Stability of extemporaneously prepared rosuvastatin oral suspension

Abdel Naser Zaid, Ph.D., Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
Rania Shtayah, B.Sc., Department of Research and Development, Pharmacare Ltd., Ramallah, Palestine.
Ayman Qadumi, M.Sc., Department of Research and Development, Pharmacare Ltd., Ramallah, Palestine.
Mashour Ghanem, M.Sc., Department of Regulatory Affairs, Pharmacare Ltd., Ramallah, Palestine.
Rawan Qedan (pharmacy student), Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
Marah Daibes (pharmacy student), Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
Somud Abu Awwad (pharmacy student), Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
Nidal Jaradat, Ph.D., Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
Naim Kittana, Ph.D., Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.

Address correspondence to Dr. Zaid (anzaid@najah.edu).

Copyright © 2017, American Society of Health-System Pharmacists, Inc. All rights reserved. 1079-2082/17/1001-1579.
DOI 10.2146/ajhp160235

Purpose. The stability of an extemporaneously prepared rosuvastatin suspension stored over 30 days under various storage conditions was evaluated.

Methods. Rosuvastatin suspension was extemporaneously prepared using commercial rosuvastatin tablets as the source of active pharmaceutical ingredient. The organoleptic properties, dissolution profile, and stability of the formulation were investigated. For the stability studies, samples of the suspension were stored under 2 storage conditions, room temperature (25 °C and 60% relative humidity) and accelerated stability chambers (40 °C and 75% relative humidity). Viscosity, pH, organoleptic properties, and microbial contamination were evaluated according to the approved specifications. High-performance liquid chromatography was used for the analysis and quantification of rosuvastatin in selected samples. Microbiological investigations were also conducted.

Results. The prepared suspension showed acceptable organoleptic properties. It showed complete release of rosuvastatin within 15 minutes. The pH of the suspension was 9.8, which remained unchanged during the stability studies. The microbiological investigations demonstrated that the preparation was free of any microbial contamination. In addition, the suspension showed stability within at least the period of use of a 100-mL rosuvastatin bottle.

Conclusion. Extemporaneously prepared rosuvastatin 20-mg/mL suspension was stable for 30 days when stored at room temperature.

Keywords: extemporaneous, rosuvastatin, stability, suspension

Am J Health-Syst Pharm. 2017; 74:1579-83

Throughout the world, atherosclerosis is considered a major underlying cause of cardiovascular disease, including ischemic heart disease, ischemic stroke, and peripheral vascular disease.1 Atherosclerosis is the thickening of the arterial wall due to the formation of a stiff atherosclerotic plaque that progressively narrows the lumen of the artery and reduces its flexibility, resulting in progressive organ ischemia. In many cases, the plaque can rupture, and a blood clot can quickly form at the lesion site, resulting in acute vessel occlusion.2,3 A cornerstone in the pathogenesis of atherosclerosis is the elevation of low-density-lipoprotein (LDL) cholesterol levels as well as, to a lesser extent, a decline in high-density-lipoprotein cholesterol levels.4,5

Several underlying abnormalities in lipid metabolism can result in high serum LDL cholesterol levels, which are thought to be largely due to an interaction between lifestyle habits and genetics.6,7 High LDL cholesterol levels can also be due to autosomal dominant heterozygous–homozygous familial hypercholesterolemia, which is associated with the inheritance of defective LDL receptor genes that restrict the clearance of LDL cholesterol from the blood.8 Several other familial dyslipidemias have also
been described, such as familial dysbeta-
lipoproteinemia and familial combined
hyperlipidemia.9,10 The goal of athero-
sclerosis treatment is to lower the total
and LDL cholesterol levels to prevent
atherosclerotic ischemic complications.
In addition to lifestyle modifications,
pharmacologic intervention is recom-

dended for many patients. Statins, also
known as 3-hydroxy-3-methylglutaryl-
coenzyme A reductase inhibitors, are
the most effective medications for low-
ering serum cholesterol.11 They inhibit
cholesterol synthesis in hepatocytes
and induce the expression of LDL
cholesterol receptors on the surface
of these cells, increasing the uptake
of LDL cholesterol from the blood.
Statins can also lower triglyceride lev-
eels to a certain extent.12

Rosuvastatin is the most effective
statin for lowering serum LDL choles-
terol.13,14 Oral administration of rosu-
vasstatin under fasting conditions in
adults resulted in peak plasma drug
levels within 3–5 hours and an elimi-
nation half-life of 16–19 hours.15,16 As
with the treatment of any illness, pa-
tient adherence is a major factor in
treatment success, but adherence can
be hindered by many factors, such as
difficulty in swallowing tablets.17 In
most countries, statins are only avail-
able as solid dosage forms. Recently,
Rosemont Pharmaceuticals launched 2
approved strengths of simvastatin
oral suspensions. Both strengths were
found to be stable for 1 year when
stored in the original sealed bottle
and for 1 month after opening the
bottle.18 However, this new suspen-
sion is unavailable in many countries.
In addition, some physicians may
prefer rosuvastatin over simvastatin
due to its higher efficacy and longer
plasma half-life.13,14,19 Therefore, the
development of a stable rosuvastatin
liquid formulation for extemporane-
ous use would be of great benefit for
patients who have difficulty swallow-
ing tablets. This study evaluated the

KEY POINTS

- Rosuvastatin is the most ef-
 fective statin for lowering
 serum low-density-lipoprotein
 cholesterol levels but the
 commercially available oral
 suspension is not available
 worldwide.

- Extemporaneously prepared
 rosvastatin 20-mg/mL sus-
 pension was stable for 30
 days when stored at room
 temperature.

- The availability of a stable
 extemporaneously prepared
 rosvastatin solution will al-
 low hospitals and community
 pharmacies to provide rosu-
 vastatin for pediatric and el-
 derly patients with swallowing
 difficulties.

Methods

Sample preparation. Suspensions
were extemporaneously prepared
for a final concentration of 20 mg/mL (0.4% w/v) using rosvustatin-
in 40-mg tablets.14 Details of the pro-
cedure are provided in the appendix.
Samples were taken for initial analy-
sis, and the remaining suspension was
stored at room temperature (25 °C and
60% relative humidity) and under ac-
celerated conditions (40 °C and 75%
relative humidity) in order to assess
the stability of the suspension.

Six bottles of rosvastatin suspension
were prepared; 3 bottles were stored
at room temperature and 3 under ac-
celerated conditions. A 5-mL
sample was withdrawn from each of
the 6 bottles immediately after prepara-
tion (time 0) and at each time point
of the analysis. The samples were as-
sayed in triplicate using a stability-
indicating high-performance liquid
chromatographic (HPLC) method.

The suspension was tested for sev-
everal properties, including organo-
leptic properties, viscosity, dissolu-
tion behavior, pH, and microbial
contamination.

HPLC method. The amount of ro-
svastatin in the prepared suspension was
assessed using an HPLC analytic
method. The experimental condi-
tions were optimized on an HPLC
instrument,15 which included a C\textsubscript{18}
chemically bonded column.1 The op-
timum mobile phase was prepared by
mixing 0.02 M potassium dihydrogen
phosphate buffer, acetonitrile, and
methanol (400:300:300 v/v). The mo-
bile phase was filtered through a 0.45-
μm filter and was degassed by sonica-
tion before use. The wavelength was
set to 248 nm. The flow rate used was
0.8 mL/min, and the injection volume
was 20 μL. The diluent was prepared
by mixing acetonitrile and water in
a 1:1 ratio. Peak quantification was
obtained by comparing sample and
standard peak area ratios as a function
of concentration. Weights were mea-
sured using a balance,16 and pH was
identifed using a pH meter.17

Analytic validation. The method
was validated in accordance with the
International Conference on Harmoni-
sation guidelines.20 Variables such as
system suitability, selectivity, linearity,
range, accuracy (recovery), and pre-
cision (repeatability) were validated.
This analytic procedure validation was
conducted using 3 trials of the product
and 1 trial of the standard solution.
The purpose of this study was to estab-
lish that the rosvastatin suspension assay
method is effective and reproducible.
The dissolution test method for rosu-
vastatin suspension, based on the as-
say test method, was also validated.

First, to prepare the rosvastatin stock
solution, 43.2 mg of rosvastatin18 was transferred to a 100-mL volumetric flask, 80 mL of diluent was add-
ed, and the mixture was stirred and
sonicated until rosvastatin dissolved
completely. The diluent was added to
make 100 mL total, and the solution
was mixed well. Next, to prepare the
rosuvastatin standard solution, 5 mL
of stock solution was transferred to a
50-mL volumetric flask, and the vol-

![Downloaded from https://academic.oup.com/ajhp/article-abstract/74/19/1579/5102650 by Iowa State University user on 19 January 2019](https://academic.oup.com/ajhp/article-abstract/74/19/1579/5102650)
ume was brought to 50 mL with the addition of mobile phase. The solution was mixed well for homogenization.

Sample preparation. Five milliliters of the compounded suspension was transferred to a 100-mL volumetric flask, after which 75 mL of diluent was added. The mixture was shaken and sonicated for 30 minutes and left to cool to room temperature. The volume was brought to 100 mL with the addition of diluent and then mixed well for homogenization. Next, 5 mL of the supernatant was transferred to a 50-mL volumetric flask, and the mobile phase was added to bring the volume to 50 mL. The solution was filtered through a nylon filter with a pore size of 0.45-μm or finer porosity. The first 10 mL was rejected; the remaining filtrate was used as the assay preparation.

System suitability. The suitability of the system was determined by injecting 20 μL of rosuvastatin standard solution 6 times to yield a final concentration of rosuvastatin 40 μg/mL. According to the chromatograms, variables such as injection precision for standard solution, tailing factor for standard solution, and theoretical plates for standard solution were calculated. The precision for the standard solution was 0.22 with a limit of <2%, the tailing factor was 1.21 with a limit of <2, and theoretical plates were 4,715 min/cm with a limit of >2,000.

Dissolution study. An in vitro dissolution study was conducted using the reported Food and Drug Administration (FDA) dissolution method for rosuvastatin tablets. To conduct this test, a dissolution apparatus was used at a paddle speed of 50 rounds/min. The dissolution medium was 900 mL of 0.05 M sodium citrate buffer (pH 6.6 ± 0.05). The dissolution profile was evaluated under test conditions using deaerated media. This dissolution apparatus was maintained at 37 °C for the entire study. Five milliliters of the suspension was placed in each paddle. Samples (10 mL) were withdrawn periodically at 10, 20, 30, and 45 minutes after mixing, after which the same volume of the dissolution medium was replaced. The similarity and nonsimilarity factors (f2 and f1, respectively) were not calculated, since the release of rosuvastatin from both the suspension and tablets was higher than 85% after 15 minutes and this is in accordance with FDA guidelines for dissolution testing.

Physical stability. Once the suspension was compounded, it was stored in a graduated cylinder; sedimentation was measured at 0, 0.5, 1, 2, and 24 hours. The height of the sediment was measured when there was no change in 3 consecutive readings. The sedimentation volume \(V_d \) was calculated using \(V_d = V_s / V_t \), where \(V_s \) and \(V_t \) are volumes of sediment and suspension, respectively.

The suspension was also tested for the ease of redispersion. Accordingly the suspension was placed in graduated cylinders and rotated periodically 360 degrees until thorough dispersion was achieved. The number of rotations needed for complete redispersion was registered, and the suspension was visually checked for homogeneity and caking at the bottom of the cylinder.

The viscosity of samples was determined with a viscometer at different speeds (5, 10, 20, 50, and 100 rpm) after a 1-minute rotation at room temperature. The flow type of the suspension was characterized using the following equation:

\[
F^* = \eta G
\]

where \(F^* \) is the shear stress, \(G \) is the shear rate, \(N \) is an exponential constant, and \(\eta \) is a viscosity coefficient.

Microbial contamination testing. The culture medium was prepared by dissolving 28 g of nutrient agar dehydrated powder in 1 L of distilled water. The prepared suspension was warmed to boiling under vigorous mixing. After that, the solution was autoclaved at 125 °C for 15 minutes. Next, the solution was poured in sterile petri dishes and refrigerated for 24 hours. After refrigeration, a 0.1-mL sample was removed from each compounded rosuvastatin suspension with a pipette and placed on petri dishes, which were incubated at 37 °C for 48 hours to check for the presence of *Escherichia coli*, aerobic bacteria, and yeast and molds.

Results

A formulation of rosuvastatin suspension was prepared using crushed tablets as a source of the active pharmaceutical ingredient. The formulation was tested for several properties, including pH, organoleptic properties, microbial contamination, and dissolution behavior. The suspension showed suitable pourability and registered a non-Newtonian viscosity. In fact, the \(N \) value of the suspension was found to be higher than 1, resulting in pseudoplastic flow. The sedimentation volume was close to 0.87 after 24 hours of suspension formation. The redispersibility test showed easy redispersion after only 4 revolutions without any sign of caking.

Regarding the analytic method used, all validation measurements were within acceptable limits. Specificity was tested, and no interference between the peak of rosuvastatin and any other peaks was seen. Acceptable linearity was demonstrated by a correlation coefficient of \(r^2 = 0.99996 \) and a y-intercept of 3369.95. The accuracy of all measurements ranged from 98.8% to 102.0%. Finally, precision was proven with a coefficient of variation of 0.71 (maximum limit of 2.0%). System suitability was assessed, and factors such as precision, tailing factor, and theoretical plates were within the acceptable limits. The related-substance test was conducted according to the European Pharmacopoeia method of analysis, and all of the results were within the acceptable limits (Table 1).

The results of dissolution testing of the rosuvastatin suspension were comparable to those with the original tablet used in its compounding. In fact, both formulations (suspension and tablets) released more than 85%
of the drug within 15 minutes. Accordingly, there was no need to test for similarity and nonsimilarity factors. Once the dissolution was assessed and found to be comparable with the corresponding solid formulation, rosuvastatin suspension was stored at room temperature and accelerated conditions in order to assess its stability. The suspension was chemically stable when stored at room temperature for 30 days. There was no appreciable change in pH, which remained around 10 ± 0.15, and the mean percentage of the initial rosuvastatin concentration remaining was 99% ± 0.2%. When stored in accelerated conditions, the rosuvastatin suspension showed complete degradation within the first week of storage.

The rosuvastatin suspension was found to be free of any microbial contamination at 30 days (Table 2).

Discussion
An extemporaneously prepared suspension of rosuvastatin was found to be stable when stored at room temperature for 30 days. Stability was defined as keeping more than 95% of the initial rosuvastatin concentration. At least 97.9% of the initial concentration of the rosuvastatin suspension remained throughout the 30-day study period. There was no detectable change in color, odor, or taste, and no visible microbial growth was observed in any sample. The preparation was a well-distributed suspension after gentle shaking and was palatable with a slight aftertaste. All related substances and enantiomers remained within acceptable limits over the 30-day period. No appreciable change in mean pH occurred in any of the tested samples, regardless of storage temperature.

The bioavailability of the rosuvastatin suspension in this study was not evaluated; however, the absorption and therapeutic efficacy of a drug in a suspension compounded from crushed tablets are unlikely to differ from those of the original dosage form used in its compounding.

Conclusion
Extemporaneously prepared rosuvastatin 20-mg/mL suspension was stable for 30 days when stored at room temperature.

Acknowledgments
Pharmcare Ltd. is acknowledged for providing access to their instruments and materials for this study.

Disclosures
The authors have declared no potential conflicts of interest.

References

Appendix—Procedure for compounding rosuvastatin 20-mg/mL suspension

To prepare 100 mL of the desired rosuvastatin suspension (0.4% w/v), the following procedure was used:

1. Crush 10 rosuvastatin 40 mg tablets using a mortar and pestle.

2. Under continial mixing and trituration, combine 0.133 g of orange flavor, 0.0055 g of cherry flavor, 0.19 g of aspartame, 0.19 g of sodium saccharin, 0.33 g of trisodium citrate, 0.4 g of sodium hydroxide, and 0.5 g of guar gum.

3. Keep mixing and gradually add 23.73 g of saccharin, 0.33 g of trisodium citrate, 0.5 g of orange flavor, 0.19 g of aspartame, and 0.19 g of sodium saccharin.

4. Once the dry powder is well mixed, add reverse osmosis water and mix well until a pourable mass is achieved.

5. Add reverse osmosis water again to bring the suspension to the desired volume.

6. Pour into plastic milky high density polyethylene bottles and close tightly.