are responsible to donate the electrons to interact with 
the SiNP surface. On the other hand, we also found that 
the LUMO was found more distributed on the C atoms, 
suggesting that the C atoms are the centers responsible 
to accept an electron from the SiNP. These findings were 
also confirmed by monitoring the ESP map (see Fig. 10d). 
The small value of the energy gap indicates the high reac-
tivity and the ease of the adsorption process of the TMP 
on the SiNP surface (Table 5). As in known, in the pro-
cess of adsorption of TMP by SiNP, the electron charge is 
transferred from the TMP toward the SiNP surface, and 
this result is in agreement with the positive values charge 

transfer maximum parameter (∆N) [58]. The positive 
value of ∆N proves that the TMP has a donor electron 
effect and is a donor electron (Table 5). Furthermore, the 
chemical electronic potential of the TMP is negative and 

Fig. 10  a optimized structure, b HOMO, c LUMO and d molecular electrostatic potential map (ESP) obtained using B3LYP/6–31 + G(d,p) level of 
theory in gas phase

Table 5  Quantum global reactivity descriptors of the TMP 
molecule

Gas phase Aqueous solution

Etotal (hartree) − 989.054 − 989.071

Volume (bohr3/mol) 2174.001 2561.223

Dipole moment μ* (Debye) 4.05 4.97

EHUMO (eV) − 5.883 − 6.154

ELUMO (eV) − 0.637 − 0.897

EHOMO− 1 (eV) − 6.346 − 6.522

EHOMO− 2 (eV) − 6.590 − 6.803

Energy gap ΔE (eV) 5.245 5.258

Hardness (η) (eV) 2.623 2.629

Hyper-hardness (γ) 4.782 4.890

Softness S (eV−1) 0.381 0.380

Chemical potential (π) (eV) − 3.260 − 3.525

Electrophilicity (ω) (eV) 2.026 2.364

Maximum charge transfer (ΔN) 1.243 1.341
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it means that the TMP is stable and it is not decompos-
ing spontaneously into the elements and compounds are 
made up of them. The energy gap of TMP is quite high. 
The dipole moment of TMP (4.97 Debye) is higher than 
that of water (1.82 Debye) and it means that TMP is able 
to expel water from the SiNP surface (Table 5).

The full set of the NBO charges, LRDs and DDs 
obtained at B3LYP/6–31 + G (d,p) level of theory in 
aqueous solution are listed in Table 5 of the electronic 
supplementary information (ESI). Figure  11a–c shows 
the graphical representation of the LRDs ( f ±k , σ±

k  and 
ωσ±

k , repectively ) of the TMP compound. Our com-
puted results suggest that the highest nucleophilic 
attack 

(

f +k
)

 are found on C17, N4 and C16, whereas, the 
highest electrophilic attack 

(

f −k
)

 are found on C10, N5, 
N7 and N6, see (Fig. 11a). As known, the most nucleo-
philic sites in investigated compounds have the highest 
value of σ−

k andω−

k  , while the highest value of σ+

k andω+

k  

reveals the most electrophilic site in TMP compound 
[59], see panels b and c of Fig. 11. For numerical results, 
see Table  5 of the ESI. Consequently, similar conclu-
sions can also be marked by following the results of the 
local softness and the local electrophilicity.

Figure  11d shows the graphical representations of 
the dual reactivity descriptors of TMP compound 
obtained using B3LYP/6–31 + G(d,p) level of the-
ory in aqueous solution. Full set of numerical results 
of the DDs can be followed in Table  5 of ESI. A close 
inspection of the figure and Table  5 reveals that the 
most active sites, with f 2k ,�σkand�ωk < 0 , that are 
responsible to donate electron to SiNP surface are C10, 
N7, N5 and N6, whereas the most active sites, with 
f 2k ,�σkand�ωk > 0 , that are responsible to accept an 
electron from SiNP surface are C17, C16 and N4. These 
results agree with the results obtained by HOMO, 
LUMO and ESP maps

Fig. 11  Graphical representation of the LRDs, a f±
k
,bσ±

k
 , c ωσ±

k
 , and d the local dual descriptors, ( f 2

k
 , Δσk and Δωk) based on Fukui Functions of the 

TMP compound obtained using B3LYP/6–31 + G(d,p) level of theory in aqueous solution (the atom-numbering is in correspond with Fig. 1a)
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Monte Carlo (MC) and Molecular Dynamic (MD) simulation
The interaction between the modified silica surface and 
the TMP molecule was investigated using a large num-
ber of randomized Monte Carlo steps (configurations). 
The MD computations continue to employ the lowest 
energy geometry as provided by the MC. The simulation 
is performed under Periodic Boundary Conditions using 
the cell with dimensions presented in Fig.  12a. In the 
simulations the modified silica surface box is filled with 
1 TMP and 650 water molecules. Prior to the MD stage, 
the geometry was optimized using the Force module 
built into the Biovia software (tolerance for energy con-
vergence of 1 × 10–5  kcal/mol; atom-based summation 
method for both electrostatic and van der Waals interac-
tions with a cutoff distance of 15.5, a spline width of 1, 
and a 0.5 buffer; atom-based summation method for both 
electrostatic and van der Waals interactions with a cutoff 
distance of 15.5, a s MD was done at 25  °C with a 1  ns 
simulation duration using the Constant volume/constant 
temperature (NVT) canonical ensemble (using a 1  fs 
time step) [59]. The Berendsen thermostat maintains the 
T control. Calculations for MC and MD are performed 
using the Universal force field [60].

The lowest energy configurations for the silica surface 
and the TMP molecule are shown in Fig. 12b. The meas-
urable verdict of the interaction between TMP molecule 
and the modified silica surface is calculated using the fol-
lowing equation:

where: Etotal is the total energy of the system as a result 
of Modified Silica surface and the TMP molecule inter-
action; ECu(II)orPb(II)ions and EModifiedsilicais system energy 
in the absence and presence of TMP molecule. MC cal-
culations yield the lowest energy pose after a consider-
able number of randomized configurations. The Monte 
Carlo simulations (Fig.  12b) show that the TMP mol-
ecule adsorbs extensively on the modified silica surface, 
which is consistent with the experimental findings. The 
adsorption’s negative value indicates the adsorption pro-
cess’ spontaneity on this adsorbent [61]. Figure  11a–d 
in the ESI depicts the energies during the attendance of 
the lowest energy position, The graph shows tempera-
ture control from MD during the interaction of the TMP 
molecule onto modified silica surface, and the interaction 
energy of the TMP molecule onto modified silica surface 
during MD, respectively.

The distribution of the adsorption energies as shown 
in Fig. 12b are in range − 5 to − 95 kcal/mol depending 
on the contact configurations among TMP and modified 
silica surface. MD is primarily concerned with monitor-
ing the overall dynamics of the process. The small tem-
perature drift on the graph in Fig.  12c shows that the 

Eads = Etotal − [ETMP + EModifiedsilica]

equilibrium configuration has been reached. Figure  12c 
shows the lowest equilibrium energy structure for the 
TMP molecule interaction with modified silica surface 
obtained from MD. The interaction (adsorption) energy 
during the MD is assessed at each time elapse and is pre-
sented in Fig.  12c and descriptive statistics in Table  6. 
Relative high adsorption energies are consistent with 
experimental findings. The negative values of the adsorp-
tion energies indicate the spontaneity of the adsorption 
process.

Regeneration of adsorbent
As shown in Fig.  13, the effect of adsorbent recovery 
on adsorption of TMP on SiNP-Cu The difference in 
%removal between the first and second uses of SiNP-Cu 
adsorbent for removal of TMP was very small, 0.85% loss 
of efficiency, and it was also lower by 1.38% for the third 
use.

Conclusion
Recently, several research studies for pharmaceutical and 
personal care products (PPCPs) have been occurring 
around the world because of their severe distribution, 
continuous release, and huge effects on wildlife in the 
environment have been studied for their removal from 
wastewater. This research used 1,5-Dimethyl-1H-pyra-
zole-3-carbaldehyde, which was fixed on the silica sur-
face after many treatments and modifications, including 
3-aminopyltrimethoxysilane, and then refluxed with 
copper nitrate to produce SiNP-Cu which was used as 
adsorbent for the removal of TMP. The adsorbent dem-
onstrated a high percentage removal of TMP, reaching 
more than 94 percent. FT-IR spectra, nitrogen adsorp-
tion–desorption isotherm, BET surface area, B.J.H. pore 
diameters, thermogravimetric analysis (TGA), and scan-
ning electron microscopy (SEM) were used to character-
ize the newly synthesized material. The novel chelating 
surface is chemically and thermally stable. By immers-
ing the sample in 1 N HCl for a few minutes. The sorb-
ent was regenerated three times and the extraction % 
did not change significantly. The absorption mechanism 
was highly pH dependent and followed Freundlich and 
pseudo second order models. The adsorption process was 
not spontaneous.

The global reactivity indics prove that TMP is stable 
and it can be removed from wastewater using SiNP sur-
face. The results of the local reactivity indices concluded 
that the active centers for the adsorption process are the 
nitrogen atoms and the π-electrons of the pyrimidine 
and benzene rings. Furthermore, the positive value of the 
maximum charge transfer number (ΔN) proves that TMP 
has a great tendency to donate electrons to SiNP surface 
during the process of adsorption.
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Fig. 12  a The size of the simulation box containing the modified silica surface and the vacuum layer, b MC poses of the lowest adsorption 
configurations for onto Modified silica surface and c MD lowest energy configurations of TMP molecule interaction onto Modified silica surface
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The relative high adsorption energies obtained by 
MD simulation study are consistent with experimental 
findings. The negative values of the adsorption energies 
indicate the spontaneity of the adsorption process.

In general, the modified SiNP-Cu showed excellent 
TMP removal with more than 94% in basic medium.
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