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Abstract. School buildings have an enormous impact on students’ health, well-being and 
educational achievement; they also have an impact on energy consumption and other natural 
resources. Solar chimneys, solar walls, underground ducts for ventilation, shading, and building 
orientation were used to improve the indoor thermal environment in a pilot project school. A 
quantitative analysis was carried out based on field measurements by recording some thermal 
comfort parameters (mainly air temperature and relative humidity) for one year in the school. 
The aim was to evaluate the effects of the solar chimney, solar wall and underground duct used 
in selected classrooms on the indoor thermal environment and compare the results to base case 
classrooms in the same school. The study provided positive results confirming that the passive 
environment control system used in the pilot school is highly effective in providing indoor 
thermal comfort on hot and sunny days. The impact of ground ducts and solar chimneys on cold 
days was relatively small. Most of the classrooms tested on the three floors of the building were 
found to be thermally uncomfortable in winter. 

1.  Introduction 
School buildings are important as they have an enormous impact on students’ health, well-being and 
educational achievement. All over the world, governments put considerable effort into providing schools 
with thermal comfort and into achieving energy efficiency. The educational sector is growing 
dramatically as a result of the upward trend in population size. Recent studies [1], [2], [3], [4] have 
analysed the effects of the passive design solution for school buildings (such as natural ventilation, 
shading, thermal insulation, etc.) on students’ thermal environment and building energy efficiency. 
These studies found that the passive design solution can improve thermal environment and energy 
efficiency, especially in the cool season.  

Studies of school buildings have shown that environmental comfort parameters can greatly affect the 
learning process [5], [6]. Thermal environment is a significant factor in school design and operation, not 
only because of the comfort sensation that the occupants feel, but also because it is related to a building’s 
energy consumption, which influences its sustainability [7], [8]. Proper design of school buildings 
requires a balance between thermal performance and an acceptable quality of the indoor climate 
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conditions [9], [10]. The importance of maintaining adequate indoor air quality and thermal comfort, 
especially in schools, is recognized as being a contributing factor to students’ learning performance [11].  

In many of the technologically and economically advanced countries, schools, occupant comfort, 
students and teacher performance are put as a first priority. However, in developing countries, many of 
the recent developments in ensuring high performance and quality in the school environment have not 
been applied to school design and construction. The evaluation of current design and construction of 
schools and the creation of pilot projects are the missing link towards improving the indoor environment 
in schools. In Palestine, the Ministry of Education and Higher Education started an initiative to improve 
thermal conditions in school buildings in Palestine by launching a few pilot projects to evaluate 
conditions and learn the lessons. In recent years, the Palestinian government has significantly reduced 
the number of students per school by increasing the number of schools in major towns and cities. 
However, design alternatives that will solve comfort problems are rarely generated or evaluated and 
environmental comfort conditions are not considered as a starting point in the design and construction 
process. Most buildings in Palestine are not thermally insulated [12]. Palestine suffers from a shortage 
of natural resources, particularly energy, and imports almost all of its energy needs from neighbouring 
countries. Furthermore, Palestine depends on other countries for 100% of its fossil fuel imports and for 
87% of its electricity imports [13]. In the West Bank or Gaza no public school is equipped with heating 
or cooling systems, as the Ministry of Education budget does not allocate any support for capital 
investment and running costs of heating and cooling systems in schools. This lack of heating and cooling 
systems in classrooms has many negative impacts on students, especially those at elementary level.  

One of the greatest challenges of modern design is to create thermally comfortable environments in 
schools through studying in detail all contributing factors, especially passive design solutions [14]. 

2.  Methodology 
This study used Wadi al Mughair School to evaluate the effects of passive design strategies on a 
classroom’s indoor thermal environment. The strategies used were a solar chimney, an earth duct and a 
solar wall. The Ministry of Education wanted to create this school as a pilot project in the West Bank. 
Transsolar KlimaEngineering served as a consultant to design the above-mentioned passive systems. 
The building is located in the city of Hebron (latitude 31.53 N, longitude 35.09 E, and altitude of 900 
m) in the southern West Bank, which is considered representative of a climatic zone characterized by 
cold winters, relatively low precipitation and high temperatures during summer [15]. This zone is one 
of six climatic zones in the West Bank and Gaza Strip and contains the highest population intensity in 
the West Bank [16]. The building consists of 3 floors in a total built-up area of 2780 m².  Passive design 
strategies have been used to increase temperatures in winter, provide fresh air, and avoid overheating in 
summer including: orientation, shading, earth duct, solar chimneys and solar walls. An 80 m long earth 
duct has been constructed under the ground and connected with duct leads to vertical and horizontal 
solar chimneys at the top of the building. The solar chimney has been sized so that it has an exposed 
area of 5 m² with a south-east orientation and the horizontal chimney has a cross-section of 0.7 m². The 
solar wall has a surface area of 12 m² on each floor. Four classrooms on each floor were selected to 
monitor the indoor thermal environment, mainly indoor air temperature and relative humidity, for one 
year. The classrooms were south-east facing, with an occupancy of 30 students per classroom, and a 
floor area of 55 m². Classroom 1 (R1) on each floor is a reference classroom which has no connection 
to the earth duct, solar chimney or solar wall. Classrooms 2 and 3 (R2, R3) on each floor are connected 
to the underground duct and solar chimney. Classroom 4 (R4) on each floor has a connection to a solar 
wall and solar chimney, as shown in Figure 1 and Figure 2. 

To supply sufficient fresh air on winter mornings and to reduce the classroom temperatures in 
summer, the earth duct system works in combination with the solar chimneys to drive the air and increase 
its velocity to improve air supply temperatures. The earth duct has to be controlled with a bypass system 
operated by teachers only if the outside air temperature is lower than the underground temperature in 
winter, and when the indoor temperature is higher than the underground temperature in summer. South-



CISBAT 2019

Journal of Physics: Conference Series 1343 (2019) 012190

IOP Publishing

doi:10.1088/1742-6596/1343/1/012190

3

 
 
 
 
 
 

east oriented solar walls capture solar energy on the façade and can preheat the air before it enters the 
classroom, and the air flow will be driven through the solar chimneys.  

 

Figure 1. Vertical section shows the earth duct, 
horizontal and vertical solar chimneys and solar 
wall connection to the selected classrooms. 

 

Figure 2. Floor plan shows selected classrooms, 
and the connection between underground ducts 
solar wall and solar chimneys. 

To evaluate the effects of the underground duct, solar walls and solar chimneys on the thermal 
environment, field measurements for the selected classrooms were taken from 1 September 2016 to 31 
August 2017. Onset HOBO data logger devices were installed in the selected classrooms and inside the 
duct on each floor to measure the indoor air temperature and relative humidity every 30 minutes. To 
exclude the effect of uncontrolled conditions for ventilation, the results were presented for working 
hours 7:00 am to 3:00 pm. For the outdoor climatic conditions, a mini weather station was installed on 
the top of the building. A comparison was made between the reference rooms (R1) and the classrooms 
connected to the earth duct and solar chimneys (R2, R3), and with classrooms connected to solar walls 
and solar chimneys (R4) on each floor and between floors. 

3.  Results and Discussion 
The results show that the average indoor air temperature for the whole year ranges from 8 to 29ºC for 
the ground floor, 6 to 30ºC for the first floor and 5 to 31ºC for the second floor. Comparing air 
temperatures for the second floor with the ground and first floors, these temperatures are slightly lower 
in winter and slightly higher in summer, which can be explained by the exposed roof. On cold days, 
with outdoor air temperatures < 10ºC, all rooms have average temperatures that are at least 5ºC higher 
than the outside temperatures, but they are still below 18ºC which makes all rooms uncomfortable in 
winter. On hot days, with outdoor temperatures > 25ºC, all rooms –except room 4– have average 
temperatures that are at least 5ºC less than the outside temperatures. Outside temperatures fluctuate [∆T 
swing (for 2 months) around 23ºC], meanwhile indoor air temperature swings do not exceed 10ºC for 
the same period. This can be related to the stabilizing effect of the underground duct and the building 
thermal mass.  

For the winter season during working hours, the room temperature in the reference room (R1), which 
has no connection to the earth duct, solar chimneys or solar wall, has more fluctuation than the other 
rooms. On colder days at <10ºC, only R1 has lower temperatures than R2, R3 and R4, due to the effect 
of the earth ducts and solar chimneys which play a major role in maintaining temperatures in these rooms 
at a higher level. Temperatures in R2 and R3 are stable with minor swings between day and night. R4, 
with the solar wall, has an unstable performance as the solar wall depends on the sun’s availability. 
When the sun is not available, R4 on the ground, first and second floors has lower indoor air 
temperatures (1 to 4ºC) than other rooms, as shown in Figure 3. When the sun is available, R4 has higher 
indoor air temperatures (1 to 3ºC) than other rooms, as shown in Figure 4. All the rooms tested have a 
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temperature range of 5-18ºC most of the time in winter, which means that using the passive design 
solutions tested here was not enough to maintain thermal comfort. 

For the early and late summer seasons (May - June and September – October; schools are closed 
from mid-June till the end of August) during working hours, R4 with its solar wall on the ground, first 
and second floors has the highest temperatures (+1 to +8ºC) compared to other rooms. Also, R3 which 
is attached to R4 and connected to the earth duct and solar chimney, has a relatively high and stable 
temperature during working hours (≈25ºC). Rooms 1 and 2 on the ground, first and second floors have 
lower temperatures. R2, which is connected to the earth duct and solar chimney, has the lowest air 
temperatures on hot days (ranges from 20 to 25ºC) compared with other rooms, as shown in Figure 5 
and Figure 6. 

 

 

 

Figure 3. Two-month 
comparison (January 
and February 2016) of 
indoor and outdoor air 
temperatures for 
classrooms 1-4 on first 
floor. 

Comparing rooms R2 and R3 with the earth duct and solar chimney to reference room R1, the indoor 
air temperatures are slightly better in winter and much better in summer. On certain days of the year, 
the difference can be noticeable, as can be seen in Figure 4 and Figure 6. Daily diurnal temperature 
variations (∆T day.swing =T day.max – T day.min), also known as fluctuation, inside all the rooms were 
very small (less than 4ºC) for the whole year, meanwhile daily swings for outdoor temperatures range 
from 5 to 15ºC for the same period. Comparing rooms connected to the solar wall and solar chimney 
R4, with reference rooms R1 and with R2 and R3, the indoor air temperatures for R4 are not stable in 
winter and are uncomfortably high in summer. 

 

 

 
Figure 4. Four working 
days during working hours 
in winter show the 
difference between outdoor 
temperature and indoor air 
temperature for the 
selected classrooms on the 
first floor. 
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Comparing air temperatures on the second floor to those on the ground and first floors, the second-
floor temperatures are slightly lower in winter and slightly higher in summer, which is due to the exposed 
roof on the second floor. For this reason, the paper shows the results for the first floor. 

Indoor relative humidity (RH) for the ground and first floors ranges from 30% to 70% on most days 
of the year, which can be considered as comfortable according to ASHRAE 55. On the second floor, 
RH in all rooms in winter time and in the following weeks is higher than on other floors of the building. 
This can be related to the roof exposed to the outdoors, and lack of waterproofing in the roof. 

 

 

 

Figure 5. May and part 
of June 2016, 
comparison of indoor 
and outdoor air 
temperatures for the 
selected classrooms on 
the first floor. 

 

 

 

 

Figure 6. Four 
working days during 
working hours in early 
summer show the 
difference between 
outdoor temperature 
and indoor air 
temperature for the 
selected classrooms on 
the first floor. 

4.  Conclusions 
Data analysis for passive design solutions in the selected school building has shown that there is a clear 
positive impact by the ground duct and solar chimneys on hot and sunny days. The chimneys act as good 
ventilators on these days and they could stabilize room temperatures in the classrooms at comfortable 
temperatures and humidity rates. However, the impact of ground ducts and solar chimneys on cold days 
was relatively small. The indoor air temperatures were higher than outdoor temperatures but much lower 
than the required comfort air temperatures. As the underground temperature in Palestine is stable (14 to 
17ºC), it is not expected that rooms are heated in winter to the comfort level (18 to 22ºC). On relatively 
very cold days, most classrooms were measured at 10°C or less. For such cold days without sunshine, 
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the effect of solar chimneys and solar walls for withdrawing air from ground ducts was very limited. 
The reasons for this discomfort are: relatively low temperatures in the ducts, high ventilation rate in 
winter created by solar chimneys and the large thermal mass of the building, which is not thermally 
insulated. 

For the three rooms with solar walls installed on their south-east wall, it was clear that they have the 
highest temperature throughout the year, higher than other rooms on sunny days. In winter, solar walls 
assist to a certain limit in warming the attached classrooms on sunny days only, but temperatures are 
still far from comfort level. In summer, these classrooms are uncomfortably hot on several working 
days. As no insulation was added to the solar wall, heat is transferred to the room by circulation through 
the grill and by radiation from the wall. The analysis of relative humidity levels shows that RH in the 
upper floor is higher than in the other two floors.  

Air flow and air speed in solar chimneys depend on chimney height (the distance between inlet and outlet). 
In this case, the ground floor gives the highest values and best performance. On the upper floor the roof was 
not insulated from inside or outside which negatively affects heat loss in winter and heat gain in summer. 
The lack of insulation in air shafts transferring air from ground ducts to classrooms in this case, means that 
air moving to the rooms will lose some of its heat to the surrounding ground and shaft walls. 
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