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In this article we study balanced model reduction of linear systems for feedback control 

problems. Specifically, we focus on linear quadratic regulators with collocated inputs and 

outputs, and we consider perturbative approximations of the dynamics in the case that the 

Hankel singular values corresponding to the hardly controllable and observable states go 

to zero. To this end, we consider different perturbative scenarios that depend on how the 

negligible states scale with the small Hankel singular values, and derive the correspond- 

ing limit systems as well as approximate expressions for the optimal feedback controls. 

Our approach that is based on a formal asymptotic expansion of an algebraic Riccati equa- 

tions associated with the Pontryagin maximum principle and that is validated numerically 

shows that model reduction based on open-loop balancing can also give good closed-loop 

performance. 
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1. Introduction 

Balanced model reduction, specifically balanced truncation and residualisation, are powerful methods to reduce the di-

mensionality of large-scale linear open-loop control systems [1] . The idea is to compute an associated pair of Lyapunov

equations and identify a subspace that contains only states that are at the same time highly controllable and observable.

One of the features is that they give computable, yet relatively conservative a priori error bounds for all measurable control

inputs with finite energy (i.e. for all square integrable inputs). 

It is less clear, however, whether balancing leads to high fidelity reduced models when the inputs are feedback controls

that depend on the system states: the reason for scepticism is that model reduction of open-loop systems aims at approx-

imating the system output as a function of the input where in case of partially observable closed-loop systems the input

(i.e. the control) is a function of the output. The key question therefore is whether balancing can guarantee a backward

stable approximation of the dynamics in the sense of approximating the control. 

The linear quadratic regulator (LQR) is a special case of optimal control problem that has an analytic solution in terms of

a linear feedback law and a pair of matrix Riccati equations. The design parameters for the LQR are the weighting matrices

in the objective function, selected according to the system design. These matrices directly affect the optimal control perfor-

mance many and discussions in the pas were related to the question how to shape these matrices based on what is called

eigenstructure assignment [4,6,9] . For finite time-horizon optimal problems, one of the most actively investigated model
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reduction schemes is the singular perturbation approximation, based on a perturbative approximations of the corresponding

Riccati differential equation [12] ; an alternative approach via two-point boundary value problems is presented in [17] and

compared to the former in [18] . 

Balanced model reduction based on balancing a pair of algebraic control and filter Riccati equations has been first stud-

ied by Jonckheere and Silverman [8] , based on the idea of projecting the dynamics onto a jointly dominant subspace of

the solutions to the two algebraic Riccati equations (ARE); cf. also [19,23] . Compared to standard balanced truncation, LQG

balancing is far more expensive as it requires to compute a pair of ARE rather than just a pair of linear Lyapunov equa-

tions. Moreover the Riccati equations are lacking the intuitive energy interpretation of the quadratic forms formed by the

controllability and observability Gramians that are the solutions to the associated Lyapunov equations. 

In this article we follow an alternative approach and ask how to systematically reduce a linear feedback control system

to the dominant jointly observable and controllable subspace that is related to the controllability and observability Gramians

and the corresponding Hankel singular values of the system. Specifically, we identify the limit LQR system that is obtained

from the original dynamics when some of the Hankel singular values go to zero. 

The approach pursued in this paper is based on a formal asymptotic expansion of the Pontryagin maximum principle

and the associated ARE and gives rise to a reduced-order value function that can be identified with the control value of

the balanced reduced-order system. We distinguish three different scenarios that differ in the way that the small Hankel

singular values enter the balanced dynamics and which lead to different limit systems. Even though the reduced dynamics

is based on open-loop balancing, the reduced systems show good closed-loop performance, and we validate the formal

calculations by suitable numerical experiments. 

The article is structured as follows: In Section 2 the linear quadratic regulator and the balanced representation of the

state space system are introduced. Section 3 that contains the main results is devoted to the formal perturbation analysis of

three different classes of singularly perturbed regulator problems, and the fidelity of the resulting reduced closed-loop con-

trol systems is compared numerically in Section 4 . The findings are briefly summarised in Section 5 . The article contains two

appendices that recorded various standard results about transfer functions of linear systems and their singular perturbation

approximation. 

2. Linear quadratic regulator 

We consider the continuous linear dynamical system 

˙ x = Ax + Bu 

y = Cx 

x (0) = x 0 

(1) 

where A ∈ R 

n ×n , B ∈ R 

n ×m , C ∈ R 

p×n and D 

p × m are constant matrices and x , u are the state and the input of the system and

x (0) represents the initial condition. We assume that the linear system described by Eq. (1) is controllable and observable,

and we define the quadratic cost function J is defined by 

J = 

1 

2 

∫ ∞ 

0 

(y T y + u 

T Ru ) dt (2) 

where y = Cx and R ∈ R 

m ×m is positive definite. We want to find an optimal control u that minimises the quadratic cost

function J subject to (1) . We seek an optimal control denoted by u ∗ that has the property that 

J(u 

∗) ≤ J(u ) , ∀ u ∈ L 2 

where u ∗ ∈ L 2 and the constraint equation ˙ x = Ax + Bu has a unique solution. The corresponding optimal solution of this

equation is denoted by x ∗. 

Now, we introduce an approach that depends on the Hamiltonian function defined in the following form: 

H = 

1 

2 

(
x T Qx + u 

T Ru 

)
+ λT ( Ax + Bu ) (3) 

where λ ∈ R 

n is called the costate variable. The following theorem describes the way in which we can find the optimal

control that minimises the quadratic cost J . 

Theorem 1. [10 , 16] (Maximum principle) If x ∗, u ∗ is an optimal solution of (1) and (2) , then there exists a function λ∗(·) ∈ R 

n 

such that 

˙ x = 

∂H 

∂λ
(4) 

˙ λ = −∂H 

∂x 
(5) 
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and the minimality condition of the Hamiltonian 

H(x ∗, u 

∗, λ∗) ≤ H(x ∗, u, λ∗) 

holds for all u ∈ R 

m 

For more details on the proof (see [10,16] ). 

If H is a differentiable function, then to minimise H with respect to u we can find our optimal control input. The following

condition must be true to find such u : 

∂H 

∂u 

= 0 (6)

If we solve Eq. (6) , we obtain the following control: 

u = −R 

−1 B 

T λ (7)

From (1) and (7) , we have the following canonical differential equations that form a linear system (or Hamiltonian system)

written as: 

˙ x = Ax − BR 

−1 B 

T λ, x (0) = x 0 

˙ λ = −Qx − A 

T λ
(8)

This is a coupled system, linear in x and λ, of order 2 n × 2 n . Since the terminal cost is not defined, then there is no constraint

on the final value of λ. The control equations can be written in matrix form as: (
˙ x 
˙ λ

)
= 

(
A −BR 

−1 B 

T 

−Q −A 

T 

)(
x 
λ

)
(9)

The linearity of the equation suggests to use the Ansatz 

λ = P x (10)

where P (·) ∈ R 

n ×n is governed by the differential Riccati equation 

˙ P = −PA − A 

T P + P BR 

−1 B 

T P − Q (11)

Since u ∈ L 2 over an infinite time horizon, it follows that [16] . 

lim 

t −→∞ 

˙ P = 0 

which implies that we can replace P in (11) by the unique and positive definite solution to the algebraic Riccati equation

(ARE) 

PA + A 

T P − P BR 

−1 B 

T P + Q = 0 . (12)

We want now to find a state feedback control u that can be used to move any state x to the origin, so we let the system

evolve in a closed-loop [5,16] . 

If we find the solution P of the ARE (12) , then the optimal control u that can be used to minimise the quadratic cost

function J is written as: 

u = −R 

−1 B 

T P x (13)

By substituting Eq. (13) into the original system described by Eq. (1) , we get the following equation: 

˙ x = (A − R 

−1 B 

T P ) x (14)

We can summarise the LQR method as follows: 

(1) We start with the linear dynamical system: 

˙ x = Ax + Bu 

y = Cx 

x (0) = x 0 

(2) We assume that this system is controllable. 

(3) We define the quadratic cost function as: 

J = 

1 

2 

∫ ∞ 

0 

(x T Qx + u 

T Ru ) dt 

(4) We choose Q = Q 

T ≥ 0 such that Q = C T C and R = R T > 0 

(5) We find the constant solution P of the ARE : 

T −1 T 
PA + A P − P BR B P + Q = 0 
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(6) We find the optimal control u such that: 

u = −R 

−1 B 

T P x 

(7) We write the original system into the form: 

˙ x = (A − R 

−1 B 

T P ) x 

2.1. Balanced representation 

We start from the balanced representation of the linear continuous system to derive a version of Eq. (1) with reduced

dimension. The associated controllability and observability Gramians W c and W o are positive definite solutions to the pair

of Lyapunov equations 

AW c + W c A 

T + BB 

T = 0 

A 

T W o + W o A + C T C = 0 

In balanced form that can be obtained by a state transformation x 	→ Tx (see [1] ), the two Gramians are equal and diagonal,

W o = W c = � where the balanced Gramian � can be partitioned in the following form 

� = 

(
�1 0 

0 �2 

)

The two partitions 

�1 = diag(σ1 , σ2 , . . . , σr ) 

and 

�2 = diag(σr+1 , σr+2 , . . . , σn ) 

show us the important singular values that we are interested in and the unimportant ones which we want to delete [20,22] .

Also we introduce, as in [3] , the balance transformation S that satisfies the equations 

S = UY �
−1 
2 

S −1 = �
−1 
2 X 

T L T 

Now, if we suppose σr+1 << σr and we know that the Hankel singular values (HSVs) are coordinate invariant, then a reduced

dimension system with small parameters can be obtained since σr+1 > σr+2 > · · · > σn > 0 [7] . 

To see where the small parameter �2 enter the equation, we replace �2 by ε�2 or in other words the small HSVs are

scaled uniformly according to the equation 

(σr+1 , σr+2 , . . . , σn ) 	 −→ ε(σr+1 , σr+2 , . . . , σn ) , ε > 0 

We use the balance transformation S ( ε) to change the coordinate such that 

x 	 −→ S(ε) x 

If we let S −1 (ε) = T (ε) , then the balanced matrices are partitioned in the following form [7] : 

S(ε) = 

(
S 11 

1 √ 

ε
S 12 

S 21 
1 √ 

ε
S 22 

)
(15) 

and the inverse 

T (ε) = 

(
T 11 T 12 

1 √ 

ε
T 21 

1 √ 

ε
T 22 

)
(16) 

If we use the balance transformation described in Eqs. (15) and (16) , then a new balance coefficient is obtained and written

as: 

˜ A (ε) = T (ε) AS(ε) = 

(
T 11 T 12 

1 √ 

ε
T 21 

1 √ 

ε
T 22 

)(
A 11 A 12 

A 21 A 22 

)(
S 11 

1 √ 

ε
S 12 

S 21 
1 √ 

ε
S 22 

)
= 

(
˜ A 11 

1 √ 

ε
˜ A 12 

1 √ 

ε
˜ A 21 

1 
ε

˜ A 22 

)
(17) 

˜ B (ε) = T (ε) B = 

(
T 11 T 12 

1 √ 

ε
T 21 

1 √ 

ε
T 22 

)(
B 1 

B 2 

)
= 

(
˜ B 1 

1 √ 

ε
˜ B 2 

)
(18) 
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and 

˜ C (ε) = CS(ε) = 

(
C 1 C 2 

)(S 11 
1 √ 

ε
S 12 

S 21 
1 √ 

ε
S 22 

)
= 

(
˜ C 1 

1 √ 

ε
˜ C 2 
)

(19)

If we set ε = 1 in Eq. (17) , then the value of ˜ A = T (1) AS(1) is simply the balanced matrix A . We can rewrite the balancing

transformations in the following form 

S(ε) = S(1) χ(ε) 

and 

T (ε) = χ(ε) T (1) 

where 

χ(ε) = 

(
I 0 

0 

1 √ 

ε
I 

)

In the next steps we omit the tilde from the balanced matrices, in order to have the following matrices: 

A = 

(
A 11 

1 √ 

ε
A 12 

1 √ 

ε
A 21 

1 
ε A 22 

)
, B = 

(
B 1 

1 √ 

ε
B 2 

)
, C = 

(
C 1 

1 √ 

ε
C 2 

)
Let us define the new variable q = (q 1 , q 2 ) which can be balanced using the balance transformation T ( ε) and we write q in

the balance form as: 

q = T (ε) x 

Now, the linear dynamical system in Eq. (1) is converted to the singular perturbation system that is described in the fol-

lowing equation: (
˙ q 1 
˙ q 2 

)
= 

(
A 11 

1 √ 

ε
A 12 

1 √ 

ε
A 21 

1 
ε A 22 

)(
q 1 
q 2 

)
+ 

(
B 1 

1 √ 

ε
B 2 

)
u 

y = 

(
C 1 

1 √ 

ε
C 2 

)(q 1 
q 2 

) (20)

Eq. (20) can be written in another form: 

˙ q 1 = A 11 q 1 + 

1 √ 

ε
A 12 q 2 + B 1 u 

˙ q 2 = 

1 √ 

ε
A 21 q 1 + 

1 

ε
A 22 q 2 + 

1 √ 

ε
B 2 u 

y = C 1 q 1 + 

1 √ 

ε
C 2 q 2 

(21)

the variable q 2 is scaled as 

q 2 	 −→ 

√ 

εq 2 

then Eq. (21) becomes: 

˙ q 1 = A 11 q 1 + A 12 q 2 + B 1 u 

ε ˙ q 2 = A 21 q 1 + A 22 q 2 + B 2 u 

y = C 1 q 1 + C 2 q 2 

(22)

This system can be written in matrix form as: (
˙ q 1 
˙ q 2 

)
= 

(
A 11 A 12 

1 
ε A 21 

1 
ε A 22 

)(
q 1 
q 2 

)
+ 

(
B 1 

1 
ε B 2 

)
u 

y = 

(
C 1 C 2 

)(q 1 
q 2 

) (23)

where the block matrices A 11 , A 12 , . . . are in balance form and ε is a small positive scalar that represent all small parameters

to be neglected [7,12] . To reduce the dimension of the original system and obtain a reduced order model, we set the singular

perturbation ε = 0 . The linear dynamical system has a multi-time behaviour caused by the singular perturbation and this

yields the slow and fast variable of the system. The quasi-steady-state for both slow and fast variables are found with more

details in [12] . Now, to apply the singular perturbation approximation and obtain a reduced order model, we introduce the

following two assumptions [12] : 
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Assumptions 2. The block matrix A 22 is invertible and stable. i.e, 

�{ λ(A 22 ) } < 0 

Assumptions 3. The following equation has a distinct root when we set ε = 0 . 

ε ˙ q 2 = A 21 q 1 + A 22 q 2 + B 2 u (24) 

In our dynamical system described by Eq. (22) , the slow variable (or dynamic) is q 1 and the fast variable (or dynamic)

is q 2 . According to the two Assumptions 2, 3 and from Eq. (22) , if we set ε = 0 , then the root of Eq. (24) denoted by q̄ 2 is

given as 

q̄ 2 = −A 

−1 
22 A 21 ̄x − A 

−1 
22 B 2 u (25) 

If we substitute the value of q̄ 2 in the first part of Eq. (22) , we obtain the reduced order model represented by the following

state-space equation 

˙ q̄ 1 = Ā ̄q 1 + B̄ u 

ȳ = C̄ ̄q 1 + D̄ u 

q̄ 1 (0) = q 1 (0) 

(26) 

where 

Ā = A 11 − A 12 A 

−1 
22 A 21 

B̄ = B 1 − A 12 A 

−1 
22 B 2 

C̄ = C 1 − C 2 A 

−1 
22 A 21 

D̄ = −C 2 A 

−1 
22 B 2 

(27) 

3. Singularly perturbed regulator problem 

In this section we introduce the linear quadratic regulator problem for the reduced order model of a dynamical system

[11] . Our goal is to find an optimal control for the reduced system using the singular perturbation approximation. For the

ease of notation we use the original variable names x , y for the original and the balanced systems. 

3.1. Singular perturbation regulator problem of type 1 

Consider the linear time-invariant dynamical system (
˙ x 
˙ z 

)
= 

(
A 11 A 12 

1 
ε A 21 

1 
ε A 22 

)(
x 
z 

)
+ 

(
B 1 

1 
ε B 2 

)
u 

y = 

(
C 1 C 2 

)(x 
z 

)
(28) 

This system can be written in another form as: 

˙ x = A 11 x + A 12 z + B 1 u 

ε ˙ z = A 21 x + A 22 z + B 2 u 

(29) 

From [3] , we see that this system can be optimised according to the following quadratic cost function: 

J = 

1 

2 

∫ ∞ 

0 

(y T y + u 

T Ru ) dt (30) 

or 

J = 

1 

2 

∫ ∞ 

0 

(x T Qx + u 

T Ru ) dt (31) 

where Q = C T C ≥ 0 and R > 0. 

The optimal control u is defined as: 

u = −R 

−1 
(
B 

T 
1 

1 
ε B 

T 
2 

)
P 

(
x 
z 

)
(32) 

where P is the solution of the Algebraic Riccati equation (ARE): 

PA + A 

T P − P BR 

−1 B 

T P + Q = 0 (33) 

The goal now is to solve the ARE and set ε = 0 to obtain a reduced equation for the ARE . 
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If we substitute the matrices A , B , C and Q in Eq. (33) , then we have the following new form of ARE : 

P 

(
A 11 A 12 

1 
ε A 21 

1 
ε A 22 

)
+ 

(
A 

T 
11 

1 
ε A 

T 
21 

A 

T 
12 

1 
ε A 

T 
22 

)
P − P 

(
B 1 

1 
ε B 2 

)
R 

−1 
(
B 

T 
1 

1 
ε B 

T 
2 

)
P + 

(
C T 1 

C T 2 

)(
C 1 C 2 

)
= 0 (34)

A solution of Eq. (34) can be chosen as: 

P = 

(
P 11 εP 12 

εP T 12 εP 22 

)
(35)

so we can avoid the unboundedness when we set ε −→ 0 [11] . 

Substituting Eq. (35) into Eq. (34) , we get: (
P 11 εP 12 

εP T 12 εP 22 

)(
A 11 A 12 

1 
ε A 21 

1 
ε A 22 

)
+ 

(
A 

T 
11 

1 
ε A 

T 
21 

A 

T 
12 

1 
ε A 

T 
22 

)(
P 11 εP 12 

εP T 12 εP 22 

)

−
(

P 11 εP 12 

εP T 12 εP 22 

)(
B 1 

1 
ε B 2 

)
R 

−1 
(
B 

T 
1 

1 
ε B 

T 
2 

)( P 11 εP 12 

εP T 12 εP 22 

)
+ 

(
C T 1 

C T 2 

)(
C 1 C 2 

)
= 0 (36)

From Eq. (36) , we get the following (n + m ) × (n + m ) equations: 

0 = P 11 A 11 + P 12 A 21 + A 

T 
11 P 11 + A 

T 
21 P 

T 
12 − (P 11 B 1 + P 12 B 2 ) R 

−1 (B 

T 
1 P 11 + B 

T 
2 P 

T 
12 ) + C T 1 C 1 (37)

0 = P 11 A 12 + P 12 A 22 + εA 

T 
11 P 12 + A 

T 
21 P 22 − (P 11 B 1 + P 12 B 2 ) R 

−1 (εB 

T 
1 P 12 + B 

T 
2 P 22 ) + C T 1 C 2 (38)

0 = εP T 12 A 11 + P 22 A 21 + A 

T 
12 P 11 + A 

T 
22 P 

T 
12 − (εP T 12 B 1 + P 22 B 2 ) R 

−1 (B 

T 
1 P 11 + B 

T 
2 P 

T 
12 ) + C T 2 C 1 (39)

0 = εP T 12 A 12 + P 22 A 22 + εA 

T 
12 P 12 + A 

T 
22 P 22 − (εP T 12 B 1 + P 22 B 2 ) R 

−1 (εB 

T 
1 P 12 + B 

T 
2 P 22 ) + C T 2 C 2 (40)

When we set ε = 0 in Eqs. (37) –(40) we obtain the following m × m reduced equation for P̄ 22 and written as: 

P̄ 22 A 22 + A 

T 
22 ̄P 22 − P̄ 22 W P̄ 22 + C T 2 C 2 = 0 (41)

where W = B 2 R 
−1 B T 2 . 

Another n × n equation for P̄ 11 is obtained when we express P̄ 12 in terms of P̄ 11 and P̄ 22 and this equation takes the form:

P̄ 11 ̂
 A + 

ˆ A 

T P̄ T 11 − P̄ 11 ̂
 B R 

−1 ˆ B 

T P̄ 11 + 

ˆ C T ˆ C = 0 (42)

where ˆ A , ˆ B and 

ˆ C are defined in [14] . If ( ̂  A , ˆ B ) is controllable pair and ( ̂  A , ˆ C ) is observable pair, then applying the implicit

function theorem to Eq. (34) with Eq. (35) [11,12] , we have: 

P i j = P̄ i j + O (ε) , i, j = 1 , 2 (43)

If we use P̄ i j instead of P ij in Eq. (43) , then the feedback control in Eq. (32) becomes: 

u = −R 

−1 
(
B 

T 
1 

1 
ε B 

T 
2 

)( P̄ 11 εP̄ 12 

εP̄ T 12 εP̄ 22 

)(
x 
z 

)

= −R 

−1 (B 

T 
1 ̄P 11 + B 

T 
2 ̄P 12 ) x − R 

−1 (εB 

T 
1 ̄P 12 + B 

T 
2 ̄P 22 ) z 

(44)

From Eq. (44) , the original system described by Eq. (28) becomes: 

˙ x = 

(
A 11 − B 1 R 

−1 (B 

T 
1 ̄P 11 + B 

T 
2 ̄P 12 ) 

)
x + 

(
A 12 − B 1 R 

−1 (εB 

T 
1 ̄P 12 + B 

T 
2 ̄P 22 ) 

)
z 

ε ˙ z = 

(
A 21 − B 2 R 

−1 (B 

T 
1 ̄P 11 + B 

T 
2 ̄P 12 ) 

)
x + 

(
A 22 − B 2 R 

−1 (εB 

T 
1 ̄P 12 + B 

T 
2 ̄P 22 ) 

)
z 

(45)

If this system is asymptotically stable then from Eq. (43) , we have a solution x ( t ) and z ( t ) with O ( ε) of the optimal solution

[13] . If we assume that A 22 is stable, then we can apply this assumption to the feedback system in Eq. (45) . 

If we reduce the full system in Eq. (29) using the singular approximation approximation, we obtain the following reduced

order model: 

˙ x r = A r x r + B r u r 

y r = C r x r + D r u r 

(46)

where 

A r = A 11 − A 12 A 

−1 
22 A 21 

B r = B 1 − A 12 A 

−1 
22 B 2 
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C r = C 1 − C 2 A 

−1 
22 A 21 

D r = −C 2 A 

−1 
22 B 2 

We define the cost quadratic function of this reduced order system as: 

J r = 

1 

2 

∫ ∞ 

0 

(y T r y r + u 

T 
r R r u r ) dt (47) 

or, equivalently 

J r = 

1 

2 

∫ ∞ 

0 

(x T r Q r x r + 2 x T r C r D r u r + u 

T 
r R r u r ) dt (48)

where Q r = C T r C r and R r = R + D 

T 
r D r . 

The optimal control for this reduced system defined as: 

u r = −R 

−1 
r B 

T 
r P r x r (49) 

where P r is the constant solution of the following Algebraic Riccati equation for the reduced system described by

Eq. (46) given as: 

P r (A r − B r R 

−1 
r D 

T 
r C r ) + (A r − B r R 

−1 
r D 

T 
r C r ) 

T P r − P r B r R 

−1 
r B 

T 
r P r + C T r (I + D r R r D 

T 
r ) 

−1 C r = 0 (50)

We introduce now the following theorem that describes the relationship between the reduced Riccati equation sys-

tem (41) and (42) for the full system (29) after putting ε = 0 and the Riccati equation (50) for the reduced system in

Eq. (46) when we set ε = 0 

Theorem 4. If Eq. (43) holds and A 

−1 
22 

exists, then the solution P r of Eq. (50) is identical to the solution P̄ 11 of Eq. (42) . 

For more details, see [12,13] . 

According to Theorem 4 and if we substitute the feedback optimal control u r described by Eq. (49) into the reduced

system Eq. (46) , then we obtain the following system: 

˙ x r = (A r − B r R 

−1 B 

T 
r P r ) x r (51) 

where (A r − B r R 
−1 B T r P r ) is stable and the pair ( A r , B r ) is controllable. If we find the optimal solution x r of (51) and substitute

the value into Eq. (49) , then we find the optimal control for the reduced order model. 

3.2. Singular perturbation regulator problem of type 2 

In this subsection, we introduce a linear dynamical continuous system with input matrix B that does not depends on

ε. We want to find the optimal control for this dynamical system and then use the singular perturbation approximation to

reduce this system and find the optimal control for the reduced order model. 

Let us consider the following linear dynamical continuous system defined as: (
˙ x 
˙ z 

)
= 

(
A 11 A 12 
A 21 

ε
A 22 

ε

)(
x 
z 

)
+ 

(
B 1 

B 2 

)
u 

y = 

(
C 1 C 2 

)(x 
z 

)
(52) 

Another representation of the above system could be written as: 

˙ x = A 11 x + A 12 z + B 1 u 

ε ˙ z = A 21 x + A 22 z + εB 2 u 

(53) 

If we assume that A 22 is stable and A 

−1 
22 

exists, then we set ε = 0 to obtain the following equation: 

z̄ = A 

−1 
22 A 21 ̄x (54) 

When we substitute Eq. (54) into Eq. (53) , we get the following reduced order model: 

˙ x̄ = Ā ̄x + B̄ ̄u 

ȳ = C̄ ̄x 
(55) 

where 

Ā = A 11 − A 12 A 

−1 
22 A 21 

B̄ = B 1 

C̄ = C 1 − C 2 A 

−1 A 21 
22 
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Our goal now is to find the optimal control for the system in Eq. (52) that minimises the quadratic cost function J defined

by the following equations: 

J = 

1 

2 

∫ ∞ 

0 

(y T y + u 

T Ru ) dt (56)

or equivalently 

J = 

1 

2 

∫ ∞ 

0 

(x T Qx + u 

T Ru ) dt (57)

where Q = C T C ≥ 0 and R > 0. 

The feedback optimal control u for the original system is defined as: 

u = −R 

−1 
(
B 

T 
1 B 

T 
2 

)
P 

(
x 
z 

)
(58)

where P is the solution of the Algebraic Differential Equation defined below: 

P 

(
A 11 A 12 

1 
ε A 21 

1 
ε A 22 

)
+ 

(
A 

T 
11 

1 
ε A 

T 
21 

A 

T 
12 

1 
ε A 

T 
22 

)
P − P 

(
B 1 

B 2 

)
R 

−1 
(
B 

T 
1 B 

T 
2 

)
P + 

(
C T 1 

C T 2 

)(
C 1 C 2 

)
= 0 (59)

We choose the solution of Eq. (59) as: 

P = 

(
P 11 εP 12 

εP T 12 εP 22 

)
(60)

to avoid the unboundedness for ε = 0 . 

Eq. (60) together with Eq. (59) give the following equation: (
P 11 εP 12 

εP T 12 εP 22 

)(
A 11 A 12 

1 
ε A 21 

1 
ε A 22 

)
+ 

(
A 

T 
11 

1 
ε A 

T 
21 

A 

T 
12 

1 
ε A 

T 
22 

)(
P 11 εP 12 

εP T 12 εP 22 

)

−
(

P 11 εP 12 

εP T 12 εP 22 

)(
B 1 

1 
ε B 2 

)
R 

−1 
(
B 

T 
1 

1 
ε B 

T 
2 

)( P 11 εP 12 

εP T 12 εP 22 

)
+ 

(
C T 1 

C T 2 

)(
C 1 C 2 

)
= 0 (61)

Form Eq. (61) , we obtain the following set of equations: 

0 = P 11 A 11 + P 12 A 21 + A 

T 
11 P 11 + A 

T 
21 P 

T 
12 − (P 11 B 1 + εP 12 B 2 ) R 

−1 (B 

T 
1 P 11 + εB 

T 
2 P 

T 
12 ) + C T 1 C 1 (62)

0 = P 11 A 12 + P 12 A 22 + εA 

T 
11 P 12 + A 

T 
21 P 22 − (P 11 B 1 + εP 12 B 2 ) R 

−1 (εB 

T 
1 P 12 + εB 

T 
2 P 22 ) + C T 1 C 2 (63)

0 = εP T 12 A 11 + P 22 A 21 + A 

T 
12 P 11 + A 

T 
22 P 

T 
12 − (εP T 12 B 1 + εP 22 B 2 ) R 

−1 (εB 

T 
1 P 11 + εB 

T 
2 P 

T 
12 ) + C T 2 C 1 (64)

0 = εP T 12 A 12 + P 22 A 22 + εA 

T 
12 P 12 + A 

T 
22 P 22 − (εP T 12 B 1 + εP 22 B 2 ) R 

−1 (εB 

T 
1 P 12 + εB 

T 
2 P 22 ) + C T 2 C 2 (65)

When we set ε = 0 in Eqs. (62) –(65) we obtain the following reduced Riccati equations: 

P̄ 11 A 11 + P̄ 12 A 21 + A 

T 
11 ̄P 

T 
11 + A 

T 
21 ̄P 

T 
12 − P̄ 11 B 1 R 

−1 B 

T 
1 ̄P 11 + C T 1 C 1 = 0 (66)

P̄ 11 A 12 + P̄ 12 A 22 + A 

T 
21 ̄P 22 + C T 1 C 2 = 0 (67)

P̄ 22 A 21 + A 

T 
12 ̄P 11 + A 

T 
22 ̄P 

T 
12 + C T 2 C 1 = 0 (68)

P̄ 22 A 22 + A 

T 
22 ̄P 22 + C T 2 C 2 = 0 (69)

We write P̄ 12 and P̄ T 
12 

in Eqs. (67) and (68) in terms of P̄ 11 and P̄ 22 as follows: 

P̄ 12 = −( ̄P 11 A 12 + A 

T 
21 ̄P 22 + C T 1 C 2 ) A 

−1 
22 (70)

P̄ T 12 = −(A 

T 
22 ) 

−1 ( ̄P 22 A 21 + A 

T 
12 ̄P 11 + C T 2 C 1 ) (71)

Eq. (69) can be expressed in different form as: 

A 

T 
21 (A 

T 
22 ) 

−1 P̄ 22 A 21 + A 

T 
21 ̄P 22 A 

−1 A 21 = −A 

T 
21 (A 

T 
22 ) 

−1 C T 2 C 2 A 

−1 A 21 (72)
22 22 
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Substituting Eqs. (70) and (71) into Eq. (66) and using Eq. (72) we obtain: 

P̄ 11 ̂
 A + 

ˆ A 

T P̄ 11 − P̄ 11 ̂
 B R 

−1 ˆ B 

T P̄ 11 + 

ˆ C T ˆ C = 0 (73) 

where 

ˆ A = A 11 − A 12 A 

−1 
22 A 21 

ˆ B = B 1 

ˆ C = C 1 − C 2 A 

−1 
22 A 21 

(74) 

If we assume the pair ( ̂  A , ˆ B ) is controllable, then the values of P ij and P̄ i j , i, j = 1 , 2 satisfy Eq. (43) . 

The feedback optimal control defined in Eq. (58) together with the result in Eq. (43) can be written as: 

u = −R 

−1 
(
B 

T 
1 B 

T 
2 

)( P̄ 11 εP̄ 12 

εP̄ T 12 εP̄ 22 

)(
x 
z 

)

= −R 

−1 (B 

T 
1 ̄P 11 + εB 

T 
2 ̄P 12 ) x − R 

−1 (εB 

T 
1 ̄P 12 + εB 

T 
2 ̄P 22 ) z 

(75) 

We can use the result found in Eq. (75) to write a new representation of the original system described by Eq. (53) as: 

˙ x = 

(
A 11 − B 1 R 

−1 (B 

T 
1 ̄P 11 + εB 

T 
2 ̄P 12 ) 

)
x + 

(
A 12 − B 1 R 

−1 (εB 

T 
1 ̄P 12 + εB 

T 
2 ̄P 22 ) 

)
z 

ε ˙ z = 

(
A 21 − εB 2 R 

−1 (B 

T 
1 ̄P 11 + εB 

T 
2 ̄P 12 ) 

)
x + 

(
A 22 − εB 2 R 

−1 (εB 

T 
1 ̄P 12 + εB 

T 
2 ̄P 22 

)
z 

(76) 

If the system in Eq. (76) is asymptotically stable and if Eq. (43) holds, then we can compute the solution x ( t ) and z ( t ) within

the O ( ε) of the optimal control. 

The next step now is to find a feedback optimal control for the reduced system defined in Eq. (55) that can be used to

minimises the quadratic cost function J̄ defined as: 

J̄ = 

1 

2 

∫ ∞ 

0 

( ̄y T ȳ + ū T R̄ ̄u ) dt (77) 

or equivalently 

J̄ = 

1 

2 

∫ ∞ 

0 

( ̄x T Q̄ ̄x + ū 

T R̄ ̄u ) dt (78) 

where Q̄ = C̄ T Q̄ ≥ 0 and R̄ = R > 0 . 

We define the optimal control for the reduced system (55) as: 

ū = −R̄ 

−1 B̄ 

T P̄ ̄x (79) 

where P̄ is the solution of the following Algebraic Riccati equation for the reduced system in Eq. (55) , defined as: 

P̄ Ā + Ā 

T P̄ − P̄ B̄ ̄R 

−1 B̄ 

T P̄ + C̄ T C̄ = 0 (80) 

Since A 22 is stable and A 

−1 
22 

is exists, then the solution of Eq. (80) is the same as the solution of Eq. (73) , thus we have: 

P̄ = P̄ 11 (81) 

By using the feedback optimal control in Eq. (79) and the solution P̄ in Eq. (80) , then we obtain the following reduced

system derived from the reduced system in Eq. (55) that has the form: 

˙ x̄ = 

(
Ā − B̄ ̄R 

−1 B̄ 

T P̄ 
)
x̄ 

ȳ = C̄ ̄x 
(82) 

where 

Ā = A 11 − A 12 A 

−1 
22 A 21 

B̄ = B 1 

C̄ = C 1 − C 2 A 

−1 
22 A 21 

We assume that the matrix Ā − B̄ ̄R −1 B̄ T P̄ is stable and the pairs ( ̄A , B̄ ) , ( ̄A , C̄ ) are controllable and observable, respectively. 

By solving the reduced system in Eq. (82) , the solution x̄ (t) is used to find the feedback control ū which is important to

find the minimum value of the quadratic cost function J̄ . 

3.3. Singular perturbation regulator problem of type 3 

In Section 3.2 , we applied the singular perturbation linear quadratic regulator to find an optimal control for the reduced

system. We now turn to a different scaling that shares some features with the classical balanced truncation approach. To
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this end consider the full linear time-invariant dynamical system defined by (
˙ x 
˙ z 

)
= 

(
A 11 A 12 

A 21 
1 
ε A 22 

)(
x 
z 

)
+ 

(
B 1 

B 2 

)
u 

y = 

(
C 1 C 2 

)(x 
z 

) (83)

We can rewrite the original system in Eq. (83) in another form as: 

˙ x = A 11 x + A 12 z + B 1 u 

ε ˙ z = εA 21 x + A 22 z + εB 2 u 

(84)

If we apply the balanced truncation method to reduce the original system described by Eq. (84) , we get the following

reduced system form: 

˙ x r = A 11 x r + B 1 u r 

y r = C 1 x r 
(85)

Moreover, we can apply the singular perturbation approximation method to reduce the original system in Eq. (84) to obtain

the reduced system: 

˙ x̄ = A 11 ̄x + B 1 ̄u 

ȳ = C 1 ̄x 
(86)

From Eqs. (85) and (86) , we see the two reduced systems have the same state space equation and this means that to

find an optimal control for the reduced system in Eq. (85) using the balanced truncation method, we can use the singular

perturbation method described in Section 3.2 . 

We start by defining the quadratic cost function J for the original system (83) as: 

J = 

1 

2 

∫ ∞ 

0 

(y T y + u 

T Ru ) dt (87)

or equivalently 

J = 

1 

2 

∫ ∞ 

0 

(x T Qx + u 

T Ru ) dt (88)

where Q = C T C ≥ 0 and R > 0. 

Our optimal control u for the original system is defined as: 

u = −R 

−1 
(
B 

T 
1 B 

T 
2 

)
P 

(
x 
z 

)
(89)

The matrix P is the solution of the following ARE: 

PA + A 

T P − P BR 

−1 B 

T P + Q = 0 (90)

The next step now is to find a reduced Riccati equation for the full Riccati equation (90) when ε = 0 . 

To avoid the unboundedness when ε = 0 , we choose the solution P in the form: 

P = 

(
P 11 εP 12 

εP T 12 εP 22 

)
(91)

By substituting Eq. (91) into Eq. (90) , we get: (
P 11 εP 12 

εP T 12 εP 22 

)(
A 11 A 12 

A 21 
1 
ε A 22 

)
+ 

(
A 

T 
11 A 

T 
21 

A 

T 
12 

1 
ε A 

T 
22 

)(
P 11 εP 12 

εP T 12 εP 22 

)

−
(

P 11 εP 12 

εP T 12 εP 22 

)(
B 1 

B 2 

)
R 

−1 
(
B 

T 
1 B 

T 
2 

)( P 11 εP 12 

εP T 12 εP 22 

)
+ 

(
C T 1 

C T 2 

)(
C 1 C 2 

)
= 0 (92)

After solving Eq. (92) , we obtain the following equations: 

0 = P 11 A 11 + εP 12 A 21 + A 

T 
11 P 11 + εA 

T 
21 P 

T 
12 − (P 11 B 1 + εP 12 B 2 ) R 

−1 (B 

T 
1 P 11 + εB 

T 
2 P 

T 
12 ) + C T 1 C 1 (93)

0 = P 11 A 12 + P 12 A 22 + εA 

T 
11 P 12 + εA 

T 
21 P 22 − (P 11 B 1 + εP 12 B 2 ) R 

−1 (εB 

T 
1 P 12 + εB 

T 
2 P 22 ) + C T 1 C 2 (94)

0 = εP T 12 A 11 + εP 22 A 21 + A 

T 
12 P 11 + A 

T 
22 P 

T 
12 − (εP T 12 B 1 + εP 22 B 2 ) R 

−1 (B 

T 
1 P 11 + εB 

T 
2 P 

T 
12 ) + C T 2 C 1 (95)
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0 = εP T 12 A 12 + P 22 A 22 + εA 

T 
12 P 12 + A 

T 
22 P 22 − (εP T 12 B 1 + εP 22 B 2 ) R 

−1 (εB 

T 
1 P 12 + εB 

T 
2 P 22 ) + C T 2 C 2 (96)

Now, if we set ε = 0 in Eqs. (93) –(96) , we obtain the following reduced system Riccati equations: 

P̄ 11 A 11 + A 

T 
11 ̄P 

T 
11 − P̄ 11 B 1 R 

−1 B 

T 
1 ̄P 11 + C T 1 C 1 = 0 (97) 

P̄ 11 A 12 + P̄ 12 A 22 + C T 1 C 2 = 0 (98) 

A 

T 
21 ̄P 11 + A 

T 
22 ̄P 12 + C T 2 C 1 = 0 (99) 

P̄ 22 A 22 + A 

T 
22 ̄P 22 + C T 2 C 2 = 0 (100) 

Assumptions 5. The pair ( A 11 , B 1 ) is controllable and P̄ 11 is a unique positive semidefinite solution of Eq. (97) such that: 

A 11 − B 1 R 

−1 B 

T 
1 ̄P 11 

is stable. 

According to Eq. (43) in Section 3.1 , we can use P̄ i j instead of P ij to rewrite the feedback control in Eq. (89) as: 

u = −R 

−1 
(
B 

T 
1 B 

T 
2 

)( P̄ 11 εP̄ 12 

εP̄ T 12 εP̄ 22 

)(
x 
z 

)

= −R 

−1 (B 

T 
1 ̄P 11 + εB 

T 
2 ̄P 12 ) x − R 

−1 (εB 

T 
1 ̄P 12 + εB 

T 
2 ̄P 22 ) z 

(101) 

Using Eq. (101) , we obtain a new form of the original system described by Eq. (84) such that: 

˙ x = 

(
A 11 − B 1 R 

−1 (B 

T 
1 ̄P 11 + εB 

T 
2 ̄P 12 ) 

)
x + 

(
A 12 − B 1 R 

−1 (εB 

T 
1 ̄P 12 + εB 

T 
2 ̄P 22 ) 

)
z 

ε ˙ z = 

(
εA 21 − εB 2 R 

−1 (B 

T 
1 ̄P 11 + εB 

T 
2 ̄P 12 ) 

)
x + 

(
A 22 − εB 2 R 

−1 (εB 

T 
1 ̄P 12 + εB 

T 
2 ̄P 22 ) 

)
z 

(102) 

If the above system is asymptotically stable and Eq. (43) holds, then we have a solution x ( t ) and z ( t ) for this system with

O ( ε) of the optimal solution [13] . 

We are going now to define the quadratic cost function for the reduced order model system described in Eq. (85) or (86) .

Let J̄ be the quadratic cost function of the reduced system in Eq. (85) or (86) defined as: 

J̄ = 

1 

2 

∫ ∞ 

0 

( ̄y T ȳ + ū 

T R̄ ̄u ) dt (103) 

or, equivalently 

J̄ = 

1 

2 

∫ ∞ 

0 

( ̄x T Q̄ ̄x + ū 

T R̄ ̄u ) dt (104) 

where Q̄ = C̄ T C̄ ≥ 0 and R̄ = R > 0 . 

The optimal feedback control for the reduced order model is defined as: 

ū = −R̄ 

−1 B̄ 

T P̄ ̄x (105) 

where P̄ is the solution of the Algebraic Riccati equation for the reduced order model and given as: 

P̄ A 1 + A 

T 
1 ̄P − P̄ B 1 ̄R 

−1 B 

T 
1 ̄P + C T 1 C 1 = 0 (106) 

From Theorem 4 in Section 3.1 , we see that the two solutions P̄ 11 and P̄ are both identical. 

Hence we conclude that P̄ 11 is the reduced Riccati equation (97) and it is the same as P̄ which is the solution of the

reduced system. 

By substituting the feedback control Eq. (105) into the reduced system (85) , we get: 

˙ x̄ = (A 11 − B 1 R 

−1 B 

T 
1 ̄P ) x r (107) 

where we have assumed that the matrix (A 11 − B̄ R −1 B T 1 P̄ ) is stable. 

If we solve Eq. (107) of the reduced system, then we can use the solution x ( t ) to find the optimal control. This optimal

control can be used to find the optimality of J̄ . 
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Fig. 1. The optimal controls of the mass-spring damping. 

Table 1 

The L 2 norm of (U 1 − U 2 ) and (P 11 − ˜ P 11 ) of the mass-spring. 

r s ‖ U 1 − U 2 ‖ L 2 BT ‖ P 11 − ˜ P 11 ‖ L 2 ‖ U 1 − U 2 ‖ L 2 SPA ‖ P 11 − ˜ P 11 ‖ L 2 
2 4.0511 ×10 −21 0.0159 4.2643 ×10 −21 0.0193 

4 3.1877 ×10 −23 0.0049 3.4627 ×10 −12 0.0035 

6 2.7572 ×10 −25 6.4136 ×10 −4 3.1813 ×10 −25 2.1445 ×10 −4 

8 2.2720 ×10 −28 6.9710 ×10 −4 7.0385 ×10 −27 3.8847 ×10 −5 

10 4.0902 ×10 −28 1.1015 ×10 −4 1.1291 ×10 −29 6.8224 ×10 −6 

 

 

 

 

 

 

 

 

 

 

4. Numerical illustration 

In this section we include all results obtained by the singular perturbation approximation (SPA) techniques to determine

the order of the reduced models. 

To find an optimal control U 1 for the original system and U r for the reduced order system, we apply the balanced trunca-

tion and the singular perturbation approximation methods to the mass damping system example. The size of the system is

N s = 10 and the size of the reduced model is r s = 2 . The optimal control is computed by using the results in Sections 3.2 and

3.3 . The solution of the Riccati equation P of the full system is computed and used to find the value of U 1 . We apply the

approaches in Sections 3.2 and 3.3 to find the solution of the Riccati equation P r of the reduced system. Since the first block

P 11 of P is equal to the value of P r , so we can extended P using P r as the first block and the rest blocks are zero to obtain a

new solution of the Riccati equation denoted by ˜ P 11 . 

Another optimal control for the full system U 2 is found using the value of ˜ P 11 , and hence we compute the ‖ U 1 − U 2 ‖ L 2
norm. Fig. 1 represent the plots of the two optimal controls U 1 , U 2 and (U 1 − U 2 ) using the balanced truncation and the

singular approximation perturbation. 

Finally, Table 1 contains the values of ‖ U 1 − U 2 ‖ L 2 and ‖ P 11 − ˜ P 11 ‖ L 2 by applying the balanced truncation and singular

perturbation approximation to the mass-spring damping. 
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5. Conclusions 

In this article we have discussed singular perturbation approximations of LQR systems based on open-loop balancing of

controllability and observability properties. We have studied the behaviour of the control value and the corresponding op-

timal control in the limit of vanishing Hankel singular values and analysed three scenarios that differ in how the dynamics

scales with the negligible Hankel singular values. As two special cases of the singular perturbation approach, we recover

the balanced truncation approximation (type 3) as well as the residualisation method (type 1). Even though our approach

remained purely formal, we have given some numerical evidence that open-loop balancing can give good closed-loop per-

formance. 

Appendix A. The reciprocal system of a linear dynamical system 

In this section we discuss some properties and some results related to the reciprocal system of the balanced realisation

for the infinite dimensional systems [21] . 

Let the linear continuous dynamical system represented by the equation 

˙ x = Ax + Bu 

y = Cx + Du 

If the system ( A , B , C , D ) is balanced with Gramian �, then we have 

A � + �A 

T + BB 

T = 0 

A 

T � + �A + C T C = 0 

We let G ( s ) to be the transfer function of the balanced system ( A , B , C , D ), then 

G (s ) = C(sI − A ) −1 B + D 

the reciprocal system of the balanced system ( A , B , C , D ) is denoted by ( ̂  A , ˆ B , ˆ C , ˆ D ) and defined as [2,21,22] : 

ˆ A = A 

−1 

ˆ B = A 

−1 B 

ˆ C = −CA 

−1 

ˆ D = D − CA 

−1 B 

(108) 

Remark A.1. If we compute the value of G (0), we have that: 

G (0) = −CA 

−1 B + D = 

ˆ D 

Remark A.2. Let a matrix A is given as: 

A = 

(
A 11 A 12 

A 21 A 22 

)

the inverse of A is: 

A 

−1 = 

(
(A 11 − A 12 A 

−1 
22 

A 21 ) 
−1 −A 

−1 
11 

A 12 (A 22 − A 21 A 

−1 
11 

A 12 ) 
−1 

−A 

−1 
22 

A 21 (A 11 − A 12 A 

−1 
22 

A 21 ) 
−1 (A 22 − A 21 A 

−1 
11 

A 12 ) 
−1 

)

we also have 

A 

−1 = 

(
(A 11 − A 12 A 

−1 
22 

A 21 ) 
−1 −(A 22 − A 21 A 

−1 
11 

A 12 ) 
−1 A 12 A 

−1 
11 

−(A 11 − A 12 A 

−1 
22 

A 21 ) 
−1 A 21 A 

−1 
11 

(A 22 − A 21 A 

−1 
11 

A 12 ) 
−1 

)

Let ˆ G be the transfer function of the reciprocal system ( ̂  A , ˆ B , ˆ C , ˆ D ) , then: 

ˆ G (s ) = 

ˆ C (sI − ˆ A ) −1 ˆ B + 

ˆ D (109) 
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the relation between the two transfer functions G and 

ˆ G is given as: 

G (S) = C(sI − A ) −1 B + D 

= C(sI − A ) −1 AA 

−1 B + D 

= C 
I 

s 
(A 

−1 − I 

s 
) −1 A 

−1 B + D 

= −C 

(
I 

s 
− A 

−1 + A 

−1 
)(

I 

s 
− A 

−1 
)−1 

A 

−1 B + D 

= −CA 

−1 B − CA 

−1 
(

I 

s 
− A 

−1 
)−1 

A 

−1 B + D 

= −CA 

−1 
(

I 

s 
− A 

−1 
)−1 

A 

−1 B + D − CA 

−1 B 

= 

ˆ C 

(
I 

s 
− ˆ A 

)−1 

ˆ B + 

ˆ D 

= 

ˆ G 

(
1 

s 

)

(110)

The following lemma shows us the balanced realisation of the reciprocal system [15,21] . 

Lemma A.3. Let the system ( A , B , C , D ) be the minimal and balanced realisation with Gramian � of a linear, time-invariant and

stable system, then the reciprocal system ( ̂  A , ˆ B , ˆ C , ˆ D ) is also balanced with the same Gramian �. 

Proof. We know that � satisfies the Lyapunov equations 

A � + �A 

T + BB 

T = 0 

A 

T � + �A + C T C = 0 

Thus multiplying the first equation from the right by A 

−1 and from the left by A 

−T we get 

A 

−1 (A �) A 

−T + A 

−1 (�A 

T ) A 

−T + A 

−1 (BB 

T ) A 

−T = 0 

�A 

−T + A 

−1 � + (A 

−1 B )(A 

−1 B ) T = 0 

Substituting the values in Eq. (108) , we have that 

ˆ A � + � ˆ A 

T + 

ˆ B ̂

 B 

T = 0 

The second Lyapunov equation multiplied by A 

−T from the right and by A 

−1 from the left, gives us 

A 

−T (A 

T �) A 

−1 + A 

−T (�A ) A 

−1 + A 

−T (C T C) A 

−1 = 0 

�A 

−1 + A 

−T � + (CA 

−1 ) T (CA 

−1 ) = 0 

In the same way from Eq. (108) , we have 

ˆ A 

T � + � ˆ A + 

ˆ C T ˆ C = 0 

This means that the reciprocal system ( ̂  A , ˆ B , ˆ C , ˆ D ) is balanced with the same Gramian �. �

The reciprocal system ( ̂  A , ˆ B , ˆ C , ˆ D ) and the Gramian � are partitioned as 

ˆ A = 

(
ˆ A 11 

ˆ A 12 

ˆ A 21 
ˆ A 22 

)
, ˆ B = 

(
ˆ B 1 

ˆ B 2 

)

ˆ C = 

(
ˆ C 1 ˆ C 2 

)
, � = 

(
�1 0 

0 �2 

)

then if we refer to [1,15,24] , we have the following lemma: 

Lemma A.4. Let the hypothesis of Lemma A.3 hold and let the reciprocal system ( ̂  A , ˆ B , ˆ C , ˆ D ) be partitioned as in Eq. (111) . Then

the subsystems ( ̂  A ii , ˆ B i , ˆ C i , ˆ D ) , i = 1 , 2 are also internally balanced with Gramian �i , for i = 1 , 2 . 

Lemma A.5. Let the hypothesis of Lemma A.4 hold. Then the subsystem matrices ˆ A ii , i = 1 , 2 are asymptotically stable if �1

and �2 have no common diagonal element. Further, the subsystem ( ̂  A ii , ˆ B i , ˆ C i , ˆ D ) , i = 1 , 2 is controllable and observable. 

In order to apply balance truncation to the reciprocal system ( ̂  A , ˆ B , ˆ C , ˆ D ) we assume that the Hankel singular values

σ j for j = 1 , 2 , . . . , r are distinct and such that σ1 > σ2 > · · · > σn > 0 to have �1 > 0, Then we have the following r × r



134 A. Daraghmeh et al. / Applied Mathematics and Computation 337 (2018) 119–136 

 

reduced system ( ̂  A 11 , ˆ B 1 , ˆ C 1 , ˆ D ) with state space equation: 

˙ ˆ x = 

ˆ A 11 ̂  x + 

ˆ B 1 u 

ˆ y = 

ˆ C 1 ̂  x + 

ˆ D u 

(111) 

The values of ˆ A 11 , ˆ B 1 , ˆ C 1 and 

ˆ D can be computed from Eq. (108) and Remark A.2 , and they defined as: 

ˆ A 11 = (A 11 − A 12 A 

−1 
22 A 21 ) 

−1 

ˆ B 1 = (A 11 − A 12 A 

−1 
22 A 21 ) 

−1 (B 1 − A 12 A 

−1 
22 B 2 ) 

ˆ C 1 = (C 1 − C 2 A 

−1 
22 A 21 )(A 11 − A 12 A 

−1 
22 A 21 ) 

−1 

ˆ D = D − CA 

−1 B 

(112) 

The transfer function for the reduced system (113) is denoted by ˆ G r and defined as: 

ˆ G r (s ) = 

ˆ C 1 (sI − ˆ A 11 ) 
−1 ˆ B 1 + 

ˆ D (113) 

We want, now, to find the H ∞ 

norm for the reduced reciprocal system. 

The error bound is represented in the following lemma: 

Lemma A.6. We have 

‖ ̂

 G − ˆ G r ‖ ∞ 

≤ 2 

n ∑ 

i = r+1 

σi (114) 

The proof of this lemma can be found in [15] . 

Appendix B. Singular perturbation approximation 

Let Ḡ be the transfer function of the reduced order model in Eq. (26) , then: 

Ḡ (s ) = C̄ (sI − Ā ) −1 B̄ + D̄ (115) 

From the definition of the reduced reciprocal system (113) and the two Eqs. (114) and (27) , we obtain the following: 

ˆ A 11 = (A 11 − A 12 A 

−1 
22 A 21 ) 

−1 = ( ̄A ) −1 

ˆ B 1 = (A 11 − A 12 A 

−1 
22 A 21 ) 

−1 (B 1 − A 12 A 

−1 
22 B 2 ) = ( ̄A ) −1 B̄ 

ˆ C 1 = (C 1 − C 2 A 

−1 
22 A 21 )(A 11 − A 12 A 

−1 
22 A 21 ) 

−1 = −C̄ ( ̄A ) −1 

ˆ D = D̄ − C̄ ( ̄A ) −1 B̄ (116) 

In virtue of Eq. (116) , we have the following relationship between the two transfer functions Ḡ (s ) and 

ˆ G r (s ) and written

as: 

Ḡ (s ) = C̄ 
(
sI − Ā 

)−1 
B̄ + D̄ 

= C̄ 

(
1 

s 

)(
I − 1 

s 
Ā 

)−1 

B̄ + D̄ 

= C̄ 

(
1 

s 

)(
( ̄A ) −1 Ā − 1 

s 
Ā 

)−1 

B̄ + D̄ 

= C̄ 

(
1 

s 

)(
( ̄A ) −1 − I 

s 

)−1 

( ̄A ) −1 B̄ + D̄ 

= −C̄ 

(
I 

s 
− ( ̄A ) −1 + Ā 

)(
I 

s 
− ( ̄A ) −1 

)−1 

( ̄A ) −1 B̄ + D̄ 

= −C̄ ( ̄A ) −1 B̄ − C̄ 

(
I 

s 
− ( ̄A ) −1 

)−1 

( ̄A ) −1 B̄ + D̄ 

= −C̄ ( ̄A ) −1 
(

I 

s 
− ( ̄A ) −1 

)−1 

( ̄A ) −1 B̄ + D̄ − C̄ ( ̄A ) −1 B̄ 

= 

ˆ C 1 

(
I 

s 
− ˆ A 11 

)−1 

ˆ B 1 + 

ˆ D 

= 

ˆ G r 

(
1 

s 

)
(117) 
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Since the full system ( A , B , C , D ) is balanced and asymptotically stable and we have the balanced Gramian � = 

(
�1 0 

0 �2 

)
,

we introduce the following theorem for balancing of the reduced system ( ̄A , B̄ , C̄ , D̄ ) . 

Theorem B.1. [21] The reduced order model ( ̄A , B̄ , C̄ , D̄ ) by singular perturbation approximation is balanced with �1 and asymp-

totically stable. 

Proof. We know from Lemma A.4 that the reduced system ( ̂  A 11 , ˆ B 1 , ˆ C 1 , ˆ D ) is balanced with �1 which satisfy the Lyapunov

equations 

ˆ A 11 �1 + �1 ̂
 A 

T 
11 + 

ˆ B 1 ̂
 B 

T 
1 = 0 

ˆ A 

T 
11 �1 + �1 ̂

 A 11 + 

ˆ C T 1 
ˆ C 1 = 0 

we multiply the first equation from the right by ˆ A 

−1 
11 

and from the left by ˆ A 

−T 
11 

to get 

ˆ A 

−1 
11 ( ̂

 A 11 �1 ) ̂  A 

−T 
11 + 

ˆ A 

−1 
11 (�1 ̂

 A 

T 
11 ) ̂  A 

−T 
11 + A 

−1 ( ̂  B 1 ̂
 B 

T 
1 ) A 

−T = 0 

�1 ̂
 A 

−T 
11 + 

ˆ A 

−1 
11 �1 + ( ̂  A 

−1 
11 

ˆ B 1 )( ̂  A 

−1 
11 

ˆ B 1 ) 
T = 0 

substitute these values into Eq. (115) we obtain 

Ā �1 + �1 ̄A 

T + B̄ ̄B 

T = 0 

If the second Lyapunov equation is multiplied by ˆ A 

−T 
11 

from the right and by ˆ A 

−1 
11 

from the left, then we get 

ˆ A 

−T 
11 ( ̂

 A 

T 
11 �1 ) ̂  A 

−1 
11 + 

ˆ A 

−T 
11 (�1 ̂

 A 11 ) ̂  A 

−1 
11 + 

ˆ A 

−T 
11 ( ̂

 C T 1 
ˆ C 1 ) ̂  A 

−1 
11 = 0 

�1 ̂
 A 

−1 
11 + 

ˆ A 

−T 
11 �1 + ( ̂  C 1 ̂  A 

−1 
11 ) 

T ( ̂  C 1 ̂  A 

−1 
11 ) = 0 

In the same way from Eq. (115) , we have 

Ā 

T �1 + �1 ̄A + C̄ T C̄ = 0 

Finally, our reduced system ( ̄A , B̄ , C̄ , D̄ ) is balanced with Gramian �1 . 

Since ˆ A 11 is stable .i.e., �{ λ( ̂  A 11 ) } < 0 , where λ is an eigenvalue of ˆ A 11 , then the corresponding eigenvalue of Ā is 1 
λ

so

we have R { λi ( ̂  A 11 ) } < 0 which mean the reduced system ( ̄A , B̄ , C̄ , D̄ ) is asymptotically stable �

If the hypothesis of Theorem B.1 holds true, then there is an error bound available for the singular perturbation approx-

imation ( ̄A , B̄ , C̄ , D̄ ) of the stable and balanced system ( A , B , C , D ). 

In the form of the H ∞ 

norm, the error bound is given as [15] : 

‖ G − Ḡ r ‖ ∞ 

≤ 2 

n ∑ 

r= i +1 

σi (118)

Proof. From Eqs. (110) , (117) and Lemma A.6 , we have 

‖ G (s ) − Ḡ (s ) ‖ ∞ 

= ‖ G (s ) − ˆ G ( 
1 

s 
) + 

ˆ G ( 
1 

s 
) − ˆ G r ( 

1 

s 
) + 

ˆ G r ( 
1 

s 
) − Ḡ (s ) ‖ ∞ 

≤ ‖ G (s ) − ˆ G ( 
1 

s 
) ‖ ∞ 

+ ‖ ̂

 G ( 
1 

s 
) − ˆ G r ( 

1 

s 
) ‖ ∞ 

+ ‖ ̂

 G r ( 
1 

s 
) − Ḡ (s ) ‖ ∞ 

≤ ‖ ̂

 G ( 
1 

s 
) − ˆ G r ( 

1 

s 
) ‖ ∞ 

≤ 2 

n ∑ 

i = r+1 

σi 

�

References 

[1] A.C. Antoulas , Approximation of Large-Scale Dynamical Systems, Advances in Design and Control, Society for Industrial and Applied Mathematics,
2005 . 

[2] R.F. Curtain , K. Glover , An Introduction to Infinite-Dimensional Systems, Springer-Verlag, New York, 1995 . 

[3] A. Daraghmeh , Model Order Reduction of Linear Control Systems: Comparison of Balanced Truncation and Singular Perturbation Approximation with
Application to Optimal Control, Berlin Freie Universität, Germany, 2016 . Ph.D. Thesis. 

[4] F.L. Lewis , V.L. Syrmos , Optimal Control, second ed., John Wiley & Sons, Inc., 1995 . 
[5] S.A . Ghoreishi , M.A . Nekoui , S.O. Basiri , Optimal design of LQR weighting matrices based on intelligent optimization methods, Int. J. Intell. Inf. Process.

2 (1) (2011) 1–12 . 
[6] G.P. Liu , R.J. Patton , Eigen structure Assignment for Control System Design, John Wiley & Sons, Inc., 1998 . 

http://refhub.elsevier.com/S0096-3003(18)30391-6/sbref0001
http://refhub.elsevier.com/S0096-3003(18)30391-6/sbref0001
http://refhub.elsevier.com/S0096-3003(18)30391-6/sbref0002
http://refhub.elsevier.com/S0096-3003(18)30391-6/sbref0002
http://refhub.elsevier.com/S0096-3003(18)30391-6/sbref0002
http://refhub.elsevier.com/S0096-3003(18)30391-6/sbref0003
http://refhub.elsevier.com/S0096-3003(18)30391-6/sbref0003
http://refhub.elsevier.com/S0096-3003(18)30391-6/sbref0003
http://refhub.elsevier.com/S0096-3003(18)30391-6/sbref0004
http://refhub.elsevier.com/S0096-3003(18)30391-6/sbref0004
http://refhub.elsevier.com/S0096-3003(18)30391-6/sbref0004
http://refhub.elsevier.com/S0096-3003(18)30391-6/sbref0005
http://refhub.elsevier.com/S0096-3003(18)30391-6/sbref0005
http://refhub.elsevier.com/S0096-3003(18)30391-6/sbref0005
http://refhub.elsevier.com/S0096-3003(18)30391-6/sbref0005
http://refhub.elsevier.com/S0096-3003(18)30391-6/sbref0006
http://refhub.elsevier.com/S0096-3003(18)30391-6/sbref0006
http://refhub.elsevier.com/S0096-3003(18)30391-6/sbref0006


136 A. Daraghmeh et al. / Applied Mathematics and Computation 337 (2018) 119–136 

 

 

 

 

 

 

[7] C. Hartmann, B. Schäfer-Bung, A. Thöns-Zueva, Balanced averaging of bilinear systems with applications to stochastic control, SIAM J. Control Optim.
51 (2013) 2356–2378, doi: 10.1137/100796844 . 

[8] E. Jonckheere , L. Silverman , A new set of invariants for linear systems – application to reduced order compensator design, IEEE Trans. Autom. Control
28 (10) (1983) 953–964 . 

[9] J.W. Choi , Y.B. Seo , Control design methology using EALQR, in: Proceedings of the Thirty-Seventh IEEE SICE Annual Conference, 1998 . 
[10] G.E. Knowles , An Introduction to Applied Optimal Control, Mathematics in Science and Engineering, Vol. 159, Academic Press, 1981 . 

[11] P.V. Kokotovic , Singular perturbations in optimal control, J. Math. 6 (4) (1976) 767–773 . 

[12] P.V. Kokotovic , Applications of singular perturbation techniques to control problems, SIAM Rev. 26 (4) (1984) 501–550 . 
[13] P.V. Kokotovic , R.E. O’malley , P. Sannuti , Singular perturbations and order reduction in control theory: Ă ̌Tan overview, Automatica 12 (2) (1976)
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