القدرة اللاأوكسجينية عند لاعبي فزق الألعاب الجماعية في جامعة النجاح الوطنية في نابلس
 Anaerobic Power of Team Sports Players at An-Najah National University in Nablus

عبد الناصر القدومي
Abdel Naser Qadumi

هدفت الدر اسة التعرف إلى مستوى القدرة اللاأوكسجينية عند لاعبي فرق كرة القدم والطائرة والسلة واليد في جامعة النجاح الوطنية، بالإضافة إلى إجر اء مقارنات في القـــدرة اللاأوكســــينية بين لاعبي هذه الالعاب، لتحقيق ذللك أجريت الدر اسة على عينة قو امها (. 0) لاعباً تم اختيار هـــــا

 لويس لقياس دليل القدرة. أظهرت نتائج الدر اسة ضعف مستوى القدرة اللاأو كسجينية عند لاعبــي

"القفرة اللاُوأوسجينية عند لاعبي فرق الوالعاب ابلحاعية في"

ع
لصالح لاعبي كرة الطائرة ولاعبي كرة السلة ولاعبي اليد، ولم تكن الفروق دالة إحصائيا عالا اختبار الوثب الطويل من الثبات بين لاعبي الالعاب المختلفة.

اللاأو كسجينية بما يتتاسب مع طبيعة اللعبة الممارسة.

The purpose of this study was to determine the level of anaerobic power of soccer, volleyball, basketball, and handball teams at An-Najah National University. The sample of study included (50) players selected randomly, and it is assigned according to teams as follows: (14 soccer) players, and (12) players for each of volleyball, basketball, and handball teams.

For measuring anaerobic power all players tested on Vertical jump, broad jump, 30 meters sprint, and Lewis formula measures.

The results indicated alower level in anaerobic power of team sports players at An-Najah National University, Furthermore, results indicated a significant differences at ($\alpha=0.05$) in the vertical jump distance between soccer and volleyball, Handball players infavour of volleyball and Handball players, and in 30 meters sprint time between soccer and volleyball, basketball players infavour of soccer players, and in Lewis formula between soccer and volleyball, basketball, Handball players infavour of volleyball,basketball and Handball players, while the results were not significant on broad jump test. The researcher recommended to use the suitable anaerobic test for each sport according to the specificity of measurement principle.

مقدمةّ اللار اسةة ومشكلتها

 والمسافات القصيرة في العاب القوى. ثارب و أخرون (Tharp \& et al, 1985). وذللك لان هذه

 ويمتد هــذا النظــام مــن ا-r ثــوان ولموروكوســتل
 الشخص يطلق على ذلك القدرة اللاأوكسجينية (Anaerobic Power).

فيما يتعلق بأهمية القـرة الاأوكسجينية للاعبي كــرة القـــدم هناكَ العديــد مــن الدر اســـات

 (إلى أن النسبة المنئوية للر كض بأقصى سر عة في المبار اة للاعبـي
 يقوم بها لاعب كرة القدم تطلب قدره لااوكسجينيه عالية، وفي دراسة بور (Baure, 1982) على أندية ألمانيا الغربية توصلت الدر اسة إلى أن متو سط المسافة للر كض بأقصى سر عة عند الفريـــق

 قـرة لا أوكسجينية عالية.

 أكسيد الكحر بون والذي يدخل في عملية إنتاج الطاقة الأو كسجهين فقَط.

وكذلك تظهر هذه الأهمية وبدرجه عالية لدى لاعبي الكرة الطائرة عند قيامهم بأداء مهار ات الضرب اللساحق، وحائط الصد، وإرسال الفقز ، و الحركات السريعة و الفجائية التي تتطلب ســر عة انتقالية عالية من اللاعب، ويؤكد ملى هذه الأهمية هايمر و آخرون (Heimer \& et al, 1988) في إشـارتهم أن لاعب الكرة الطائرة يقوم بالوثب العمودي في مبــار اة معتدلــــــة المســتوى مـــنـ
 القدرة الانفجارية (Explosive Power) عنصر اً هاماً للنجاح في لعبة الكرة الطائرة، في حيـنـ بر یى مكجون و آخرون (Mc Gown \& et al, 1990) أن الفريق الأمريكــــي الحـــاصل عنــى
 النتريب الو احد، و هذا ما يؤكد أيضا على أهمية القدرة اللاأوكسجينية للاعب الكرة الطائرة.
 الحركات التي يقوم بها هدا | للاعب مثل الوثب العمودي أثناء كرات القفز، ولم الكرات أســــــل أهداف لعبة كرة السلة، و الدفاع، والعدو اللسريع أثناء أداء اللهجوم الســـريع، و النتوقــ: المفـــاجئ و التحرك بأقصى سر عة وجميع هذه الحركات يتم تكر ار ها بدرجة عالبة في اللعبة ويكون أدائـــــها لفترة زمنية قصيرة جداً وبأقصى قدرة عند اللاعب، ومثل ذلك بتطلب قدرة لاأوكسجينية عاليـــــة،
 التي تعمل على تتمية القدرة اللاأو كسجينية للاعبي كرة السلة باعتبار ها إحدى المتطلبات الرئيســـة في الأداء المهار ي بكل كفاءة و افتتدار

لقد تطرق العديد من العلماء و الباحثين إلى در اسة أهمية القدرة الللاو كسجينيه للاعبي كــــــرة اليد من خلال تحليل مهار ات ومتطلبات اللعبة التي تعتمد في الغـــــالب علـى أداء العديـــد مــن الحركات السريعة بأقصى قدرة لديه في فترة زمنية قصبرة مثل الوثب العمودي أنثتاء التصبويـــب من خارج المنطقة (9 متر)، والعدو اللسريع في حالة الهجوم اللسريع (الخاطف)، والوثب للأكـــام

 إلى أهمية بر امج التنريب الخاصة بتتمية القدرة النلاوكسجينيه للاعبي كرة اليد.

 بشكل خاص، ويمكن القول أن البحث العلمي في مجال التزبية الرياضية في الجامعات الفلسـطينية ما زال في بدايته، و هناك العديد من الار اسات اللازمة للوقوف على الواقع الحالي للبحث العلمـــي في المجال الرياضي في الجامعات الفلسطينية سواء كان ذلك في مجال التندريــــب الريـــاضي، أم
 الرياضية و غير ها من المو اضيع الرياضية الهامة،وو في ضوء الاطلاع على اللار اسات السابقة تبين

 الفلسطيني نظر أ لتباين ظروف الحياة للاعبين والعوامل المرتبطة بعملية التندريــب مــن مجتـــع لاخر وهذا بدوره يؤكد على أهمية إجر اء متل هذه الدراسة.

 تخصص التتربية الرياضية يمنح درجة البكالوريوس نخبة من لاعبي أندية ومنتخبــات الهنــاطق، والمنتخبات الوطنية الفلسطينية في هذه الالُعاب، بالإضافة إلى ذللك تسعى الدر اسة الحاليـــــة إلـــى إجر اء مقارنات في مستوى القدرة اللاأو كسجينية بين لاعبي فرق هذه الألعاب، ويعتقف أن إجــر اء متل هذه الدر اسة سوف يساهم في إعطاء تصور واضح عند المدربين و الباحثين ععـــن مســتوى القدرة اللاأوكسجينية عند لاعبي هذه الألعاب، وبالتالي حسن بناء و إعداد البر امـج التّتريبيـــة فـــي ضوء معرفة هذا الو اقع.
\qquad :

اللر اسات السسابقة و المشابهة

 الدر اسات وفقا لما يلي :

1. دراسات في لعبة كرة القدم

قام محمود (1991) بدر اسة هدفت للتعرف إلى الحد الأقصى لاستهلالك الأوكسجين والقــدرة

وفي در اسة قام بها رمضـان وبيرد (Ramadan \& Bird, 1987) التي كان مــن أهدافــهـا
 الار اسة على عينة قوامها (1) (1) لاعبا طبق عليها اختبار صعود اللارج لمـار جاريا، أظهرت نتائج الار اسة أن متو سط الققرة اللاأوكسجينية عند الفريق ككل وصل إلى (1 (19, 1 (ا) كغم. متر/ / ثانية. وفي در اسة فيرما وكانسال (Verma \& Kansal, 1979) التتي كان من أهدافها التتــــرف
 قو امها r ب لاعبا طبق عليها مقياس مار جاريا للقدرة اللااوكسجينية، وصلت القدرة اللاأوكسجينية

r.

قام محمود (Mahmoud, 1996) بدر اسـة هدفت للتعرف إلى ديناميكية التطور في العــــــلـ الأكسجيني واللاأكسجيني ومدى مساهمتها في الإعداد اللبدني للاعبي الكرة الطائرة فـــــــــي الأردن،
 مركز الحسين، ومن ضمن الاختبار ات التي تم تطبيقها اختبار الوثب العمودي ومعادنــــــة لويـس،

وفي در اسة قام بها عايد، فايز وحــــين (Ayed, Faiz \& Hussein, 1993) بــهــ

 وفي در اسة قام بها مكجون وآخرون (Mc Gown \& etal, 1990) على لاعبي المنتخـــب

 (Bhant \& Sidhu, 1982) وصلت القدرة اللاأوكسجينية باستخدام اختبار مــــار جاريــا إلــى (؟ (192) كغم. متر/ثانية عند لاعبي الكرة الطائرة في الهند.

「. دراسات في لعبة كرة السلة

في در اسة قام بها عايد (Ayed, 1989) بهدف التعــــرف إلـــى أثـــر اســتخدام التتريــبـب البليومتري على بعض المتغير ات الفسيولوجية عند لاعبي كرة السلة للمرحلة الثانوية في أمريكــا،

 متر /ثانية.

وفي در اسة قام بها بهانوت وسدهو (Bhanto \& Sidhu, 1982) التي كان مـــن أهدافــــــا التترف على القدرة اللاأوكسجينية عند لاعبي منتخب كرة السلة في الهند، حيث تم تطبيق اختبـار
 متوسط القدرة اللاأوكسجينية على اختبار مار جاريا وصل إلى (^Y, (ی) كغم. متر/ثانية. وقام ويذرز وروبرتس (Withers \& Roberts, 1977) بدر اسة على لاعبي كرة السلة في
 وفي دراسة فيرما وآخرون (Verma \& et al, 1979) على لاعبي كرة السلة في الهند وصلــت
 £. دراسات في لعبة كرة اليد

قام أبو عريضة (1990) بدر اسة. هدفت إلى التعرف على تأثنير فترة المنافسات على القـــــرة
 ؛ الاعبامن لاعبي الارجة الاولى لكرة اليد في الأردن للموسم 1991 المار و كان متو سط أعمـــــــار هم
 البعدي،وفي ضوء ما توصلت إليه الار اسة فان فترة المنافسات أظهرت تطور ا في مستوى الكفاءة البدنية وخاصة في العمل اللااوكسجيني عند لاعبي كرة اليد .

وفي در اسة قام بها بطارسة (199ヶ) بهدف التعرف إلى أثر برنامج تدريبي مقـــتر ع علــى

وفي در اسة قام بها ماريون وبورسكي (Marion \& Boreskie, 1989) التـي كــــان مــن أهدافها التعرف إلى بعض الصفات البدنية والفسيولوجية للاعبي كرة اليد في كندا، ومـــن ضمــنـن القياسات التي تم أجر اؤ ها القدرة الناأوكسجينية باستخدام اختبار مار جاريا حيث وصل المتوســــط إلى ($119, \Delta v)$ كغ. متر/ثانية.

 على اختبار الوثب الطويل من الثبات.

أهداف الدراسة
هدفت هذه الدراسة إلى التعرف على:

1. مستوى القدرة اللاأوكسجينية عند لاعبي فرق الألعاب الجماعية (كرة القدم، وكرة الطـــــائرة، وكرة السلة، وكرة اليد) في جامعة النجاح الوطنية في نابلس.
r. الفروق في مستوى القـرة اللاأوكسجينية بين لاعبي الألعاب الجماعية (كرة القـــــلم، وكــرة الطائرة، وكرة السلة، وكرة اليد) في جامعة النجاح الوطنية في نابلس . لالنـر r. القيمة التفسيرية للفروق إن وجدت على اختبارات القدرة اللاأوكسجينية قيد الار اسة.

تساؤلات الدراسة

سعت اللدر اسة إلى الإجابة عن التساؤلات التالية:
ا. مـا هو مستو ى القدرة اللاأو كسجينية عند لاعبي فرق الألعاب الجماعية (كرة القــدم، وكــرة الطائرة، وكرة السلة، وكرة اليد) في جامعة النجاح الوطنية في نابلس؟
r. r. هل هنالك فروق ذات دلالة إحصـائية في القدرة اللاأو كسجينية بين لاعبــي فــرق الألعــاب اللجماعية (كرة القدم، وكرة الطائرة، وكرة السلة، وكرة اليد) في جامعة النجاح الوطنية فـــــي نابلس؟
r. ما هي القيمة التفسيرية للفروق إن وجدت بين لاعبي فرق الألعاب الجماعيــة فــي جامعـــة النجاح الوطنية على اختبار ات القدرة اللحأو كسجينية فيد الْدر اسة؟

هجالات الار اسة
المجال المكاني: ملاعب جامعة النجاح الوطنية.

إجر اءات الدراسة

لقد استخدم المنهج الوصفي بأحد صور ه الدر اسة المسحية نظر ا لملاءمتها لأغر اض الار اسة.

مجتمع الدر اسةّ وعينتها

تكون مجتمع اللار اسـة الحالية من لاعبي الألعاب الجماعية في جامعة النجاح الوطنية البـــــالغ
 نسبته (. 0\%) من مجتمع الدر اسة تم اختيار ها بالطريقة العشو ائبة و الجدول (() بيبن خصـــــائص عينة الدر اسة.

الجدول (1): خصائص عينة الدراسة

$\begin{aligned} & \text { (ن= } 0 \text { (المجموع) } \end{aligned}$		كرة اليد (ن)(1r		كرة السلة$(1 r=0)$		كرة الطائرة$\text { (} 1 \text { (}$		كرة القدم$(1 \varepsilon=\dot{0})$		
$\begin{aligned} & \frac{\overline{3}}{3} \\ & \frac{3}{9} \\ & \frac{3}{3} \\ & \frac{1}{3} \end{aligned}$	$\begin{aligned} & \overline{\text { F }} \\ & \text { J } \end{aligned}$	$\begin{aligned} & \overline{3} \\ & \frac{\overline{3}}{9} \\ & \frac{3}{3} \\ & \frac{3}{3} \end{aligned}$	$\begin{aligned} & \overline{3} \\ & 3 \\ & J \end{aligned}$	$\begin{aligned} & \overline{3} \\ & \frac{1}{9} \\ & \overline{3} \\ & \frac{3}{3} \end{aligned}$	$\begin{aligned} & \overline{3} \\ & \text { 3 } \\ & \text { In } \end{aligned}$	$\begin{aligned} & \bar{d} \\ & \frac{9}{9} \\ & \overline{3} \\ & \underset{3}{3} \\ & 3 \end{aligned}$	$\begin{aligned} & \overline{3} \\ & \text { a } \\ & \text { an } \end{aligned}$	$\begin{aligned} & \overline{7} \\ & \frac{1}{9} \\ & \overline{3} \\ & \frac{3}{3} \\ & 3 \end{aligned}$	$\begin{aligned} & \text { ज } \\ & \text { 3 } \\ & \text { an } \end{aligned}$	
$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\square}}$	$\dot{\%}$	$\frac{1}{2}$	E	$\stackrel{\dot{\sigma}}{2}$	$\frac{5}{0}$	$\stackrel{2}{2}$	2 a $=$	\leqslant	\geq	3
$\begin{aligned} & 2 \\ & z \\ & > \end{aligned}$		$\begin{aligned} & \Sigma \\ & > \end{aligned}$	$\begin{aligned} & \dot{i} \\ & \dot{z} \end{aligned}$	$\begin{aligned} & 0 \\ & 5 \end{aligned}$	$\begin{aligned} & \bar{\Sigma} \\ & \underline{z} \end{aligned}$	5	$\begin{aligned} & \text { Z } \\ & \text { E } \end{aligned}$	5	<	気
w $\stackrel{y}{*}$	$\begin{aligned} & < \\ & \frac{3}{2} \end{aligned}$	$\begin{aligned} & \leq \\ & \vdots \end{aligned}$	$\underset{\sim}{\dot{\sigma}}$	$\frac{2}{5}$	$\begin{aligned} & 5 \\ & 5 \\ & \end{aligned}$	$\underset{\sim}{z}$	5	ふ	2	= - y

متغيرات الدراسة
المتغير المستقل في هذه الدر اسة هو نوع اللعبة وله أربعة مستويات (كــرة القــدم، وكــرة الطائرة، وكرة السلة، وكرة اليد) بينما كان المتغير التابع القدرة اللاأوكسجينية ممتلة في (مســــــة الوثب العمودي، ومسافة الوثب الطويل من الثبات، ودليل القدرة، وزمن عدو • ب مترا).
أدوات الدراسة

من أجل قياس القدرة اللاأوكسجينية قام الباحث باستخدام الاختبارات التالية:
 (Adams, 1990) (إلى أن معاملات الثبات والصدق والموضو عية للاختبـــار (Johnson \& Nelson, 1979)
 القدرة (Power Index) باستخدام معادلة لويس (Lewis Equation) على النحو التــــالي: (الققرة (كغم. متر/ثانية) = الوزن(كغم) ج 9 (Fox, Bowers \& Foss, 1989) Vمسافة الوثب العموديي بالمتر
r. اختبار الوثب الطويل من الثبات: (Broad Jump Test) و هو مـــن الاختبـــار ات الثـــائع

 .(1994)
r. اختبار عدو • بـ مترا: وهو من الاختبارات التي استخدمت على نطاق واسع من قبل البــلحثين

 إضافة إلى ذلك استعان الباحث بالأدوات التالية:

 . . مغرام.
 متر 1.

* * حائط مدر ج عليه متر لمسافة r, م متر لقياس مسافة الوثب العمودي من الثبات. * ملعب خارجي لقياس مسافة عدو •r مترا.

ساعة توقيت ألمانية من نوع هاند هارت (Handhart) تقيس إلى (/ / • () من الثانية لقياس زمن عدو • • مترا.

إبراءات الدراسة

بعد تحديد أفراد عينة الادر اسة تم إجراء القياسات على النحو التالي:
اليوم الأول: تم قياس الوزن والطول واختباز عدو •rامترا.
اليوم الثاني: تكملة لاختبار زمن عدو •r متر ا.
اليوم الثالث: تم إجر اء اختبار الوثب العمودي واختبار الوثب الطويل من الثبات.
وكان تتفيذ الاختبارات كما يلي:

1. اختبار عدو • ب مترا

أ. الإحماء (منه- • ادقائق): تم إحماء جميع اللاعبين المشتركين في الار اســــــة وذلــــكـ

 اللاعب فترة راحة من (10-0٪) ثانية استعدادا لأداء الاختبار ب. مكان الأداء للاختبار : تم أداء الاختبار على الملاعب الخارجية فــــي جامعـــة النجــاح الوطنية.
ج. أداء الاختبار : يقف اللاعب خلف خط البداية بوضع البدء العالي ، ويقف الميقاتي عنــد خط النهاية تماما يعطى الباحث الإيعاز خذ مكانك -استعد-انطلق، ويصـــاحب النـــداء الأخير حركة بُاليد يبدأ معها الميقاتي بتشغيل الساعة ثم ينطلق اللاعب بأقصىى ســـر عة لديه محاو لا قطع مسافة الاختبار في اقل زمن ممكن.

 لحظة تخطي أول جزء من اللاعب خط النهايــة (Adams, 1990)، وكـــانت فــترة الر احة بين كل محاولة و أخرى ددقائقّ (Ayed, 1989, p 34) ملاحظة: تم اعتماد وصف آدمز لاختبار عدو (م) ياردة، وكان الميقاتي نفسه لجميــ اللاعبين حيث كان أحد الزملاء في الجامعة وحاصل على درجة الماجستير في التزبية الرياضية ولديه خبرة في الاختبارات و المقاييس.
r. اختبار الوثب الطويل من الثبات

أ. الإحماء: من (0 - - () دقائق حيث تم إجراء الإحماء كما في اختبار عدو . بهتر ا. ب. المكان: الملاعب الخارجية في جامعة النجاح الوطنية. ج. أداء الاختبار : يقف اللاعب وأصـابع القدمين خلف خط البداية بمســـافة قلينـــة (Y ابـــم) وتكون الققمان متباعدتان بمقدار (•اسم) ييدأ اللاعب بمرجحة الذر اعين إماما اســـــل خلفا مع ثثي الركبتين نصفا وميل الجذع أمام للوصول إلى وضح (squat)، تمرجـــــح
 اماما لأبعد مسافة ممكنة
د. التشجيل: يعطى كل لاعب ثلاث محاو لات يسجل له أفضلها إلى اقرب اســـه، تقـــاس المسافة من اقرب نقطة من جسم اللاغب لامست الأرض ، و عادة تكون أحد العقبين أو كلاهما من الحافة الداخلية لخط البداية.(علاوي،ورضوان، 19AY).

أ. الإحماء: من (0-1 (1) دقائق كما في الاختبارين السابقين
ب. المكان: قاعة الألعاب في جامعة النجاح الوطنية.
ج. أداء الاختبار : يقف اللاعب مو اجها بجانبه للحائط ويرفع يده لأفصى مسافة وير اعــــى

 وانخفاض واحدة لللذر اعين و الركبتين، ثم يقوم اللاعب بمد الركبتين والدفع بالقدمين معا

 من قبل الباحث للتأكد من نقة الملامسة. د. أعطي كل لاعب ثلاث محاولات سجل له أفضلها لأقرب اسم وكانت فــــترة الراحـــة
 الأولى التي وضعها اللاعب والعلامة الثنانية بعد عملية الوثب(Broms, 1990) . Adams) .
ملاحظة: تم إجراء جميع الاختبارات صباحا ما بين الساعة الثنامنة إلى الثنانية عشرة .

المعالجة الإحصائية

من أجل الإجابة عن أسئلة الدر اسة استخدمت المعالجات الإحصائية التالية:
 عند لاعبي منتخبات الألعاب الجماعية في جامعة النجاح الوطنية في نابلس. تحليل التباين الأحادي (one-way analysis of variance)، واختبار شـــيفي Scheffe) من أجل اللتعرف إلى أثثر متغير اللعبة على مستوى الققرة اللاأوكسجينية عند لاعبـي منتخبات الألعاب الجماعية في جامعة النجاح الوطنية في نابلس. - معادلة تولسون (Tolson Formula) للتعرف إلى القيمة التفسيرية للتباين بين المجموعــات

على اختبار ات القدرة اللاأوكسجينية وذلك على النحو النتالي:

$$
\begin{aligned}
2= & \frac{[F(K-1)]-(K-1)}{[F(K-1)+(N-k)+1} \\
& \text { حيث F } \mathrm{F} \text { : قيمة "ف" المحسوبة. }
\end{aligned}
$$

$$
\begin{array}{r}
\text {. عدد أفر اد العينة. } \begin{aligned}
\text { المقارنة. } & =\text { K }
\end{aligned} \text { K } \\
\text { = }
\end{array}
$$

(Tolson, 1980)

نتائئج الدراسة
 النتائج المتعلقة بالسؤال الأول

 الوطنية في نابلس؟

للإجابة عن السؤ ال استخدمت المتوسطات الحسابية والانحر افات المعيارية لاختبارات القـدرة
 أ. كرة القتم

الجدول (ץ): المتوسطات الحسابية والانحر افات المعيارية لقياسات القـــدرة اللاأوكســجينية عند لاعبي كرة القدم(ن=

القياسات الوثب العوودي الوثب الطويل من زمن عدو • ب مترا معادلة لويس*

معادلة وليست اختبار ، تم وضعها مع الاختبارات بهذف التزتيب فقط.
يتضح من الجدول (Y) أن متوسطات القدرة اللاأوكسجينية على قياسات الوثُــب العمــودي،

ب. كرة الطائرة
الجدول (r): المتو سطات الحسابية و الانحر افات المعيارية لقياسات القـــدرة اللاأوكســجينية عند لاعبي كرة الطائرة (ن= 1 ($)$

يتضـح من الجدول (r) أن متوسطات القدرة اللاأو كسجينية على اختبارات الوثثب العمـــودي، والوثب الطويل من الثنبات، وزمن عدو •r متر ا، بالإضافة إلى معادلة لويس، عند لاعبي فريـــت

جـ. كرة اللسلة
الجدول (\&): المتوسطات الحسابية و الانحر افات المعيار بية لقباسات القـــدرة الناأو كســجينية عند لاعبي كرة السلة (ن

القياسات الوثب العمودي الوثب الثطويل من زمن عدو •ب مترا معادلة لويس (كغم .متر/ثانبة)
(ثانية)
الثبات (سم)

〔,97
-, 71
9,97
7, V^
الانحر اف المعياري

يتضتح من الجدول (\&) أن متو سطات الفدرة اللأو كسجينية على اختبار ات الوثب العمــودي، والوثب الطويل من الثبات، وزمن عدو •r متر ا، بالإضافة إلى معادلة لويس، عند لاعبي فريـــــ

د.
الجدول (0): المتوسطات الحسابية والانحر افات المعيارية لقياسات القـــدرة الللأوكســجينية

$$
\text { عند لاعبي كرة اليد (ن=Y })
$$

| معادلة لويس (كغم.متر/ثانية) | زمن عدو • بتر\| متر| (ثانية) | الوثب الطويل من الثبات (سم) | (الوثب الُعمودي | القياسات
 الإحصائيـات |
| :---: | :---: | :---: | :---: | :---: |
| ME, M | 0,17 | $r \leq 0,0$. | 09,. | المتو سط الحسابي |
| rroor | . 099 | $1 r, \Sigma r$ | 17, 57 | الانحر اف المعياري |

يتضح من الجدول (0) أن متو سطات القدرة الللأوكسجينية على اختبار ات الو ثب العمــودي،
و الوثب الطويل من الثبات، وزمن عدو • ب متر ا، بالإضـافة إلى معادلة لوبس، عند لاعبي فريــق

النتائج المتعلقة بالسؤ ال الثاني
هل هناك فروق ذات دلالة إحصـائية في القدرة اللاأكسجينية بين لاعبــــي فــرق الألعــاب الجماعية في جامعة النجاح الوطنية في نابلس؟

مــن أجــل الإجابـــة عــن الالـــــؤال استتخــــدم تـليــــــلـل النتبايــــــن الأحـــــــادي (one-way analysis of variance)
 لاعبي فرق الألعاب الجماعية في جامعة النجاح الوطنية

مستّوى الالالاة الإحصائية	قيمة "ف" المحسوبة	متوسط الانحراف	مجموع مربعات الآحراف	درجات الحرية	دصادر التباين	النتاأوكسجينية القلرة
* .,.r	$r, \cdot r$	r 50,79	1.rv, •^	r	اللعبة	
		118.1	Ors ${ }^{\text {¢ }}$ (91	¢7	داخل المجمو عات	العودي
			trar,99	¢9	الكلكي	
-,10	$1, \lambda$.	Vrı, ir	Mır, ¢.	r	اللعبة	
		r99, v^	lsra.ry	¢7	داذل المجمو	الطويل من الثبات
			r.oor,7s	59	الكلكي	
* .,.r	$r, 0 \leqslant$	l,ir	r,r^	r	اللعبة	
		$\cdot,{ }^{\prime}$	15,79	¢ 7	داذل المجموعات	「.
			$1 \wedge, \cdot \mathrm{r}$	¢9	الكلي	
* ..r.	0,00	rvr,Ar	Arı, EV	r	اللعبة	معادلة لويس
		¢ $9, r$.	rrav,	≤ 7	داذل المجمو عات	
			r.^^, r^	¢9	الكىي	

دال إحصائيا عند مستوى (
يتضح من الجدول (؟) أن قيمة "ف" المحسوبة على اختبار الوثــــب الطويــل مــن الثبـــات
 إحصائية عند مستوى (0= 0 , ,) على اختبار الوثب الطويل من الثبات تعزى لمتغــــير اللعبــة.

(($\mathrm{F}, \mathrm{N})$ تعزى لمتغير اللعبة.

من أجل تحديد بين أي من الألعاب كانت الفروق اتبع تحليل التباين الأحادي باختبار شيفيه للمقارنات البعدية بين المتوسطات على اختبار ات القدرة الللاأو كسجينية التـــــــي ظهرت عليها الفروق، ونتائج الجداول (V)، (^)، (9) تبين ذلك. أ. اختبار الوثب العمودي

الجدول (V): نتائج اختبار شيفيه للمقارنات البعدية للمتوسطات بين لاعبي فـــرق الألعـــاب الجماعية فيد الار اسة على اختبار الوثب العمود الودي

ε	r	r	1	اللعبة
* 9,09-	$\varepsilon, \Psi \varepsilon-$	* $9, r r-$		1.
-,rv-	$\varepsilon, \wedge \wedge$			
O,YO-				كـ كرة السلة (or,ov) سم)
				£.
			11,1£	الخطأ المعيار
			\&9	درجات الحرية
			r,A	ف الجدولية

دال إحصائيا عند مستوى (V, (بتضح من الجدول (V) ما يلي:
لاعبي كرة القدم و لاعبي الكرة الطائرة لصالح لاعبي الكرة الطائرة.
 لاعبي كرة القدم ولاعبي كرة اليد لصالح لاعبي كرة اليد.
 (لاعبي كرة القدم ولاعبي كرة السلة)، وبين (لاعبي كرة الطائرة ولاعبي كرة السلة)، وبيـنـ (لاعبي كرة الطائرة ولاعبي كرة اليد)، وبين (لاعبي كرة اللاعلة ولاعبي كرة اليد).

> ب. اختبار زمن عدو • مترا

الجدول (^): نتائج اختبار شيفيه للمقارنات البعدية للمتوسطات بين لاعبـي الألعـــاب قيـــ الار اسة على اختبار عدو •r مترا

ε	r	r	1	اللعبة
$\begin{gathered} \text { * } ., 09- \\ \cdot, . r- \\ \quad ., 1,- \end{gathered}$	* ., ¢ - $^{\text {- }}$	*.,ロワ-		1. كرة كا
	$\cdot, \cdot \vee$			
				r.r كرة السلة (\%
				\&. كرة
			-, \quad.	الخطأ المعياري
			\&9	درجات الحرية
			r, ${ }^{\text {r }}$	ف الجدولية

 يتضح من الجدول (^) ما يلي:-

وجود فروق ذات دلالة إحصائية عند مستوى (م=0, , •) في زمن عـــدو •r مـــترا بيـن لاعبي كرة القدم ولاعبي الكرة الطائرة لصالح لاعبي كرة القدم.
 لاعبي كرة القدم ولاعبي كرة السلة لصالح لاعبي كرة القدم. وجود فروق ذات دلالة إحصائية عند مستوى (م) لاعبي كرة القدم و لاعبي كرة اليد لصالح لاعبي كرة القدم.
 (لاعبي كرة الطائرة ولاعبي كرة السلة)، وبين (لاعبي كرة الطائرة ولاعبـي كــرة اليــد)،
وبين (لاعبي كرة السلة و لاعبي كرة اليد).

جـ. معادلة لويس
الجدول (9): نتائج اختبار شيفيه للمقارنات البعدية للمتوسطات بين لاعبــي الألعــاب قيــد الانر اسة على معادلة لويس

¢	r	$r 1$	اللعبة
* 19,11	*r..^-	* ${ }^{\text {r }}$, ¢1-	1. كرة قدم (Y, ¢ • اكغم.متر/ثانية)
\&,0	1,71		ك r.
$r, \wedge q$			
		r,9q	الخطأ المعياري
		\&9	درجات الحرية
		$r, \wedge 1$	ف الجدولية

يتضـح من الجدول (9) ما يلي:-

- وجود فروق ذات دلالة إحصائية عند مستوى (0= 0 . , •) على دعادلة لويس بين لاعبي كرة

القدم و لاعبي الكرة الطائرة لصـالح لاعبي كرة الطائرة.
وجود فروق ذات دلالة إحصائية عند مسنوى (م=0 • . •) على معادلة لويس بين لاعبي كرة القدم ولاعبي كرة السلة لصـالح لاعبي كرة السلة.

- و جود فروق ذات دلالة إحصائية عند مستوى (م=0 0 , *) على معادلة لويس بين لاعبي كرة
القدم ولاعبي كرة اليد لصـالح لاعبي كرة انيد.
rre
\qquad

لا توجد فروق ذات دلالة إحصائية عند مستوى（م＝ 1 ，，•）على معادلة لويس بين（لاعبـي
 （لاعبي كرة السلة ولاعبي كرة اليد）．

النتائج المتعلقة بالسؤ ال الثبالث

 النجاح الوطنية على اختبار القدرة اللاأوكسجينية قيد الدر اسة؟

للإجابة عن السؤ ال استخدمت معادلة تولسون（Tolson，1980）المشار إليها في المعالجـــة

 تطبيق معادلة نولسون ونتائج الجدول（•（ ）نبين ذللك． الجـول（（ 1）：القيمة التفسيرية للتباين بين لاعبي فرق الألعاب الجماعية في جامعة النجـاح الوطنية على اختبار ات القدرة اللاأو كسجينية الدالة إحصائبيا

الاختبارات
\％「リ，ll
معادلة لويس
\％）r．9q
\％）•，ワ4
زمن عدو •r متر ا
اختبار الوثب العمودي

 القياسات المستخدمة التي ساهمت في تفسير النتائج．．

مناقشة النتائئج

هدفت الدر اسة التعرف على مستوى القدرة اللااوكسجينية عند لاعبي فرق الألعاب الجماعيـة

 اللاأكسجينية بثلاثة اختبارات ميدانية هي اختبار عدو •آمترا، إختبار الوثب الطويل من الثبات، و
 مثل اختبار الو نجيت لمدة • ثاثنية (Wingate Test) ، و الجري على السير المتحرك لمــدة • ؛ ثانية، واختبار الخطوة لمدة • ڭثانية (Step Test) (Adams, 1990) .بالإضـافة إلى ذللك يسـعى الباحث إلى التعرف على أثنر الخصوصية في القياس على الققرة اللاأكسجينية عند لاعبي الألعـلب
 (\& Morgan, 1984) حول أهمية مر اعاة الخصوصية في القياس عند رغبة المدربين والبــاحثين في قياس الققرة اللااوكسجينية من هنا تم استخدام الاختبار ات السابقة بالإضافة إلى معادلة لويـس لقياس القدرة اللاأو كسجينية عند لاعبي هذه الالعلب.

 متو سطات القدرة اللااكسجينية على اختبار ات الوثب العمودي ، والوثب الطويــل مــن الثبـــات،

(Thomas \& Reily, 19V7) يتعلق في مسافة الوثب الطويل من الثبات كان المتوسط في الدر اسة الحالية أعلى من المتو سط في

 OSOV،7. .
 (التي أظهرت وجود علاقة ارتباط إيجابية بيــن الــوزن واختبـارات (James \& etal, 19^^)

وفيما يتعلق بمستوى القدرة اللاأكسجينية للاعبي الكرة الطائرة أظهرت نتائج الجـدول ()

 حيث وصل إلى (1 (10, YV) كغم. متر/ثانية.
 اللاأوكسجينية عند لاعبي فرق جامعة النجاح الوطنية لالعاب كرة القدم، وكرة الطــــــائرة، وكـــرة

 التنرييبة، وشدة التندريب، واستمر ارية التندريب (Katch\& McArdle, 1988)، بالإضـافة إلـــى اختلاف الظروف المحيطة بعملية التتريب متل الإمكانات والأدو ات، واختلاف ظروف الحياة مــن مجتمع لآخر، بالإضافة إلى اختلاف أدوات القياس وظروفه مـــــن در اســـــة إلــــى أخـــــرى (Smith \& etal, 1992)، واختتلاف نسبة الألياف العضليــــة الســريعة، والتغذيــة، ومخـــازن العضلات من ثلاثي ادينوزين الفوسفات (ATP)، والعمر ، والقوة العضلية (Lamb, 1984) كــلـ
 إليه مكجون وآخرون (Mc Gown \& et al, 1990) في در استه للفريق الأمر يكــــي الحــاصل

وفيما يتعلق بالنتائج المر تبطة بالمقارنة بين لاعبي الألعاب الجماعية قيد الدر اسة أظــــــهرت
 إلى معادلة لويس لقياس دليل القدرة، أن الفروق في مسافة الوثب العمودي كانت بيـــن لاعبــي

 لدليل القـرة كانت الفروق بين لاعبي كرة القدم ولاعبي الكرة الطــــائرة لصـــالح لاعبـي الكــرة

الطائرة، وبين لاعبي كرة السلة ولاعبي كرة القدم لصالح لاعبي كرة السلة، وبين لاعبــي كــرة القدم ولاعبي كرة اليد لصالح لاعبي كرة اليد.

 يتعلق بالخصوصية في القياس أكد على ذلك سكنر ومورجان (Skinner \& Morgan, 19^६) في إثـارتهم إلى ضرورة انتقاء اختبار القدرة اللاأوكسجينية المناسب لطبيعـــة الأداء فــي اللـبــــة
 الكرة الطائرة يتث استخدام اختبار الوثب العمودي و هكذا لمختلف الألعاب الرياضية، وفيما يتعلـــق بالخصوصية في الأداء يتضح من النتائج تنفوق لاعبي كرة الطائرة وكرة اليد على لاعبــي كــرة

 وإرسال القفز في الكرة الطائرة، وكرات القفز ، والتصويب من القفز ، والققز لقطع كرة في كـــــــرة

 لا أكسجينية عند لاعبي كرة القدم تطلب العدو السريع سواء كان ذلك في الهجوم أم الدفاع أم فـــي خط الوسط، ويظهر ذلك في در اسة بور (Baure, 19 1) على أنديــة ألمانيــا الغربيــة حيـــ

 الاختلافات في طبيعة الأداء بين الألعاب الرياضية قيد الار اسة ظهرت الأفرو قات اللسابقة انسجاما

 (Specificity of Measurement Principle)

و الباحثين اختبار الاختبار المناسب لطبيعة الأداء في اللعبة الممارسة عند الر غبة في قياس القـــدرة النلاأو كسجينية.

وفيما يتعلق بـالقيمهة التفسيريية للتباين أظهرت نتائج الجـــدول (• (1) أن القيمـــة التفســـيرية

 .(Fox, Bowers \& Foss, 1989)

وللتأكد من الفروق بين لاعبي فرق الألعاب الجماعية قيد الدر اسة تبعا لمتنغير الوزن السـتخدم اللتباين الأحادي، ونتائج الجدول (1) تيبن ذللك.

الجدول (1 1): نتائج تحليل اللتباين الأحادي للالالة الفروق في الوزن بيــــن لاعبــي فــروت الألعاب الجماعية في جامعة النجاح الوطنية

 يتضح من الجدول (1 (1) أن قيمة "ف" المحسوبة لمتغير الوزن عند لاعبي فـــرق الألعـــاب
 ($\left(\begin{array}{l}\text { أي أنه نوجد فرو } \\ \text { (}\end{array}\right.$

$$
r 1
$$

فرق الألعاب الجماعية قيد الدراسة في جامعة النجاح الوطنية. من أجل تحديد بين أي من الألعاب كانت الفروق أتبع تحليل التباين الأحادي باختبار شيفيه (Scheffe Test) للمقارنات البعدية بيــن المتوسطات تبعا لمتغير الوزن ونتائج الجدول (() ت تبين ذللك.

الجدول ((1): نتائج اختبار شيفيه للمقارنات البعدية للمتو سطات بين لاعبي فرق الألعـــاب الجماعية قيد الدر اسة في متغير الوزن

ε	r	r	1	اللبعبة
* $1,1 \varepsilon-$	* $7, r \wedge-$	* V.		
r,ヌ7-	1,1			r.
r, V¢-				
				¢. كرة السلة (
			1, 178	الخطأ المعباري
			\&9	درجات الحرية
			r, $\times 1$	ف الجدولية

* دال إحصائيا عند مستوى (0= + , •) أقل فرق معنوي (97, §)
يتضح من الجدول ((

وجود فروق ذات دلالة إحصائية عند مستوى ((Y= 1 ., •) في متغير الوزن بين لاعبي كرة
القدم و (كرة الطائرة، وكرة السلة) لصالّح لاعبي الكرة الطائرة ولاعبي كرة السلة.
 (كرة القدم واليد)، (كرة الطائرة و السلة)، (كرة اليد والسلة)، (كرة الطائرة واليد)).

ومثل هذه النتائج تؤكد على أهمية الــــوزن كجـز
 وهي أن الوزن يساوي التووة، والقوة متطلب أساببي للقدرة العضلية (Hay, 1978)، وتؤكد عــى

ذلك دراسة جيمس وآخرون (James \& etal, 19^^) التي أظهرت وجود علارة ارتباط إيجابية بين الوزن واختبار ات الوثب العمودي ، واختبار مار جاريا، واختبار الوينجيت، حيث كانت قيمــي

 الوطنية في نابلس.

التوصيات

في ضوء عرض نتائج الدر اسة ومناقثتتها يمكن التوصية بالتوصيات التالية:

1. مر اعاة مبدأ الخصوصية في القياس عند قياس القــــدرة اللاأوكســـجينية لمختلــــ الالكعــاب
 وجود فروق في قياس القدرة الللاوكسجينية تبعا للقياسات المستخدمة.
 جامعة النجاح الوطنية وذلك نظر الضـف مستوى الققرة اللاأوكسجينية لديهر مقارنــــــة بـــا توصلت إليه غالبية الدر اسات السابقة عند لاعبي هذه الألعاب.
 الوطنية.
 الفلسطينية.
ه. إجر اء در اسة حول القدرة الااو كسجينية عند لاعبي ولاعبات فرق الألهـــاب الجماعيــة فــي جامعة النجاح الوطنية في نابلس.

قائمة المراجع
أولا: المراجع العربية

1. أبو عريضة، ف، (990): تأثثير فترة المنافسات على القـــــدرة الللااوكــــجينيية واللـــعـة اللااوكسجينيية للاعبي كرة اليد، دراسـات، (العلوم الإنسانية)، المجلد(YY)، العـــدد(Y)، ص

 والوظيفية لناشئ كرة اليد في الأردن، رسالة ماجبستير غير منشورة، الجامعة الأردنية. r. علاوي، م، رضوان، ح. (9ヘY): اذتبارات الأداء الحركي، دار الفكر العربي، القـــاهرة، - مصر

 . V - $-\Sigma \wedge$ (10)
 غير منشورة، الجامعة الأردنية.
 لاعبي خطوط اللعب المختلفة في كرة الققد، رسالة ماجســـتير غــير منثـــورة، الجامعــة الأردنية.
V. Adams. G, (199.) Exercise Physiology Laboratory Manual, Wm.c, Brown publishers.
^. Ayed. F.; Faiz. A, \& Hussein. A, (199r). Effects of 1•-days Hard Physical Training on Selected Physiological and Physical Fitness

ذلك در اسة جيمس وآخرون (James \& etal, 19^^) التي أظهرت وجود علاقة ارتباط إيجابية بين الوزن واختبارات الوثب العمودي ، واختبار مار جاريا، واختبار الوينجيت، حيث كانت قيمــة

 التفسيرية للتباين في القدرة اللاأوكسجينية عند لاعبي فرق الألعاب الجماعية في جامعـــــة النجــا الوطنية في نابلس.

التوصيات

في ضوء عرض نتائج الدر اسة ومناقشتّها يمكن اللتوصية بالتوصصيات التالية:
 الرياضية بما يتتاسب مع طبيعة الأداء في اللعبة الممار سة حيث أظـــهـرت نتـــائج الدر انــــة وجود فروق في قياس القدرة الللاوكسجينية تبعا للقياسات المستخدمة.

 توصلت إليه غالبية الار اسات السابقة عند لاعبي هذه الألعاب. r. إجر اء در اسة للقدرة الللأو كسجينية عند لاعبات فرق الألعاب الجماعية في جامعـــــــة النجــاح الوطنية.
؛. بناء معايير خاصة باختبارات القدرة الللأوكسجينية للاعبي النلالعاب الجماعية في الجامعـــات
الفلسطينية.
0. إجر اء در اسة حول القـرة الااو كسجينية عند لاعبي ولاعبات فرق الألعـــاب الجماعيــة فــي جامعة النجاح الوطنية في نابلس.

قائمة المراجع
أولا: المراجع العربية

1. أبو عريضة، ف، (990): تأثثير فترة المنافسات على القــــدرة اللااوكســـجينيية والســعـة اللااوكسجينيية للاعبي كرة اليد، دراسات، (العلوم الإنسانية)، المجلد(Y (Y)، العـــدد(Y)، ص

 و الوظيفية لناشئ كرة اليد في الأردن، رسالة ماجنستير غير منشورة، الجامرامعة الأردنية.
 - مصر

$$
. v \cdot-\varepsilon \Lambda ،(10)
$$

0. رشيد، ب، ع (199ץ)، العلاقة بين بعض اختبارات اللياقة اللاأوكسجينية، رسالة ماجسـتير غير منشورة، الجامعة الأردنية.
 لاعبى خطوط اللعب المختلفة في كرة الققم، رسالة ماجســتير غـير منثــور رة، الجامعــة الأردنية.

ثانيا: المراجع الأجنبية

v. Adams. G, (199•) Exercise Physiology Laboratory Manual, Wm.c, Brown publishers.

1. Ayed. F.; Faiz. A, \& Hussein. A, (199r). Effects of 1.-days Hard Physical Training on Selected Physiological and Physical Fitness

2. Ayed. F.M; (1989 .The Effect of Plyometrics on Selected Physiological and Physical Fitness Parameters Associated with High School Basketball Players. Unpublished Doctoral Dissertation. The Florida State University.
3. Baure. G, (1982 ,How to Succeed at Soccer ,oribs publishing, London.
4. Bhant. J \& Sidhu. L, (1982). Maximal Anaerobic Power in National Level Indian Players ,British Journal of Sports Medicine, Vol (15), No (4) 265-268.
5. Brown.M,Mayhew.L,\& Boleach.M.,(1986). Effect of plyometric on vertical jump performance of high school basketball players, Journal of sport medicine \& physical fitness, 26,1-4.
6. Crews, T.\& Meadors,w.(1978).Analysis of reaction time, speed, body composition of college football players,Journal of sports medicine and physical fitness, 18,169-172.
7. Fox, E, Bowers. R, \& Foss, M, (1989 :The Physiological Basis of Physical Education and Athletics, Wm Brown publishers, IOWA.
8. Hay. J. G (1978 : the Biomechanics of Sports Techniques, 2nd (ed.), Prentice-Hall. inc., Englewood Cliffs, N.J.
9. Heimer. S, Misigoj. M; \& Medved. V. (1988), Some Anthropological Characteristics of top Volleyball Players in SFR Yugoslavia, The Journal of Sports Medicine and Physical Finess, Vol. (28), No. (2), 200208.
10. James \& et al, (1988). Factor Analysis of Various Anaerobic Power Tests ,The Journal Sports Medicine and Physical Fitness, Vol. (28). No. (2), 138-144.
11. Johnson .b, \& Nelson. J,(1979. Practical measurements for evaluation in physical education, Burgress publishers.
12. Katch.F.L, \& McArdle.W.D, (1988) ,(Nutrition Weight Control, and Exercise ,.Lea \& Febiger, Philadelphia.
ro \qquad
13. Kirkendal. D.T, (1987): The Applied Sport Sciences of Soccer_The Physician and Sports Medicine ,vol., 13, No. 4, pp. 53-59.
14. Lamb.D, (1984) Physiology of Exercise, Responses \& Adaptations, Macmillan publishers company, New York.
15. Mahmoud. A.A. (1996) - The dynamic improvements of Anaerobic, Aerobic and specific powers and important contributions to the methodology for the physical preparation of Volleyball players in Jordan ,unpublished doctoral Dissertation, National Academy of Physical Education and sports, Bucharest.
16. Marion, L; Boreskie, M, (1989). An analysis of fitness and time-motion characteristics of Handball, American Journal of Sports Medicine, vol. (17), No (1), 76-82.
17. McGown. C \& et al (1990), Gold Medal Volleyball: The Training program and physiological profile of the 1984 Olympic champions. Research Quarterly for Exercise and Sport, vol. (61), No. (2), 196-200.
18. Phul \& et al, (1982), Physical and Physiological characteristics of Elite Volleyball Players , Research Quarterly for Exercise and Sport, Vol. (53), No. (3), 257-262.
19. Ramadan. J; \& Byrd. R; (1987). Physical Characteristics of elite soccer players ,The Journal of Sports Medicine and Physical Fitness, 27,224228.
20. Scott, O.R \& Robert. A, R, (1997) : Exercise Physiology: Exercise, Performance, and Clinical Applications, Toronto, Mosbu-Comp. P. 412.
21. Skinner, J. \& Morgan, D, (1984). Aspects of Anaerobic Performance. In American Academy of Physical Education Meeting 5th- 6th Nov.. Human - Kinetics Publishers, pp. 31-45.
22. Smith.D,Roberts .D,\& Watson.B.(1992),Physical ,physiological and perfomans differences between Canadian national team and universiade vollball players, Journal of sport sciences, 10,131-138.
23. Thorp. G.D, Newhouse. R.K, \& Johnson. G.O, (1985). Comparison of Sprint and Run Time with performance on the Wingate Anaerobic Test, Research Quarterly for Exercise and Sport. 76-73. (1) 56
24. Thomas. V, \& Reilly. T. (1976), A motion Analysis of Work rate in different positional roles in professional Football match-play Journal of Human Movement Studies. 79.-87. (2)
25. Tolson, H, (1980): An adjustment to statistical significance: W^{2}. Research Quarterly for Exercise and Sport, 51, PP 580-584.
26. Vandewalle.H. \& et al, (1987): Force- Velocity relationship and maximal power on a cycle ergometer, correlation with light of a vertical jump ,European Journal of Applied Physiology and Occupational Physiology .vol. 56, pp. 650-656.
27. Verma .S., \& Kansal.D. (1979). The maximal Anaerobic power of different categories of Indian Players ,The Journal of Sports Medicine and Physical Fitness, 19, 55-62.
28. Wilmor J\&Costill .D,(1994). Physiology of sport and Exercise, Human kinetics.
29. Withers. R \& Roberts. R, (1977): The maximal Aerobic power, Anaerobic power and Body Composition of south Australian male Representatives in Athletic, Basketball, Field Hockey and Soccer, Journal of Sports Medicine., 17,391-400.
