Design and Simulation of DC/DC Boost Converter with Maximum Power Point Tracking for Grid Connected PV Inverter Considering the Nonlinearity of the PV Generator

Moien A. Omar(1*), Marwan M. Mahmoud(2)

(1) An-Najah National University, Electrical Eng. Department, Palestine, State of
(2) An-Najah National University, Electrical Eng. Department, Palestine, State of
(*) Corresponding author

DOI: https://doi.org/10.15866/irecon.v7i6.18250

Abstract

The design of the DC/DC boost converter used for maximum power point tracking in grid connected PV systems is complex due to the non-linearity of the PV source. This paper presents a unique design approach of the boost converter for grid-connected photovoltaic inverters. The design considerations and requirements to derive the converter equations, appropriate for determining the main variables and elements of its circuit have been respected. Moreover, the functional requirements of the inverter and the continuous current mode have been fully respected. The discussed design parameters are the DC inverter input voltage, maximum/minimum duty cycle, the ripple values in the boost input/output voltage and the inductor current ripple. This approach requires the value of the inverter threshold power and the maximum allowed ripple values of inductor current, input voltage and output voltage. The simulation results show that the presented design approach enables selecting the appropriate converter elements that facilitate its function. Moreover, the impacts of important parameters as solar radiation intensity and PV cell temperature are considered. The simulation of the converter has been carried out by Matlab-Simulink software in order to verify the effectiveness of the proposed design approach.

Copyright © 2019 Praise Worthy Prize - All rights reserved.

Keywords

DC/DC Boost Converter Design; Modeling and Simulation; PV-Grid Connected Systems

Full Text:
References

https://doi.org/10.1016/j.rser.2017.09.008

https://doi.org/10.1016/j.apenergy.2013.10.035

https://doi.org/10.1016/j.apenergy.2017.11.078

Wittenberg, I. & Matthies, E., How do PV households use their PV system and how is this related to their energy use?, (2018), Renewable Energy, 122, pp.291–300.
https://doi.org/10.1016/j.renene.2018.01.091

https://doi.org/10.1109/tie.2018.2821620

https://doi.org/10.1016/j.solener.2016.12.018

https://doi.org/10.1016/j.solener.2017.07.007

https://doi.org/10.15866/iree.v12i3.11695

https://doi.org/10.1016/j.rser.2016.09.096

https://doi.org/10.1016/j.rser.2017.08.048

https://doi.org/10.1109/mepcon.2016.7836901

https://doi.org/10.1109/ceit.2016.7929126

https://doi.org/10.1016/b978-0-08-102339-6.00002-6

https://doi.org/10.1049/iet-rpg.2018.6281

https://doi.org/10.1016/j.solener.2018.09.036

https://doi.org/10.15866/irecon.v6i2.15090

Rashid, M. H. Power Electronics circuits, devices, and applications, (2004), Pearson Education.

https://doi.org/10.15866/iree.v13i1.14456

https://doi.org/10.15866/iree.v11i1.8137