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Abstract

We present solutions of the Schrodinger equation with superposition of Manning-Rosen plus inversely

Mobius square plus quadratic Yukawa potentials using parametric Nikiforov Uvarov method along with

an approximation to the centrifugal term. The bound state energy eigenvalues for any angular momentum

quantum number l and the corresponding un-normalized wave functions are calculated. The mixed potential

which in some particular cases gives the solutions for different potentials: the Manning-Rosen, the Mobius

square, the inversely quadratic Yukawa and the Hulthén potentials along with their bound state energies are

obtained.
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1 Introduction

The Schrödinger wave equation is primarily considered as one of the most commonly used differential equation

in non-relativistic quantum mechanics [1, 2, 3]. However, since the early times of quantum mechanics, the

exact solutions of the Schrödinger equation with some particular physical potentials are of much interest. Such

solutions provide profound conceptual understanding to physical models and certainly lead to a strong judgement

supporting the correctness of quantum theory. The exact solutions of central and non-central potentials find

their applications in various branches of physics such as molecular, solid-state and chemical physics [4] and so

forth. Our choice for the real potential gives the bound state energy eigenvalues and wave functions of the

Schrödinger wave equation that might describe essentially the particle dynamics in non-relativistic quantum

mechanics. Moreover, these solutions are used in checking and try to improve models under study and then

also finding methods in solving complicated physical models.
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Since the early times of quantum mechanics the number of exactly solvable physical problems is very limited.

Several authors have paid many efforts toward studying the exactly solvable physical problems by which one can

determine the whole energy spectrum analytically for wide range values of potential parameters [5]. Therefore,

in most of these potentials, the quasi-exactly solvable potentials are the ones that provide a part of the energy

spectrum [6].

Recently, various methods are introduced and employed in quantum mechanics in solving the wave equations

with a particular given solvable potential. We mention few among the many methods: the group theoretical

technique [7], the factorization method [8, 9], functional analysis approach (FAA) [10], supersymmetric (SUSY)

quantum mechanics [11], shape invariance (SI) [12], the Nikiforov-Uvarov (NU) method [13], exact quantization

rule [14, 15] and asymptotic iteration method (AIM) [16].

The Manning-Rosen, the quadratic Yukawa and the Mobius square potentials have been intensively con-

sidered and studied in non-relativistic and relativistic wave equations in recent years [17-28]. Therefore, the

main motivation of the present work is to give approximate solution to the non-relativistic Schrödinger equation

with the superposition of Manning-Rosen plus inversely Mobius square plus Yukawa potential models. Hence

we need to treat the centrifugal term with Greene-Aldrich approximation to enable for analytical solution of

the Schrödinger equation for any angular momentum quantum number l. This would provide us the bound

state energy spectrum for any angular momentum quantum number l and the corresponding wave functions by

simply applying the parametric Nikiforov-Uvarov (pNU) method.

The structure of the present work is as follows. In Section 2, we present the brief methodology. In Section

3, we apply this method to derive the bound state energy and wave functions for the Schrödinger equation with

the present potential model. Section 4 presents our results and discussion. Finally, in Section 5 we give our

conclusion.

2 Methodology

The Nikiforov-Uvarov (NU) [13] method is an efficient tool which is usually used to reduce the second-order

differential equation into a general form of a hypergeometric type. In that sense, any second order differen-

tial equation, i.e. Schrödinger, Fienberg-Horodecki, relativistic Dirac, Klien-Gordon equation, ...etc, can be

transformed, using a suitable coordinate transformation s=s(t), into the form:

ψ
′′

n(s) +
τ̃(s)

σ(s)
ψ

′

n(s) +
σ̃(s)

σ2(s)
ψn(s) = 0, (1)

where σ(s) and σ̃(s) are polynomials, at most second-degree, and τ̃(s) is a first-degree polynomial. The method

is noted to be tiresome and time-consuming. Therefore, Tezcan and Sever [29] derived a parametric form of

the NU method to popularize the method more. The parametric NU method is straightforward, simpler and

more accurate for the determination of the energy eigenvalues and the corresponding eigenstates. To apply the
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parametric NU method, the differential equation must be set into the general form given by [30]

ψ
′′

n(s) +
α1 − α2s

s(1− α3s)
ψ

′

n(s) +
−γ2

1s
2 + γ2s− γ3

s2(1− α3s)2
ψn(s) = 0, (2)

The conditions for the energy eigenvalues and the corresponding eigenstates are, respectively, given as

(α2 − α3)n+ α3n
2 − (2n+ 1)α5 + (2n+ 1)(

√
α9 + α3

√
α8) + α7 + 2α3α8 + 2

√
α8α9 = 0, (3)

ψn(s) = Nnls
α12(1− α3s)

−α12−(α13/α3)P
(α10−1,

α11
α3
−α10−1)

n (1− 2α3s), (4)

where

α4 =
1

2
(1− α1), (5)

α5 =
1

2
(α2 − 2α3), (6)

α6 = α2
5 + γ1, (7)

α7 = 2α4α5 − γ2, (8)

α8 = α2
4 + γ3, α9 = α3α7 + α2

3α8 + α6, (9)

α10 = α1 + 2α4 + 2
√
α8, (10)

α11 = α2 − 2α5 + 2(
√
α9 + α3

√
α8), (11)

α12 = α4 +
√
α8, (12)

α13 = α5 − (
√
α9 + α3

√
α8), (13)

where Nnl is the normalisation constant and P
(β,γ)
n is the orthogonal Jacobi polynomial.

3 Solution of the Schrödinger equation with two molecular potential

models

The Schrödinger equation in spherical coordinates is given as [30]

− h̄
2

2µ

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

r2sin2θ

∂2

∂φ2

]
ψ(r, θ, φ) = Eψ(r, θ, φ), (14)

where h̄ is the reduced Plank constant, µ is the reduced mass, E is the energy eigenvalues, and ψ is the wave

function of the particle. If we define the wave function as

ψ(r, θ, φ) =
Rnl(r)

r
Ylm(θ, φ), (15)
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the radial part of Schrödinger equation is given by

d2Rnl(r)

dr2
+

[
2µ

h̄2 (E − V (r))− l(l + 1)

r2

]
Rnl(r) = 0, (16)

where n and l are the radial and the angular momentum quantum numbers, respectively.

We shall solve the Schrodinger equation for the following two molecular potential models:

3.1 Combination of Manning-Rosen plus Mobius square plus quadratic Yukawa

potentials

The general potential is given as [31, 32, 33]

V (r) = −
(
Ce−αr +De−2αr

(1− e−αr)2

)
− V0

(
A+Be−αr

1− e−αr

)2

+
V1e
−αr

r2
, (17)

where C, D, V0, V1 are potential parameters and α is the screening parameter.

It is obvious that Eq. (16) cannot be solved analytically due to the quadratic Yukawa and the centrifugal

terms. However, this can be addressed using the Green-Aldrich approximation [34]

1

r2
≈ α2e−αr

(1− e−αr)2
. (18)

Substituting Eq. (17) into Eq. (16) and using Eq. (18) with s = e−αr one obtains Eq. (2), where

−γ2
1 =

2µ

h̄2α2
(E +D + V0B

2 − α2V1), (19)

γ2 =
2µ

h̄2α2
(C + 2ABV0 − 2E)− l(l + 1), (20)

γ3 = − 2µ

h̄2α2
(E + V0A

2). (21)

Comparing Eq. (38) with the parameters equations (5) to (13), one gets

α1 = α2 = α3 = 1, α4 = 0, α5 = −1

2
, (22)

α6 =
1

4
− 2µ

h̄2α2
(E +D + V0B

2 − α2V1), (23)

α7 = − 2µ

h̄2α2
(C + 2ABV0 − 2E)− l(l + 1), (24)

α8 = − 2µ

h̄2α2
(E + V0A

2), (25)

α9 =
1

4
(2l + 1)2 − 2µ

h̄2α2
(C +D + (A+B)2V0 − α2V1), (26)

α10 = 1 + 2

√
− 2µ

h̄2α2
(E + V0A2), (27)
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α11 = 2 + 2

[
1

2

√
(2l + 1)2 − 8µ

h̄2α2
(C +D + (A+B)2V0 − α2V1) +

√
− 2µ

h̄2α2
(E + V0A2)

]
, (28)

α12 =

√
− 2µ

h̄2α2
(E + V0A2), (29)

α13 = −1

2
−

[
1

2

√
(2l + 1)2 − 8µ

h̄2α2
(C +D + (A+B)2V0 − α2V1) +

√
− 2µE

h̄2α2

]
. (30)

Substituting the values of the parametric constants Eqs. (22) to (30) into Eqs. (3) and (4), respectively, one

gets the energy eigenvalues and the corresponding unnormalized radial eigenstates as

Enl = −V0A
2 − h̄2α2

2µ

[
n(n+ 1) + l(l + 1) + 1

2 + (n+ 1)T − 2µ
h̄2α2 (C + 2V0A(A+B))

1 + 2n+ T

]2

, (31)

and

ψnl(r) = Nnle
−α√γ3r(1− e−αr)βP (2

√
γ3,T )

n (1− 2e−αr), (32)

where

T =

√
(2l + 1)2 − 8µ

h̄2α2
(C +D + (A+B)2V0 − α2V1), (33)

γ3 = − 2µ

h̄2α2
(E + V0A

2), (34)

and β = 1+T
2 −√γ3 .

3.2 Combination of Manning-Rosen plus quadratic Yukawa potentials

The Manning-Rosen plus quadratic Yukawa potential is given by [31, 32]

V (r) = −
[
Ce−αr +De−2αr

(1− e−αr)2

]
+
V1e
−αr

r2
, (35)

where C, D, V1 are potential parameters and α is the screening parameter.

Substituting Eq. (35) into Eq. (16) gives

d2Rnl(r)

dr2
+

[
2µ

h̄2

(
E +

(
Ce−αr +De−2αr

(1− e−αr)2

)
− V1e

−αr

r2

)
− l(l + 1)

r2

]
Rnl(r) = 0. (36)

Substituting Eq. (18) in Eq. (36) leads

d2Rnl(r)

dr2
+

[
2µ

h̄2

(
E +

(
Ce−αr +De−2αr

(1− e−αr)2

)
− V1α

2e−2αr

(1− e−αr)2

)
− l(l + 1)α2e−αr

(1− e−αr)2

]
Rnl(r) = 0. (37)

Now, changing of variables using s = e−αr to transform the equation to the form of Eq. (2), one obtains

R
′′

nl(s) +
1− s
s(1− s)

R
′

nl(s) +
−γ2

1s
2 + γ2s− γ3

s2(1− s)2
Rnl(s) = 0, (38)
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where

−γ2
1 =

2µ

h̄2α2
(E +D − α2V1), (39)

γ2 =
2µ

h̄2α2
(C − 2E)− l(l + 1), (40)

γ3 = − 2µE

h̄2α2
. (41)

Comparing Eq. (38) with the parameters Eqs. (5) to(13), one gets

α1 = α2 = α3 = 1, α4 = 0, α5 = −1

2
(42)

α6 =
1

4
− 2µ

h̄2α2
(E +D − α2V1), (43)

α7 = − 2µ

h̄2α2
(C − 2E)− l(l + 1), (44)

α8 = − 2µE

h̄2α2
, (45)

α9 =
1

4
(2l + 1)2 − 2µ

h̄2α2
(C +D − α2V1), (46)

α10 = 1 + 2

√
− 2µE

h̄2α2
, (47)

α11 = 2 + 2

[
1

2

√
(2l + 1)2 − 8µ

h̄2α2
(C +D − α2V1) +

√
− 2µE

h̄2α2

]
, (48)

α12 =

√
− 2µE

h̄2α2
, (49)

α13 = −1

2
−

[
1

2

√
(2l + 1)2 − 8µ

h̄2α2
(C +D − α2V1) +

√
− 2µE

h̄2α2

]
. (50)

Substituting the values of the parametric constants Eqs. (42) to (50) into Eqs. (3) and (4), respectively, one

gets the energy eigenvalues and the corresponding unnormalized radial eigenstates as

Enl = − h̄
2α2

2µ

[
n(n+ 1) + l(l + 1) + 1

2 + (n+ 1)T − 2µC
h̄2α2

1 + 2n+ T

]2

, (51)

and

ψnl(r) = Nnle
−α√γ3r(1− e−αr)βP (2

√
γ3,T )

n (1− 2e−αr), (52)

where

T =

√
(2l + 1)2 − 8µ

h̄2α2
(C +D − α2V1), (53)

γ3 = − 2µE

h̄2α2
, (54)

and β = 1+T
2 −√γ3.
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3.3 Special Cases

To get special cases some parameters should be set to zero. The first case is Manning-Rosen plus Mobius square

which can be obtained by setting V1 to zero and the energy eigenvalues will be

Enl = −V0A
2 − α2h̄2

2µ

[
n(n+ 1) + l(l + 1) + 0.5 + T (n+ 1)− 2µ

α2h̄2 (C + 2AV0(A+B))

(1 + 2n+ T )

]2

, (55)

where

T =

√
(2l + 1)2 − 8µ

h̄2α2
(C +D + (A+B)2V0). (56)

The second case is Maning-Rosen plus quadratic Yukawa potential which can be obtained by setting V0 to zero.

The eigenvalues obtained are as follows

Enl = −α
2h̄2

2µ

[
n(n+ 1) + l(l + 1) + 0.5 + T (n+ 1)− 2µC

α2h̄2

(1 + 2n+ T )

]2

, (57)

where

T =

√
(2l + 1)2 − 8µ

h̄2α2
(C +D − α2V1), (58)

which is the same results as in (51) and (53).

The third case is Mobius square plus inversely quadratic Yukawa potential, which results from substituting

C = D = 0 in (17). The eigenvalues resulting from substituting these parameters in (55) are given by [35]

Enl = −V0A
2 − h̄2α2

2µ

[
n(n+ 1) + l(l + 1) + 1

2 + (n+ 1)T − 2µ
h̄2α2 (2V0A(A+B))

1 + 2n+ T

]2

, (59)

where

T =

√
(2l + 1)2 − 8µ

h̄2α2
((A+B)2V0 − α2V1). (60)

The fourth case is Manning-Rosen which can be obtained by substituting V1 = V0 = 0 and the resulting

eigenvalues are given as

Enl = − h̄
2α2

2µ

[
n(n+ 1) + l(l + 1) + 1

2 + (n+ 1)T − 2µC
h̄2α2

1 + 2n+ T

]2

, (61)

where

T =

√
(2l + 1)2 − 8µ

h̄2α2
(C +D), (62)

which agrees with the results in [36] and [37].

The fifth case is Mobius square potential which can be obtained by substituting C = D = V1 = 0. The

eigenvalues resulting are given by [38]

Enl = −V0A
2 − h̄2α2

2µ

[
n(n+ 1) + l(l + 1) + 1

2 + (n+ 1)T − 2µ
h̄2α2 (2V0A(A+B))

1 + 2n+ T

]2

, (63)
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where

T =

√
(2l + 1)2 − 8µ

h̄2α2
((A+B)2V0). (64)

The sixth case is inversely quadratic Yukawa potential which can be obtained by setting C = D = V0 = 0

and the eigenvalues produced are given by [39]

Enl = − h̄
2α2

2µ

[
n(n+ 1) + l(l + 1) + 1

2 + (n+ 1)T

1 + 2n+ T

]2

, (65)

where

T =

√
(2l + 1)2 +

8µV1

h̄2 (66)

The seventh case is the Hulthèn potential which can be obtained by substituting D = −C in the Manning-

Rosen Potential and the resulting potential will be [40]

V (r) = − Ce−αr

1− e−αr
(67)

and the eigenvalues obtained by substituting the parameters in (31) will be

Enl = − h̄
2α2

2µ

[
n(n+ 1) + l(l + 1) + 1

2 + (n+ 1)(2l + 1)− 2µC
h̄2α2

2(1 + n+ l)

]2

, (68)

which is the same results as in [41] and [42].

4 Results and Discussion

In this work we have studied the solution of the Schrödinger wave equation with two sets of potentials. Here

we tend to explain our results by commenting on the plotted Figures. In Fig. 1, we showed the variation in the

vibrational energy levels against the screening parameter α. It is noted that as α increases the energy levels

of the system decreases monotonically from zero. It is equally seen that rotational energy levels of the system

decreases as the screening parameter increases as shown in Fig. 2. Figure 3 shows the energy states decrease

as the principal quantum number increases for various values of the screening parameter.

Figure 4 indicates the variation of the vibrational energy levels against the strength parameter D. A decrease

in the strength D results in an increase in the energy. Moreover, as the potential strength D decreases beyond

some value it results in a sharp decrease in the energy.

In Fig. 5, we examined the variation in the energy against the potential strength V1. It is seen that the

energy of the system decreases monotonically from zero as the potential strength increases for various values

of n. A reverse case is shown in Fig. 6 when energy is plotted against the potential strength C. It is obvious

that when a particle is subjected to this system, the particle exhibits different features of V1 and C for various

values of screening parameters; namely, α = 0.1, α = 0.2. and α = 0.3. However, when the strength parameter

C gets a large value, the energy drops sharply for α = 0.1.
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Figure 7 shows a plot of the variation in the energy against the strength parameter C for various values of n.

It is seen that the energy decreases as the strength parameter C increases. It is equally seen that the vibrational

energy of the system decreases as the screening parameter increases for various values of n as shown in Fig.

8. A similar behavior to Fig. 8 appears for the rotational energy levels when plotted against the screening

parameters are shown in Fig. 9.

Finally, Fig. 10 shows the decrease of vibrational energy levels as the quantum number n increases for

various values of screening parameter α.

5 Conclusion

In this work, we have analytically solved the non-relativistic wave equation with the combination of three

important potentials via the parametric Nikiforov-Uvarov method. We have obtained the energy equation and

the corresponding non-normalized wave functions of the combination set of Manning-Rosen plus Mobius square

plus quadratic Yukawa potential and their subset of potentials. We have obtained in detail the energy eigenvalues

and the corresponding wave function for subset of potentials. These results could find their applications in

atomic as well as molecular physics. The effects of the strength parameters as well as screening parameter on

the vibrational and rotational energy levels were also studied.
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Figure 1: The quantized energy eigenvalues of Schrödinger equation with Manning-Rosen plus quadratic Yukawa
potential vs α for different values of n. V1 = 0.5 eV , D = −5 eV , C = 0.5 eV and l = 0.
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Figure 2: The quantized energy eigenvalues of Schrödinger equation with Manning-Rosen plus quadratic Yukawa
potential vs α. V1 = 0.5 eV , D = −5 eV , and C = 0.5 eV for n = 1 (l = 0), n = 2 (l = 0, l = 1), and n = 3
(l = 0, l = 1, l = 2).

Figure 3: The quantized energy eigenvalues of Schrödinger equation with Manning-Rosen plus quadratic Yukawa
potential vs n. V1 = 0.5 eV , D = −5 eV , C = 0.5 eV and l = 0 for different values of α.
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Figure 4: The quantized energy eigenvalues of Schrödinger equation with Manning-Rosen plus quadratic Yukawa
potential vs D. V1 = 0.5 eV , α = 0.1 C = 0.5 eV and l = 0 for different values of n.
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Figure 5: The quantized energy eigenvalues of Schrödinger equation with Manning-Rosen plus quadratic Yukawa
potential vs V1. D = −5 eV , α = 0.1 C = 0.5 eV and l = 0 for different values of n.
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Figure 6: The quantized energy eigenvalues of Schrödinger equation with Manning-Rosen plus quadratic Yukawa
potential vs C. D = −5 eV V1 = 0.5 eV n = 0 and l = 0 for different values of α.
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Figure 7: The quantized energy eigenvalues of Schrödinger equation with Manning-Rosen plus quadratic Yukawa
potential vs C. D = −5 eV V1 = 0.5 eV , α = 0.1 and l = 0 for different values of n.
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Figure 8: The quantized energy eigenvalues of Schrödinger equation with Manning-Rosen Mobius square plus
quadratic Yukawa potential vs α. D = −5 eV V1 = 0.5 eV , C = 0.5 eV and l = 0 for different values of n.

Figure 9: The quantized energy eigenvalues of Schrödinger equation with Manning-Rosen Mobius square plus
quadratic Yukawa potential vs α. D = −5 eV V1 = 0.5 eV and C = 0.5 eV for different values of n.
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Figure 10: The quantized energy eigenvalues of Schrödinger equation with Manning-Rosen Mobius square plus
quadratic Yukawa potential vs n. D = −5 eV V1 = 0.5 eV , C = 0.5 eV and l = 0 for different values of α.
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